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Figure 1: Overall approach. The speaker segmentation obtained after the first stage of the process
is used to extract Social Networks and duration distributions. These are then analyzed in order to
perform role recognition.

1 Introduction

Many approaches in the multimedia domain aim at extracting high level information from different
sources (videos, audio, etc.), i.e. information which is not explicitly stated in the data, but it can be
extracted through an automatic process. This kind of works include (the list is not exhaustive) event
detection [24], speaker diarization [2], action recognition [20] etc. (see Section 2 for a short survey).
In most cases, the information is used for indexing purposes, i.e. to support applications such as
Information Retrieval, browsing, etc. which enable a more effective access to the data content [16].

This work focuses on an information that, to our knowledge, has never been addressed before: the
individuals role. The reason is that, in several cases, people in multiparty recordings (i.e. recordings
involving several individuals) play a specific role, i.e. they follow a more or less rigorous plan that
imposes constraints on frequency and timing of their interventions. This is the case of radio and
television programs that are based on a format including specific roles for each participant. This
work shows how such a role can be recognized by applying Social Network Analysis (SNA) [26], the
domain studying the interaction between people in social environments, or by analyzing the duration
distribution of speakers interventions. The experiments performed in this work, focus on a specific
kind of data, namely radio news bulletins where each speaker plays one among six predefinite roles.

The approach we propose is illustrated in Figure 1. Audio recordings are first segmented into
single speaker segments using a system based on HMMs [15] and Poisson Stochastic Processes [21].
The speakers are not known a-priori and they are labeled with a code that is not related to their
identity. The resulting segmentation is thus a sequence of speaker IDs that can be used to extract a
Social Network or the time distribution across different speakers. Such information is then used to
perform role recognition.

The main characteristic of the SNA approach is that it takes into account only relational data (see
Section 5 for more details) and it is independent of speakers identity and recording length. The only
important aspect is the interaction pattern between different speakers and not who they are and how
long they talk. This can be an advantage under two main respects: the first is that, in many cases,
the format is the same, but the speakers (or at least part of them) change at each recording. This
is the case in our data where roughly 50 percent of the material contains speakers that appear only
once and, on average, there are 4 new speakers per recording. The second is that there are speakers
that play different roles in different recordings. This happens, in the case of our data, for around ten
frequent speakers that account for roughly 50 percent of the corpus material.

The approach based on the duration distributions considers the fraction of the recording time each
speaker accounts for. The value of such a fraction distributes differently depending on the role and this
provides the information necessary to assign the speakers their role (see Section 6 for more details).
The main disadvantage of this approach is that it can distinguish between different roles only when



IDIAP–RR 06-35 3

the distribution of the respective durations is not overlapping too much or the a-priori probabilities of
the roles are different. On the other hand, the approach is independent of the identity of the speakers
and can thus deal with data where the same role is played by different speakers or the same speaker
plays different roles.

The above approaches rely on different information sources and are thus expected to be diverse,
i.e. to make different errors over the same data. For this reason, the two approaches are combined to
verify whether the role recognition performance can be improved.

An important advantage of the process depicted in Figure 1 is that it captures the authors perspec-

tive [25]. In fact, different roles can be thought of as different parts of a text (e.g. chapters, sections,
etc.) because they correspond to different functions in delivering information. For this reason, role
recognition enables one to capture the structure given to the recordings by data producers. On the
other hand, while roles are well defined in data created in a production environment (e.g. news,
movies, documentaries, etc.), they are less evident, or even absent, in data collected in more sponta-
neous environments like meeting recordings and home made movies. This can limit the application
domain of role recognition techniques.

To our knowledge, the role recognition problem has been addressed only in few works (see Section 2)
though it could improve several applications. Speakers role can enhance browsers (users can access
specific data segments based on role), summarization systems (segments corresponding to certain
roles can be retained in the summary as more representative of the content than others), thematic
segmentation approaches (specific roles are often related to specific topics), etc.

The rest of this paper is organized as follows: Section 2 presents a survey of works dedicated to the
extraction of information from audio recordings, Section 3 describes data and roles, Section 4 shows
our speaker segmentation approach, Section 5 introduces Social Network Analysis, Section 6 presents
the duration distribution based approach, Section 7 presents the combination technique, Section 8
presents experiments and results and Section 9 reports conclusions.

2 Previous Work

To our knowledge, the role recognition problem has been addressed only in few works: an approach
based on lexical specificities is proposed in [5] to recognize the roles of speakers in broadcast news,
and a technique for the classification of TV shows segments into host and guest is described in [14].
The first work uses the audio, while the second takes into account the visual channel of videos. Role
recognition is one of the many approaches trying to extract high level information from multimedia
recordings, i.e. to extract information which is not explicitly stated in the data and it rather requires
an abstraction process. For this reason, this section presents a survey of the works extracting different
kinds of information from audio recordings.

The works dedicated to audio archives can be roughly divided into two groups. The first includes
the works where spoken documents are first converted into texts through Automatic Speech Recog-
nition (ASR) [15] and then indexed with approaches developed for digital texts [4] (see [18] for an
extensive survey on this approach). The second includes works that consider audio far richer than a
simple textual transcription [16], [25] and try to extract information like speaker identity and emo-
tional state as well as affective content and different kinds of events. This survey focuses on the latter
aspect.

