Composite Kernel Learning

Marie Szafranski 1 MARIE.SZAFRANSKI@HDS.UTC.FR
Yves Grandvalet 12 YVES.GRANDVALET @IDIAP.CH

Alain Rakotomamonjy 2 ALAIN .RAKOTOMAMONJY @INSA-ROUEN.FR

1 Heudiasyc, UMR CNRS 6599, Universitle Technologie de Conggine, 60205 Compine cedex, France
2 IDIAP Research Institute, Centre du Parc, P.O. Box 592, 182figny, Switzerland
3LITIS EA 4051, UFR de Sciences, Univegsile Rouen, 76800 Saint Etienne du Rouvray, France

Abstract

The Support Vector Machine (SVM) is an ac-
knowledged powerful tool for building classi-
fiers, but it lacks flexibility, in the sense that the
kernel is chosen prior to learning. Multiple Ker-

itself, sinceVf € H, f(x) = > ;o a;K(x;, ) ; (i) a
metric, and hence a smoothness functionatin| f||3, =
Doy >ojoy i K (s, 2;5) ; (iii) a distance between ob-
servations:||®(z) — ®(z')||? = K(z,z) + K(z',z') —
2K (z,2) .

nel Learning (MKL) enables to learn the ker-
nel, from an ensemble of basis kernels, whose
combination is optimized in the learning process.
Here, we propose Composite Kernel Learning
to address the situation where distinct compo-
nents give rise to a group structure among ker-
nels. Our formulation of the learning problem
encompasses several setups, putting more or less
emphasis on the group structure. We characterize
the convexity of the learning problem, and pro-

In this paper, we devise Composite Kernel Learning
(CKL), a framework where the kernel is learned in a way to
favor the selection of variables or groups of variables.-Sec
tion 2 motivates our approach while briefly reviewing the
different means proposed to extend kernel methods beyond
the predefined kernel setup. We then follow in Section 3 by
considering some recent developments in variable setectio
that are relevant for our aims. Section 4 describes the CKL
framework; the optimization algorithm is provided in Sec-
tion 5, and experiments are reported in Section 6.

vide a general wrapper algorithm for computing

solutions. Finally, we illustrate the behavior of

our method on multi-channel data where groups
correpond to channels.

2. Flexible Kernel M ethods

From now on, we restrict our discussion to classification,
where, from a learning set = {(«;,v;)}!, of pairs of
observations and labék;, y;), one aims at building a de-
cision rule that predicts the class lahebf any observa-
tion . We furthermore focus on the binary case, where
9z,,5:) € X x {£1}. However, it should be kept in mind

1. Motivation

Kernel methods have been extensively used in learnin

problems (Scbikopf & Smola, 2001). In these mOdelS, .t most of our observations carry on to other settings,

the observa_nons are implicitly mapped_m a feature SPaC&,ch as multiclass classification, clustering or regr@ssio
via a mapping® : X — H, where’H is a Reproduc- with kernel methods

ing Kernel Hilbert Space (RKHS) with reproducing kernel

K:XxX—R. 2.1. Support Vector Machines

We address the problem of learning the kernel in Suppor . - . N N
Vector Machines (SVM) and related methods. Indeed, th *SVl\éle)wIdsdthfg dgmsu;)r? rulellgtp (f f(a:) +07), where
kernel is crucial in many respects, and its relevance is esf andb™ are detined as the soiution o

sential to the success of kernel methods. Formally, the pri- ) . n
mary role ofK is to define the evaluation functional #: The 2 1117 + OZ; &i
Vf € H, f(x) = (f, K(@,))n, butK also defines (i} sotoy(fl@)+b)>1-& 1<i<n D

= . th . & >0 1<i<n .
Appearing inProceedings of the5*" International Conference

on Machine LearningHelsinki, Finland, 2008. Copyright 2008 The regularization parametét is the only adjustable pa-
by the author(s)/owner(s). rameter in this procedure. This is usually not flexible
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enough to provide good results when the kernel is chosewhere each kerndl’,, is associated to a RKHE,,, whose
prior to seeing data. Hence, most applications of SVM in-elements will be denoted,,, and {o,,}*_, are coeffi-
corporate a mechanism for learning the kernel. cients to be learned under the convex combination con-

straints
2.2. Learning the Kernel

M
Cross-validation is the most rudimentary, but also the most Ezlam =1, 0m20,lsm<M. )
m=

common way to learn the kernel. It consists in (i) defin-

ing a family of kernels €.g. Gaussian), indexed by one pgach et al. (2004) proposed the following formulation of
or more parameterse(g. bandwidth), the so-called ker- | 1

nel hyper-parameters, (ii) running the SVM algorithm on )

each hyper-parameter setting, and (i) finally choosirg th  ( min (XN fmllr,)” +C Y&

hyper-parameter minimizing a cross-validation score. ' be M

. . e - 4)
A thorough discussion of the pros and cons of cross- | 5 % yl(% fm(@i) +0) 21-& 1<is<n
validation is out of the scope of this paper, but it is clear & >0 1<i<n,
that this approach is inherently limited to one or two hyper-

parameters and few trial values. This observation led ta/yhose SOIE“O” Ieeids to a deC|3|0_n rule of the form
several proposals allowing for more flexibility. sign (3., fin (@) +b%). This expression of the learing
problem is remarkable in that it only deviates slightly from

the original SVM problem (1). The squared RKHS norm
in H is simply replaced by a mixed-norm, with the stan-
Learning the kernel amounts to learn the feature mappingdard RKHS norm within each feature spaki,, and an

It should thus be of no surprise that the approaches invesy norm inR on the vector built by concatenating these
tigated bear some similarities with the ones developed fonorms. This/; norm encourages sparse solutions, that is,
variable selection, where one encounters filters, wrappersolutions where some functiorfs, have zero norm. In this
and embedded methods (Guyon & Elisseeff, 2003). Someespect, the MKL problem may be seen as the kernelization
general frameworks do not belong to a single category budf the group-LASSO (Yuan & Lin, 2006).

the distinction is appropriate in most cases.

2.2.1. HLTERS, WRAPPERS& EMBEDDED METHODS

In filter approaches, the kernel is adjusted before build-2'2'3' (OMPOSITEKERNEL LEARNING

ing the SVM, with no explicit relationship to the objective When the individual kernelé,, represent a series, such
value of Problem (1). For example, the kernel target align-as Gaussian kernels with different scale parameters, MKL
ment of Cristianini et al. (2002) adapts the kernel to themay be used as an alternative to cross-validation. When the
available data without training any classifier. input data originates from/ differents sources, and that
each kernel is affiliated to one input variable, MKL can be

In wrapper algorithms, the SVM solver is the inner loop of . :
sed to select relevant input variables.

two nested optimizers, whose outer loop is dedicated to ad?
just the kernel. This tuning may be guided by various genHowever, MKL is not meant to address problems where
eralization bounds (Cristianini et al., 1999; Weston et al. several kernels pertain to one input variable. In this situ-
2001; Chapelle et al., 2002). ation, the sparseness mechanism of MKL does not favor
r§olutions discarding all the kernels computed from an ir-
relevant input. Although most of the related coefficients
hould vanish in combination (2), spurious correlation may
ause irrelevant input variables to participate to the-solu

Kernel learning can also be embedded in Problem (1), wit
the SVM objective value minimized jointly with respect
to the SVM parameters and the kernel hyper-paramete
(Grandvalet & Canu, 2003). Our approach, which belongsc_
to this family of methods, is based on the Multiple Kernel on.

Learning (MKL) framework (Lanckriet et al., 2004). The flat combination of kernels in MKL does not include a
mechanism to cluster the kernels related to one input vari-
2.2.2. MULTIPLE KERNEL LEARNING able. In order to favor the selection of kernels within prede

fined groups, one has to define a group structure among ker-
nels, which will guide the selection process through a struc
tured kernel combination. This type of hierarchy among

MKL is a joint optimization problem of the coefficients of
the SVM classifier and a convex combination of kernels
that defines the actual SVM kernel
7o lighten notations, the range of indexes is often omitted in
summations, in which case: indexesnd; refer to examples and

M
K(z,z') = Z om K (z, ') | ) go from 1 ton; indexm refers to kernels and goes from 11d;
— index/ refers to groups of kernels and goes from Lto
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variables has been investigated in linear models (Szafraren the two last lines encourage sparseness inandos ,,,
ski et al., 2008; Zhao et al., to appear). We briefly recapituwhich induces sparsenessd,.
late the general framework in the following section, before

discussing its adaptation to kernel learning in Section 4. Here, the groups, form a partition of/, and the hierar-

chy refers to the tree-structure of the shrinking coeffitsien
) ) ) o2,m Shrinks parametes,,, while oy o shrinks the parame-
3. Grouped and Hierarchical Selection ters for group,. In the words of Zhao et al., the objective

The introduction o, penalties, with the seminal paper of here is grouped variable selection.