Several works have been dedicated to the detection of events considered of particular importance
in applications like browsing, summarization and indexing. Such an approach is especially common in
analyzing sport videos where certain events (e.g. goals or red cards in soccer) are likely to influence
the final result and are thus considered as the highlights of the whole match [24], [3], [8]. Most
of the approaches are based on models of specific targeted events. In [24], [3] the authors identify
important moments by detecting cheering and excited speech as well as information extracted from
the visual channel. Experiments performed on several hours of recordings show that events like goals
or yellow cards in soccer matchs can be detected with satisfactory performance. In [8], the detection
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Role AM SA GT AB MT IP
Fraction (%) 41.2 5.5 34.8 7.1 6.3 4.0

Table 1: Corpus Characteristics. This table reports the percentage of corpus time that each role
accounts for.

of important events is used to create summaries containing only the match highlights and accounting
for less than 5 percent of the original duration. Audio based information is very important also in the
analysis of meeting recordings where speech is the main channel of communication between the various
participants. Several works [20], [28], [10] are aimed at identifying group actions like discussions,
agreement and monologues. The proposed approach is based on machine learning algorithms fed with
features (e.g. speaker location) extracted from both audio and visual channel.

Other works [27], [17], [29] focus on information that can be extracted from audio without trying
to model higher level events. In [27], the authors address the problem of detecting crosstalk, i.e.
the presence of other voices in the lapel microphone of a certain speaker. This is necessary in order
to enhance the performance of speech recognizers, but also to detect moments when several persons
talk together (an information important for the dynamics of the meeting). The subject of [17] is the
detection of speaker emotional states. The authors perform experiments on a corpus of conversations
collected at a call center. The goal is to detect unsatisfied or stressed users in order to activate help
mechanisms. The work presented in [29] shows how audio can be segmented into classes like music,
speech and singing. that can be helpful to segment videos.

Some works address the above problem by modeling the reaction (in both affective and attentional
terms) that certain characteristics of the audio and visual channels (e.g. high energy sounds and
fast moving images) are likely to induce in the audience. The advantage of such an approach is that
it can lead to general models valid over a wide range of data. In [19], the authors use a model of
human attention in order to detect the events that are more likely to attract the audience and that
must thus be selected when creating a video summary. Authors observe that humans tend to pay
more attention to speech and music, thus detect this kind of information. Experiments performed
over five videos (around 70 minutes in total) show that satisfactory results (as evaluated by 20 human
assessors) can be achieved. A similar perspective is used in [12], [11] where important events are
associated with audio characteristics likely to produce, following psychophisiologists, excitement in
the listeners. Experiments performed over a database of soccer matchs and Hollywood movies (for
a total of few hours) show that segments corresponding to the excitement model contain important
events in both kinds of data. A similar approach is used in [7] to perform affect-based indexing and
retrieval of films. Since movie directors use loud music or noise to generate emotional reactions in the
audience, highly emotional scenes are found by detecting energy peaks in the audio signal.

3 Data and Roles

The experiments of this work have been performed over a corpus of 96 news bulletins collected dur-
ing february 2005 at Radio Suisse Romande (RSR), the Swiss national broadcasting service. They
represent the whole set of bulletins broadcasted during february 2005 working days (during the week
ends RSR diffuses only short communicates). The corpus is thus realistic and representative of this
specific kind of radio news. The total duration of the data is 18 hours, 56 minutes and 23 seconds
and the average bulletin length is 11 minutes and 50 seconds. The shortest recording is 9 minutes
and 4 seconds long, while the longest one lasts 14 minutes and 28 seconds. The standard deviation (1
minute and 17 seconds) accounts for the high variability of different recording lengths. The average
number of speakers is 11.0 with a standard deviation of 1.6. The speakers account for 99 percent of
the data and the remaining 1 percent corresponds to music, noise, jingles, etc.

In our experiments, we identified six roles that can label any speaker. In other words, each speaker
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can be assigned one of the six roles and no speaker must be left unlabeled because no role is available.
The first is the anchorman (AM), i.e. the role of the persons coordinating the bulletin, introducing
other speakers and, in some cases, discussing the most important issues. The main characteristics of
AMs are that they interact with most of the other speakers and they appear all allong the recordings.
In our data, the identity of the AM changes at each bulletin and there are around 10 persons playing
alternatively the AM. The second role is the secondary anchorman (SA), i.e. the person that supports
the AM by announcing new topics. The main characteristic of the SAs is that they interact mostly
with the AM and their interventions are typically short (20-25 seconds). The SA role is played by
the same group of persons playing the AM. At each bulletin, the identity of the SA changes and the
same person can play, in different bulletins, both SA and AM. The third role is the guest (GT), i.e. a
person invited to express an opinion or to report about a single and specific topic. GTs appear only
once in a given bulletin (but they can appear in several bulletins) and they interact with no more than
two persons. The GTs change everyday and only few of them (in general the same journalists that in
other bulletins play the AM role) appear in different days. The fourth role is the interview participant

(IP), i.e. someone who is involved in an interview where two or more persons have an exchange and
interact with each other. Like in the case of GTs, the identity of IPs changes everyday and only few
of them appear more than once in the data corpus. The last two roles are abstract (AB) and meteo

(MT). ABs appear at the beginning of the bulletins and provide a summary. Sometimes the AB role is
played by the AMs, but in other cases there is a specific speaker. The identity variability is the same
as in the case of AMs, i.e. relatively few persons appear alternatively as AB in different bulletins. The
MTs appear typically at the end of the news and they give the wheather forecast. This is the only
role which is played by few persons (two in the case of our data). Since they appear at an extreme of
the newscast, both MT and AB interact with no more than one person. Table 1 shows the percentage
of the total time represented by each role. AM, SA, AB and MT are played by a single person and
are represented in every bulletin, while GT and IP are played by a number of persons which is not
known in advance and are not necessarily represented in every bulletin.

4 Speaker Clustering

Given a multiparty recording of duration T , the goal of a speaker segmentation algorithm is to find
a sequence S = {(s1, τ1), . . . , (sN , τN )} of pairs (si, τi) representing segments where speaker and
duration are si and τi respectively. The number of speakers G and turns N is not known a priori
and

∑N
i=1 τi = T . Such a problem can be solved through a speaker clustering algorithm, i.e. an

unsupervised technique capable of grouping the feature vectors extracted from the recordings so that
each cluster corresponds to a single speaker. The clustering approach applied in this work (see [2], [1]
for a detailed description) is based on ergodic continuous density Hidden Markov Models (HMM) with
Gaussian Mixture Models (GMM) as emission probabilities [15]. Each cluster corresponds not only
to the observation vectors (see below) belonging to a certain speaker, but also to a state in the HMM
and to its emission probability function.

The first step of the SC process is the conversion of the audio data into a feature vectors sequence
O = {o1, . . . , oK}. Several feature extraction techniques are available in the literature (see [13] for
an extensive survey), but this work uses 12 dimensional Mel Frequency Cepstral Coefficients (MFCC)
vectors extracted every 10 ms from a 30 ms long window [13]. The reason is that MFCC features
have, on average, higher performance in speaker recognition tasks (they are thus effective in capturing
speaker voice characteristics) and extensive experiments show that they lead to better results in
speaker clustering experiments [1].

Once the sequence O is available, it is possible to initialize the ergodic HMM (see above). Since
G is not known a-priori, it is necessary to make an initial guess G(0) that must be significantly higher
than the actual value of G. The initial clusters are obtained by simply segmenting O into G(0) uniform
segments. The vectors in each segment are assumed to belong to the same cluster and they are used
to train, using the Maximum Likelihood algorithm (ML) [15], a GMM that will be the emission
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Figure 2: Speaker Segmentation. This figure shows the distribution of speaker changes in groundtruth
(upper plot), raw (central plot) and filtered (lower plot) speaker segmentation. The label is missing
for shorter segments only because there is not enough space. The system provides a label for each
segment and 99% of the material corresponds to speakers talking.

probability function of the HMM. The HMM could be trained as a whole using the Baum-Welch
algorithm [15], but separate training of each GMM is computationally less expensive and leads to
similar results. The only problem is that it is not possible to train the transition probabilities, but
these play no role in a speaker segmentation problem and can be set to a uniform distribution [1].

The result of the training is an HMM with parameter set Θ(0) that can be aligned with O using
the Viterbi algorithm [15] to obtain the best sequence of states (i.e. speakers):

q(0) = arg max
q

p(q|O,Θ(0)) (1)

where q is a sequence of states. As a result of the alignment, the data assigned to each cluster are
changed with respect to the initialization and it is possible to re-train the GMMs of each cluster to
obtain a new HMM with parameter set Θ(1):

Θ(1) = arg max
Θ

p(q(0)|O,Θ) (2)

where Θ = {θ1, . . . , θG(0)}, i.e. the parameter set of the HMM can be thought of as a set of GMM
parameters.

Since the number of speakers G(0) is higher than G, the data is oversegmented and there are clusters
that should be merged since they contain data belonging to the same speaker. For this reason, two
states are merged when the following condition is met:

log p(Om+n|θm+n) ≥ log p(Om|θm) + log p(On|θn) (3)

where Om, On and Om+n are the observation vectors attributed to cluster m, n and their union
respectively, θm and θn are the parameters of GMMs in states m and n and θm+n are the parameters
of a GMM trained with EM on Om+n.

After the merging process, the resulting HMM (that has less states than the original one) is aligned
with O and the parameters of the GMMs are trained as explained above. At the ith iteration, this
leads to the state sequence q(i) such that:

q(i) = arg max
q

p(q|O,Θ(i)). (4)

The main problem of the above criterion is that the likelihood of an HMM always decreases after
reducing the number of parameters (this is always the case after merging two states) and this makes
it impossible to find a stopping criterion that does not require a manually set threshold. A solution
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is to set |θm+n| = |θm| + |θn| when merging states m and n (|Θ| is the number of parameters in
Θ). In this way, the number of parameters remains constant across different iterations and there is
empirical evidence that the likelihood increases up to a certain point (until the merging involves states
actually corresponding to a given speaker) and then it starts to decrease (when the merging involves
states corresponding to different speakers). Although such an effect is not proved theoretically, there
is empirical evidence that it leads to satisfactory results not only in this work, but also in other works
presented in the literature [2].

4.1 Speaker Segmentation Smoothing

The result of the speaker clustering process described in the previous section is a sequence S =
{(s1, τ1), . . . , (sN , τN )} such that

∑N
i=1 τi = T , where T is the total duration of the audio recording

under examination (see Figure 2). Because of the high variability in the data, S contains many
spurious turns that are not determined by an actual change of speaker, but rather by effects like
background noise, music, crosstalk, etc. Figure 2 (central segmentation) shows that such an effect
is particularly evident in certain points (e.g. at the beginning and between 500 and 550 seconds).
This is an important problem not only because it decreases the quality of the speaker segmentation,
but also because it introduces a high number of spurious interactions that heavily affect the Social
Networks extracted from the data (see Section 5 for more details). It is thus necessary to post-process
S in order to reduce as much as possible the amount of false interactions.

In order to address the above problem, we consider the groundtruth speaker segmentations of the
data used in our experiments. Given a groundtruth segmentation S∗ = {(s∗1, τ∗

1 ), . . . , (s∗K , τ∗
K)}, there

are K − 1 speaker changes and the ith one of them takes place at time t∗i =
∑i−1

n=1 τ∗
n. For each

recording m it is thus possible to obtain a function fm(t) giving, at each time t, the number of speaker
changes that took place in the time interval [0, t]. Since such functions increase by one at each time
t∗i , they are called staircase functions. If a recording corpus contains M multiparty recordings, the
average number n(t) of speaker changes at time t can be estimated as follows:

n(t) =
1

M

M
∑

m=1

fm(t). (5)

Figure 3 shows that the values of n(t) can be fitted by a line of slope λ, in other words:

n(t) ≃ λt. (6)

Equation 6 means that the speaker change distribution in time is governed, like many other natural
and technological phenomena, by a Poisson Stochastic Process (PSP) [21] and this can be used to
detect spurious turns. In fact, if the tis are distributed following a PSP it can be demonstrated that:

p(ti+1 − ti < t) = 1 − e−λt. (7)

where ti+1 − ti is the duration τi of the ith segment. The odd of the probability in Equation 7 can be
used to identify as spurious all the turns such that:

p(τ < t)

1 − p(τ < t)
=

1 − e−λt

e−λt
≥ 1

2
. (8)

In other words, the above expression states that a segment is considered as spurious when the prob-
ability of a segment being longer than τ is more than two times higher than the probability of being
shorter than τ . Such a threshold has been fixed arbitrarily a-priori and no other values have been
tried.