Tibshirani (1996) on the LASSO, gave rise to many im-The minimizer of Problem (6) is the minimizer of
portant theoretical and practical advances in the stedisti )
and machine learning fields. As stated in Section 2.2.2, . 1/4 4/3 3/4
MKL itself belongs to the series of algorithms affiliated to H,lr_;n J(8) +A (XL]: d ( Z B ) ’
the LASSO, through its relationship with group-LASSO. In

this lineage, Zhao et al. (to appear) defined the very generglhich is essentially a CAP estimate, where paraméter

meGy

Composite Absolute Penalties (CAP) family. only accounts for the group sizes (Szafranski et al., 2008).
The inner?, ;3 norm and the outef; norm form a mixed-
3.1. Composite Absolute Penalties norm penalty that will be denoted, /3 ;). The overall pe-

nalizer favors sparse solutions at the group level, with few

Consider a linear model with\/ parameters,3 = leading coefficients within the selected groups.

(B1,...,0m) and letl = {1,..., M} be a set of index
on these parameters. A group structure on the parameters _ _

is defined by a series df subset§ G}~ ,, whereG, C 1. 4. From Multiple to Composite Kernels
Additionally, let{~,}!-_, be L + 1 norm parameters. Then,
the member of the CAP family for the chosen groups an
norm parameters is

KL has been formalized as a quadratically constrained
program by Lanckriet et al. (2004), then as a second-order
cone program by Bach et al. (2004). More recently, other

Yo /e formulations led to wrapper algorithms, where the opti-
0=>" ( > |5m\w) : (5)  mization with respect to kernel hyper-parameters is still
£ meGy based on the SVM objective value, but is performed in an

outer loop that wraps a standard SVM solver. The outer
Mixed-norms correspond to groups defined as a partitiorioop is cutting planes for Sonnenburg et al. (2006), and gra-
of the set of variables. A CAP may also rely on nesteddient descent for Rakotomamonjy et al. (2007). Wrapper
groups,G; € Ga C ... C G, and~yy = 1, in which  algorithms have appealing features: (i) they benefit from
case it favors what Zhao et al. call hierarchical selectionthe developments of solvers specifically tailored for the
that is, the selection of groups of variables in the preddfine SVM problem in the inner loop; (ii) they allow to address
order{I \ Gp},{GL \ Gr-1},...,{G2\ G1},G;. This large-scale problems; (iii) they are multipurpose, sire t
example is provided here to stress that Zhao et al.’s notioiSVM inner loop may be replaced by another algorithm with
of hierarchy differs from the one that follows. little or no adjustments.

We chose to build on gradient-based MKL. First, it has
been shown to be more efficient than the SILP approach
Hierarchical penalization uses shrinking coefficients toof Sonnenburg et al. (2006), thanks to the stability of the
transform a ridge-like penalty into a sparse penalizetupdates performed in the outer loop, which induces good
(Szafranski et al., 2008). The model parameterizegdby initializations for the inner loop solver (Rakotomamonjy
is fitted by minimizing a differentiable loss functiof(-),  etal., 2007). Second, and even more important for our pur-
subject to a ridge penalty with adaptive coefficients that enpose, gradient-based MKL is amenable to the extension to
courages sparseness among and within groups: groups of kernels, thanks to the formulation of hierarchica
penalization of Section 3.2.

3.2. Hierarchical Penalization

min J + A A
B,z ) XZ: m%é‘z Voo 4.1. Variational Multiple Kernel Learning
s. t. ngO'Lg:l, 0’1,220 1</¢<L (6)
[ Problem (4) is not differentiable dtf..||+,, = 0, a diffi-
culty that causes a considerable algorithmic burden. The
MKL formulation of Rakotomamonjy et al. (2007) can
The Lagrange parametarcontrols the amount of shrink- be viewed as a variational form of Problem (4), whéie
age, andl, is the size of groug. The constraints expressed new variablesry, ..., o, are introduced in order to avoid

Yoom=1 ,00m>0 1<m<M.
m
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these differentiability issues. The resulting problemiclih  hence Problem (8) is equivalent to

is equivalent to Problem (4), is stated as:

min 33 (| fmll3, +CY&
froesfar,” 'y O™ i
b,§,01,0 ( )
1 2 sote g (Qo fm(mi) +0) 21 -§1<i<n
min 5 m +C> &
J1yees 72 ; Om f ||Hm ;6 m )
b0 §& >0 L<i<n (g
sote yi(X fm(m) +b0)>1-¢& 1<i<n @) Yodiory=1 ,01,>0 1<L<L
m 0
20 L<i<n zgjai?/q%ai{qgl
om=1 , 0, >0 1<m<M. meG,
Z " " Om >0 1<m<M.