The last equation enables one to label each segment as spurious or non-spurious and along the
segment sequence there are two possibilities: the first is that a spurious segment is between two non-
spurious segments, the second is that a spurious segment neighbors, at least on one side, another
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Figure 3: Poisson Stochastic Process. This plot shows the average number of turns at time t. The
value of n(t) is estimated every 10 seconds.

spurious segment. In the first case, the spurious segment is removed by attributing left and right
halves to left and right neighbours respectively. In the second case all adjacent spurious segments
are aggregated and the resulting segment is attributed to the most represented (in terms of time)
speaker appearing in it. The resulting segment is always in the first situation described above, i.e. it
is between two non-spurious segments. In fact, the aggregation starts at the leftmost spurious segment
and ends at the rightmost spurious segment, then on the left and right side of the aggregation there are
always non-spurious segments. If the segment resulting from the aggregation is still spurious following
Equation 8, then it is attributed to left and right neighbours like in the case of spurious segments
adjacent to non-spurious ones. Otherwise it is retained as a non-spurious segment.

Before applying the above smoothing algorithm, it is necessary to estimate the λ parameter. In
order to perform experiments over the whole corpus at disposition, we used a leave-one-out approach,
i.e. we estimated λ separately for each recording using the other data of the corpus. In this way, the
separation between training and test set is guaranteed and the system is not fitted to the test data.
The estimation is performed by fitting the points of Figure 3 with a first degree polynomial with the
Least Square Method and by retaining the coefficient of the first power of the variable as λ estimate.

The application of the above algorithm removes most of the spurious segments, but it affects also
some actual speaker changes (this is often the case of short questions in interviews). On the other
hand, most of the spurious interactions affecting negatively the Social Networks extracted from the
data are removed and this improves the results obtained through SNA (see Section 8).

5 Social Network Analysis

Social Network Analysis is the sociological domain studying the interaction between people in social
environments [26], [23]. Given a group of individuals (often called actors), SNA focuses on the so-
called relational data, i.e. all evidences of the fact that two or more persons interact with each other.
At the same time, any attribute data, i.e. any characteristic specific of single individuals, is neglected.
This is important because it enables our approach to be independent of speakers identity and time
duration of segments and recordings.
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Figure 4: Social Networks. The networks shown in this figure correspond to the segmentations shown
in the previous figure. The leftmost network has been extracted from the groundtruth, the central
from the raw segmentation and the rightmost from the filtered segmentation.

The next subsections show how the relational data are extracted and how they are used to recognize
the speakers role.

5.1 Social Network Extraction

The relational data are collected from the speaker segmentations obtained using the system described
in Section 4. Following an experimental psychology approach [9], we use as evidence of the relationship
between two individuals the fact that one of them talks at least once immediately before the other
one in the recording. More formally, given the set A = {a1, . . . , aG} of the G speakers involved in
a recording and a relationship R(ai, aj) : A × A → {0, 1}, we state that R(ai, aj) = 1 if and only if
speaker ai talks immediately before speaker aj in the speaker sequence obtained after the segmentation
at least once. Since the order is taken into account, R is not symmetric, thus R(ai, aj) = 1 does not
necessarily imply that R(aj , ai) = 1. The relational data is the set of ordered pairs (ai, aj) such that
R(ai, aj) = 1.

Given a set of relational data, it is possible to create the so-called sociomatrix X where xij =
R(ai, aj) and to build the Social Network, i.e. the graph where each node represents an actor ai and
each edge represents a relationship. When the network is built using a non symmetric relationship,
the corresponding graph is directed: an arrow from ai to aj means that R(ai, aj) = 1. Figure 4 shows
the three networks extracted from the segmentations of Figure 2. While the networks have essentially
a visualization purpose, the sociomatrices are used to perform the network analysis.

Figure 4 shows that not all of the speakers are connected directly, but they can be connected
through paths passing through other speakers. By path it is meant a sequence of alternating nodes
and arcs so that each arc has its origin at the previous node and its terminus at the subsequent node
(nodes and arcs must be included in the sequence only once). The length dij of the shortest path
going from ai to aj , i.e. the number of arcs included in the list, is often used as a measure of the
distance between nodes and it plays an important role in actor centrality measures (see next section).

The distance between nodes can be calculated using the sociomatrix. The element ij of the X2

matrix is calculated as
∑G

k=1 xikxkj . Such a sum is different from zero only if there is at least one
value of k for which both xik and xkj are different from zero, in other words only if there is a path of
length 2 connecting ai and aj and passing through ak. Since the sociomatrix elements can be equal
only to 0 or 1, the element (X2)ij is the number of paths of length 2 connecting ai and aj . The same
considerations apply to any power p of X and the distance between ai and aj can be calculated as
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follows:
dij = min(∞, arg min

p
p : (Xp)ij > 0), (9)

i.e. the smallest value of p for which the element (Xp)ij is different from zero. The value of p cannot
be higher than G − 1, thus if (Xp)ij = 0 for all values of p ∈ {1, . . . , G − 1}, the distance is set to
infinity and the graph is said disconnected.

5.2 SNA Based Role recognition

The role recognition process consists in assigning each actor ai a role ri = r(ai). From a probabilistic
point of view, the problem can be thought of as finding the roles r∗i that maximize the following
probability:

~r∗ = arg max
~r

p(r(ai) = ri, i = 1, . . . , G) (10)

where ~r = (r1, . . . , rG). The above probability can be factored as follows:

p(ri = AM)p(rj = SA|ri = AM)·
·p(rk, k 6= i, j|ri = AM, rj = SA)

(11)

and the last term of the product can be further factored:

p(rk, k 6= i, j) =
∏

k 6=i,j

p(rk|ri = AM, rj = SA) (12)

where we make the assumption that the roles played by actors different from SA or AM are statistically
independent.

The rationale behind the above factorization is that AM and SA are represented in every bulletin
and are played by a single person. For this reason such roles are assigned to the individual most
likely to play them. On the contrary, GT and IP are not always represented and they can be played
by an arbitrary number of persons, then they are assigned when they are the most likely role for a
given speaker. Moreover, while the AMs can be recognized based on their centrality (see below), i.e. a
sociometric characteristic associated to each individual, the other roles can be recognized only through
the fraction of interaction they have with AM and SA (see below), i.e. a characteristic of a pair of
individuals that can be used only when the AM is known. This requires to perform the recognition
in a sequential way, i.e. by recognizing AM and SA first, and after the other roles (this is the reason
of the factorization in Equation 11).

The factorization in Equation 11 corresponds to the simplifying assumtpion that the different
terms are statistically independent. In this way, the value of the product can be found by maximizing
separately the different terms and the resulting vector ~r∗ is actually the one maximizing p(~r). One
limit of such an approach is that the eventuality that the AM or the SA are split into more than one
cluster is not taken into account. In fact, each cluster is assumed to correspond to one and only one
speaker and the approach works only to the extent that such an assumption is true. In the case of our
data, this does not create problems (see Section 8) because the AM voices are sufficiently represented
to be never split into more than one clusters (only less represented voices tend to be split into several
clusters).

The problem is now to model the different terms of Equation 11 given that the only available
information is a set of labeled recordings and the set X = {X1, . . . ,XN} of their corresponding
sociomatrices. Given a sociomatrix, there are two measures characterizing an actor ai: the first is the
centrality and the second is the relative interaction with another actor ak.

The centrality C(i) is a measure of how close is an actor to the others and the SNA literature
offers several centrality indexes [26]. The most commonly applied is the following one:

C(i) =
G − 1

∑G
j=1 dij

(13)
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where dij is the distance between actors i and j and G is the number of actors. C(i) is the inverse
of the average distance of actor i with respect to other actors and it is assumed to account for the
speakers centrality.

The relative interaction of ai with respect to another actor ak is the following quantity:

f(i, k) =
xik + xki

∑G
j=1 xij +

∑G
j=1 xji

(14)

where the xij are the sociomatrix elements. The relative interaction accounts for the percentage of ai

interactions that have ak as partner and, in general, f(i, k) 6= f(k, i).
The AMs tend to have more interactions than the others and, for this reason, they are expected to

have higher centrality. The centrality of the AM can be thought of as a random variable following a
Gaussian distribution N (CAM |µAM , σ2

AM ). If Ci is the AM centrality of sociomatrix Xi, the Maximum
Likelihood (ML) estimates of µAM and σ2

AM are as follows [6]:

µ̂AM = 1
N

∑N
i=1 Ci σ̂2

AM = 1
N

∑N
i=1 C2

i − µ̂2
AM . (15)

The above expressions enable one to estimate the probability of an actor ai being the AM as follows:

p[r(ai) = AM ] = N (C(i)|µ̂AM , σ̂2
AM ), (16)

where r(ai) is the role of ai.
The probability of a speaker ak playing the SA role can be modeled as p(r(ai) = AM, r(ak) =

SA) = p(r(ak) = SA|r(ai) = AM)p(r(ai) = AM). The second term of the product is estimated
with Equation 16 and the first one can be estimated by considering that the second anchorman is the
speaker that interacts more than anybody else with the AM. In other words, if ai is the AM and ak

is the SA, the value f(i, k) is expected to be, on average, higher than f(i, j) for j 6= k. The value of
f(AM,SA) can be thought of as a Gaussian random variable and, if fi is the value of f(AM,SA) in
sociomatrix Xi, then the ML estimates of the gaussian parameters are as follows (see above the case
of the AM):

µ̂SA = 1
N

∑N
i=1 fi σ̂2

SA = 1
N

∑N
i=1 f2

i − µ̂2
SA. (17)

The last two roles can be assigned by using the same approach as in the case of the SA. For
the guests, the variable to be modeled is f(GT,AM), i.e. the percentage of interactions that the
guests have with the AM. For the Interview Participants, the variable is f(IP,AM). The relative
interactions of GT and IP with the AM are expected to follow different Gaussian distributions because
GTs interact only with the AM, while IPs interact mainly with other IPs. As a result, the probability
of speaker al being a guest can be modeled as follows:

p[r(ai) = AM, r(ak) = SA, r(al) = GT ] =
p[r(ak) = SA|r(ai) = AM ]p[r(ai) = AM)]
p[r(al) = GT |r(ai) = AM, r(ak) = SA],

(18)

where the last term of the product is estimated with the normal distribution: N (f(al, AM)|µGT , σ2
GT ).

The expression for the probability of a speaker being an IP is the same, but GT is replaced with IP .

6 Duration Distribution Modeling

This section presents the role recognition approach based on the duration distribution analysis. Given
a bulletin, each speaker k accounts for a fraction τ(k) of the total time. By the Bayes Theorem, the
a-posteriori probability of a speaker k playing the role r can be written as follows:

p[r|τ(k)] =
p[τ(k)|r]p(r)

p[τ(k)]
(19)
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where p[τ(k)|r] is the likelihood of fraction τ(k) given the role r, p(r) is the a-priori probability of role
r, and p[τ(k)] is the probability of observing a speaker accounting for a fraction τ(k) of a bulletin.

The approach includes some additional knowledge about the structure of the bulletins, in fact AB
and MT can still be detected as the first and last speaker (see Section 5) without the need of finding
the role satisfying Equation 21. Moreover, AM and SA roles can be played only by one person per
bulletin, then the speaker k for which r(k) = AM or r(k) = SA can be indentified as follows:

s(r) = arg max
k

p[τ(k)|r]p(r) (20)

where s(r) is the speaker playing role r. The roles that can be played by different speakers in the
same bulletin (GT and IP) are assigned to the remaining speakers by finding the role they identify
with highest probability:

r(k) = arg max
r

p[τ(k)|r]p(r) (21)

where r(k) is the role of speaker k, and the term p[τ(k)] in Equation 19 can be neglected because it
does not depend on r. This approach will be referred to as DDM in the following.

The expression of the probability distributions appearing in the right hand side of Equation 21
can be obtained as follows: p(r) can be estimated with the percentage of the data in the corpus role
r corresponds to. The likelihood can be estimated with a Gaussian N (τ, µr, σr), where averages and
variances are the Maximum-Likelihood estimates obtained as follows:

µ̂r = 1
N(r)

∑

i:r(i)=r τ(i) σ̂2
r = 1

N(r)

∑

i:r(i)=r(τ(i) − µ̂r)
2 (22)

where N(r) is the number of speakers playing the role r in the database, and the sum involves all
speakers playing role r.

The estimation of the parameters is performed using the ground truth roles provided with the
recordings. In order to avoid an overestimation of the system performance, the distributions are
obtained using a leave-one-out approach, i.e. the parameters used to process a bulletin are extracted
from the whole corpus except the bulletin under examination.

7 Combination

The approaches presented so far can be used separately, but their combination is likely to improve their
performance because they rely on different sources of information. In fact, SNA uses only relational
data (see above) and does not take into account characteristics of single actors, while DDM uses the
duration of speakers interventions and does not include any relational feature. The probability of
a speaker ai playing role r and accounting for a fraction τ of the recording time can be written as
follows:

p[r(ai) = r, τ(ai) = τ ] = p[r(ai) = r]p[τ(ai) = τ |r]p(r) (23)

where we make the simplifying assumption that role r and fraction τ are statistically independent (see
previous sections for the meaning of the symbols).

The expressions for p[r(ai) = r] are given in Section 5 for the different roles, while the expressions
for p[τ(ai) = τ |r]p(r) are given in Section 6. The problem of role assignment can be viewed again as
the maximization of vector ~r (see above) and this can be performed by applying the same factorization
used in Section 5. The difference is that the probabilities of playing a certain role must be multiplied
by the probabilities of observing a duration τ for the same speaker as shown in Equation 23.

8 Experiments and Results

This section describes the experiments performed in this work. Our approach involves two major steps
(speaker clustering and role recognition) that will be evaluated with two performance measures, i.e.
accuracy and purity. The next subsections describe the performance metrics, the speaker clustering
results and the results of the role recognition experiments.
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8.1 Performance Measures

Both speaker segmentation and role recognition give as output a sequence S = {(si, τi)}, where
i ∈ (1, . . . , |S|), that must be compared with a groundtruth S∗ = {(s∗j , τ∗

j )}, where j ∈ (1, . . . , |S∗|).
The number of pairs in S and S∗ is not necessarily the same while the sum over the durations τi and τ∗

j

must correspond in both cases to the total duration T of the recording from which both segmentations
are extracted:

|S|
∑

i=1

τi =

|S∗|
∑

j=1

τ∗
j = T. (24)

In the following, si and sj∗ will be referred to as automatic and groundtruth labels respectively, while
τi and τ∗

j will be called automatic and groundtruth durations.
The first way to measure the segmentation performance is to consider the fraction of T such that

automatic and groundtruth labels are equal. Such a measure is called Accuracy α and can be expressed
as a percentage. If ti =

∑i−1
k=0 τi is the starting point of the ith automatic segment (the same applies

to groundtruth segments), the duration of the intersection between segments i and j of automatic and
groundtruth segmentations respectively is:

lij = I[min(ti+1, t
∗
j+1) − max(ti, t

∗
j )] (25)

where I[.] is equal to the argument when this is positive and zero otherwise. The accuracy can thus
be calculated as follows:

α =
1

T

|S|−1
∑

i=0

|S∗|−1
∑

j=0

lij · δsis
∗

j
(26)

where δmn (Kronecher delta) is 1 when m = n and 0 otherwise. The accuracy is a fraction and can
be expressed as a percentage.

The accuracy can be applied only when the label of each segment is unique. This happens in the
role segmentation because each speaker plays only one role and then has a unique label. The situation
is different for the speaker segmentation because it is obtained through an unsupervised approach
and the labels are simple IDs that are randomly determined and change, for the same speaker, each
time the segmentation is performed. The only information in the groundtruth is then the position of
the boundaries along the time axis (see Figure 2). For this reason it is necessary to use a different
performance metric which is capable of measuring the consistence of the segmentation rather than
the assignment of a correct label. This is the goal of the Purity P which measures to what extent the
same speaker is labeled always with the same label and each label corresponds always to the same
speaker.

Given a groundtruth speaker s∗, the purity P (s∗) is defined as:

P (s∗) =

N
∑

i=1

∑

k:s∗
k
=s∗ l2ik

∑

k:s∗
k
=s∗(τ

∗
k )2

, (27)

where N is the number of speakers in the automatic segmentation. The average groundtruth purity

(π∗) is:

π∗ =

N∗

∑

s∗=1

Φ(s∗)P (s∗) (28)

where Φ(s∗) is the time fraction s∗ accounts for. The same criteria can be applied to the automatic
segmentation to obtain the purity of an automatic speaker s:

P (s) =

N∗

∑

i=1

∑

k:sk=s l2ik
∑

k:sk=s(τk)2
, (29)
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Metric α(%) bf α(%) af α(%) th P bf P af P th
SNA 69.6 80.1 88.2 0.77 0.8 0.89
DDM 77.1 79.7 78.2 0.80 0.80 0.83
DDM+SNA 82.2 85.1 86.1 0.81 0.83 0.85

Table 2: Role recognition performance. This table reports the results (in terms of α and P ) before
filtering (bf), after filtering (af), and over the groundtruth speaker segmentation (th).

and the average automatic purity (π):

π =

N
∑

s=1

Φ(s)P (s). (30)

The value of the segmentation purity P is:

P =
√

π · π∗. (31)

The value of P ranges between 0 and 1, but it does not correspond to a fraction, the closer to 1 the
value, the more the segmentation is consistent, i.e. the same speaker tends to have the same label
and, viceversa, the same label tends to be assigned to the same speaker.

8.2 Speaker Segmentation

The segmentation into speakers is the first step in the role recognition process. In fact, the sequence
of the speakers is the basis for the collection of the relational data (with related sociomatrices and
Social Networks) and of the segment durations.

The estimation of the parameter λ necessary to apply the smoothing algorithm is performed using
a leave-one-out approach, i.e. using as a training set the whole corpus except the recording for which
the parameter is estimated. In this way, no information contained in the recording is used to build the
smoothing algorithm and the performance is not artificially overestimated. The use of the leave-one-
out approaches enables us to use the whole corpus described in Section 3 to measure the performance
of our system. The speaker clustering is not affected by the same problem because the approach we
apply is unsupervised, thus there is no need to separate training and test data.

The P of the segmentation is 0.86 before the PSP based smoothing and 0.82 after. This seems to
correspond to a decrease of the segmentation quality, but this is not necessarily the case when the goal
is the role recognition. In fact, the average number of speaker changes in the segmentations before the
PSP is 51.1, while it is 29.0 in the groundtruth. Since we use as evidence of the interaction between two
speakers the fact that one of them talks immediately before the other one, such a situation introduces
many spurious interactions (see central segmentation in Figure 2 and central network in Figure 4).
After the PSP smoothing, the average number of speaker changes is 15.9, thus a high percentage
of the groundtruth changes are lost. On the other hand, most of the preserved interactions are not
spurious and this enables the system to better perform the role recognition (see lower segmentation
in Figure 2 and rightmost network in Figure 4).

8.3 Role Recognition

The results of the role recognition experiments are reported in Table 2. The best performance is
achieved by combining DDM and SNA and it corresponds to an accuracy of 85.1 percent and a purity
0.83 (both obtained after the PSP filtering). The performance achieved by the same system over the
groundtruth speaker segmentation is α = 86.1% and P = 0.85, then the combination captures most
of the information available in the actual speaker interactions even if the speaker clustering results
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Figure 5: Probability distributions. The plot shows the τ a-posteriori probability distributions for the
different roles.

in a noisy (i.e affected by errors) speaker segmentation. The filtering process improves consistently
the results even if it reduces the quality of the speaker segmentation. This seems to confirm that
the process preserves actual interactions while removing spurious ones. Over the groundtruth speaker
segmentation, SNA performs better than DDM and DDM+SNA. The reason is that the duration
models corresponding to some of the roles (see Figure 5) overlap each other and are thus ambiguous.
On the other hand, DDM and SNA seem to be diverse, i.e. they perform different errors over the
same data, then their combination improves significantly the performance of the two systems used
separately.

Table 2 reports also the results obtained by applying the algorithms over the groundtruth speaker
segmentation. The best results are achieved by the SNA (α = 88.2%), but it is the combination
DDM+SNA that is closer, when applied to the automatic speaker segmentation, to the results achieved
over groundtruh speaker segmentation (the difference is just one point). This seems to suggest that
SNA captures better than the other algorithms the information necessary to assign roles, but it is
less effective in dealing with the noise due to the speaker segmentation errors. On the contrary,
the combination of SNA and DDM introduces some noise when applied to the groundtruth (the
overlapping of the Gaussians in Figure 5 introduces some ambiguities), but at the same time it is
more efective in dealing with the noise of the automatic speaker segmentation.

Table 3 reports the results for each role separately. Satisfactory performances are achieved for
AM, GT, AB and MT, while SA and IP are recognized with low α and P . This is true especially
after the PSP filtering because both SA and IP are characterized by short interventions (less than
five seconds) that are often interpreted as spurious segments. This means that the problem must
probably be addressed at the speaker clustering level rather than in the role recognition technique.
On the other hand, the high variability of the audio data, which include backgroud noise, phone calls,
crosstalk etc., makes it difficult to eliminate short spurious segments which determine the need for a
filtering process that affect roles involving brief interventions. However, SA and IP account for less
than ten percent of the total corpus time and the effect on the overall performance is limited.

There are several factors that can have an effect on the role recognition performance: the num-
ber G of speakers, the distance between actual speaker turns and detected speaker turns, and the
oversegmentation of certain speakers, i.e. the split of a single speaker into more than one clusters.
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In general, the effect of a variable x on a variable y (and viceversa) can be measured through the
following Correlation Coefficient :

R =
N

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi

√

[N
∑N

i=1 x2
i − (

∑N
i=1 xi)2][N

∑N
i=1 y2

i − (
∑N

i=1 yi)2]
(32)

where (xi, yi) are observed pairs and N is the number of pairs at disposition. When R is close to 1,
the variables are correlated, i.e. when one grows the other one grows accordingly and viceversa. When
R is close to 0, the two variables are not correlated and their values do not depend on each other.

The effect of G can be evaluated by estimating the correlation coefficient between G and α (in
the following we use the accuracy of the combined system). In this case, R = 0.01, i.e. the number
of actors does not affect the effectiveness of the system at least in the range of observed speakers
number, i.e. from 7 to 15 (with average around 11).

The same coefficient has been used to measure the correlation between the winDiff of the speaker
segmentation and the role recognition accuracy. The winDiff is a metric commonly used to evaluate
segmentations and it is defined as follows [22]:

WD =
1

N(w)

N(w)
∑

k=1

|bg(wk) − ba(wk)| (33)

where the wk are non overlapping windows of length W that span the whole recording, bg(wk) and
ba(wk) are the number of boundaries in groundtruth and automatic segmentation respectvely and
N(w) is the total number of windows covering the recording. The value of WD is the average of
the difference between the number of boundaries in a given interval of automatic and groundtruth
segmentations. for this reason, the lower WD the the better the automatic segmentation. The
correlation coefficient between winDiff (measured with a 10 seconds long window) and accuracy is
0.18, then the distance between groundtruth speaker turns and detected speaker turns seems not to
affect the performance of the system.

The situation is different when measuring the correlation between the purity for a given speaker,
i.e. to what extent the speaker is always labeled with the same ID, and the purity of the corresponding
role, i.e. to what extent the same speaker is given always the same, and correct, role. In this case,
R = 0.86 and the correlation is thus significant. In other words, a speaker which is not correctly
clustered is likely to be given the wrong role.

9 Conclusion

This paper has presented two approaches (applied both separately and combined) to perform role
recognition in multiparty audio recordings. The experiments of this work are performed over a corpus
of radio news bulletins and the results show that around 85 percent of the total time can be labeled
correctly in terms of role.

Role recognition can improve several applications (the list is not exhaustive): browsing can be
enhanced by enabling users to move across segments corresponding to specific roles (e.g. the meteo
rather than guest interventions). In this way, it is possible to access directly information that would be
difficult to locate in a long recording. Summarization systems can use the speakers role as a criterion
to select the segments to be retained in an automatic summary. In the case of our data, a summary
made of the only AM interventions covers all the topics presented in each bulletin and it corresponds
to less than 50 percent of the recording duration. Further compression can be achieved by retaining
only the AB interventions which contain a short description of the bulletin content and, on average,
account for less than 10 percent of the total duration time. Role can also be used to structure audio
recordings, i.e. to segment the data into intervals corresponding to sections or chapters in a text.
In fact, the Social Networks correspond to the structure given to the data by the producers and can
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Role AM SA GT AB MT IP

α SNA (bf) 94.2 30.8 49.1 33.5 98.7 47.3
α DDM (bf) 98.2 0.1 80.9 31.9 97.8 0.0
α DDM+SNA (bf) 98.2 9.6 86.9 32.2 97.8 33.0

α SNA (af) 93.2 2.9 79.6 97.6 95.4 8.9
α DDM (af) 97.3 0.0 78.6 84.3 95.4 0.0
α DDM+SNA (af) 96.2 0.0 92.7 97.8 95.4 2.5

α SNA (th) 97.9 59.1 97.8 14.5 98.4 47.8
α DDM (th) 100.0 0.0 86.7 9.0 98.4 0.0
α DDM+SNA (th) 100.0 20.0 99.9 14.6 98.4 28.2

P SNA (bf) 0.90 0.48 0.73 0.70 0.82 0.70
P DDM (bf) 0.91 0.80 0.74 0.64 0.82 0.00
P DDM+SNA (bf) 0.91 0.12 0.78 0.70 0.82 0.62

P SNA (af) 0.84 0.07 0.75 0.91 0.84 0.42
P DDA (af) 0.85 0.79 0.71 0.83 0.85 0.00
P DDM+SNA (af) 0.85 0.00 0.92 0.92 0.85 0.11

P SNA (th) 0.90 0.50 0.97 0.74 0.82 0.78
P DDA (th) 0.89 0.87 0.80 0.67 0.82 0.00
P DDM+SNA (th) 0.90 0.17 0.86 0.74 0.82 0.58

Table 3: Performance per role. The results are reported both before the filtering(bf), after the filtering
(af), and using the groundtruth (th).

be used to detect the structure a-posteriori. Moreover, any application involving an indexing step
(Information Retrieval, Categorization, Topic detection, Thematic Indexing, etc.) can use the role as
an index or as an information related to the audio content.

The approaches presented in this work are especially suitable for data created following a plan
or a structure which remains stable across different recordings. This is the case for most radio or
television programs which are produced using a format assigning specific roles and tasks to every
person. Moreover, the role recognition is useful only when the number of individuals is high enough,
i.e. more than 8-10 persons, to build structures that can be detected through SNA and duration
distributions. In the case of data that are not the result of a plan (e.g. home-made videos), the same
approaches can still help to cluster recordings with similar structure or to detect individuals that are
more central than others.

The main limit of the approach we propose is that it can be used only for data involving the same
roles and the same kind of interaction patterns, i.e. a central individual dealing directly with most
of the other persons. On the other hand, our work shows that interaction patterns carry information
that so far, to our knowledge, has been neglected and can be used to better represent the content of
the data. The measures introduced in Section 5 (centrality and interaction fraction) seem to account
for important aspects of people activity and can probably be used in other contexts to recognize other
roles (e.g. the chairman in meetings or conference calls), collective actions (e.g. discussions or question
answerings in lectures), etc.

In the case of our data, the SNs have a compact structure, i.e. there is a single central individual
with a more or less direct relationship with all other persons. However, other programs have a more
complex structure where it is possible to identify several central figures playing a major role only
in part of the recording. This requires to include in the network analysis tasks like the detection of
cohesive subgroups and dyadic or triadic models [26] that will be the subject of future work.
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