The new problem is simplified further by showing tleat
Here and in what followsy /v is defined by continuation at can be dropped out from the optimization process, leading
zero asu/0 = oo if u # 0 and0/0 = 0. to the following formulation of Composite Kernel Learning

The constraints expressed on the last line encourage sparég KL):
ness ino,,, which induces sparseness fi,. As already
mentioned in Section 2.2.2, the sparseness applies at the
kernel level, ignoring the group structure. The latter is
taken into account in the formulation proposed in the fol-

f1

.....

Yi(X fm(zs) +0) >1-& 1<i<n

lowing section. & >0 1<i<n (10)
1/(p+a)
- . . >(a( o al/q)q <1
4.2. Variational Composite Kernel Learning 7\ ¢ meC, m =
om =0 1<m<M,

Here, we build on the variational form of the composite
absolute penalties presented in Section 3.2 to take into ac-
count the group structure. Hierarchical penalization carBefore considering particular settings of interest, weesta
deal with kernel methods if the ridge penalties are replacedelow two helpful propositions. The first one gives a more
by RKHS norms. We first generalize Problem (6) to obtaininterpretable formulation of Problem (10); the second one

smooth variational formulations for arbritrary mixed-nor

presents the conditions for convexity of formulation (10),

penalties, so that to address a wide variety of problems inthat will guaranty the convergence towards the global min-

cluding MKL:
min 330,73 oyl fmllF, +C &
Sy 2 g meGy i
b,§,01,02
s. t. yi(me(:ci)—l—b) >1-&1<i<n
€20 1<i<n ®

Ydporg=1 ,01,>0 1<(<L
7

20'2,777,:1 50'2,1'77,20 1Sm§M7
m

wherep andq are exponents to be set according to the prob
lem at hand.

This formulation, which is difficult to optimize, is simpli-
fied by replacing the two shrinking coefficiends ando
by o, defined byo,,, = o ,05 .. In afirst step, we con-
sider the change of variable that magps to o. When
g # 0, this mapping is one-to-one provided , # 0. Fur-
thermore, ifa{yé ands; ,,, denote the optimat, , andos ,,,
values for Problem (8), we have that, = 0 = o3, = 0,

imum for the algorithm described in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equiv-
alent to the following MKL problem with a CAP-like
penalty on the RKHS norms:

* 2/70
min H(Sd (S 1)) +ODE
Loeeos S M ¢ meG, " i
b,§ _ (11)
st (X fm(@) +0) >1-¢ 1<i<n
§& =0 1<i<n,
H 2 2 *
with y = a1 0= prgFt andy :1_770'

Sketch of proofLet £ be the Lagrangian of problem (10).
The optimality conditions fos,,, are pbtained from the first
order optimality conditions fo,, (225 = 0):

O 1,

* (v0=2)/70 __« _« _
o= (D di ) a7 ) |l (12)
14

wheresy = > |[|fmll7,, - Plugging this expression in
meGy
Problem (10) yields the claimed result. O
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Note that the outer exponeﬁg only influences the strength 5.1. A Gradient-Based Wrapper
of the penalty, not its type. Hence, the penalty in the ob-_l_h h id the followi trained
jective function (11) differs from (5) in the RKHS norms € wrapper scheme considers the following constraine

| - ||, and in the parameterg, that accommodate for optimization problem:

m

group sizes. min J(o)
Proposition 2. Conditionsfor Convexity: Problem (10) is 7 g\ 1/(p+q)
convexifandonly ifd <¢g<land0<p+gq<1. S. t'z<d‘§(20mq) ) <1

0 m

0'm207 ISWSM,

Proof. A problem minimizing a convex criterion on a con- whereJ (o) is defined as the objective value of
vex set is convex. The objective function of Problem (10)

is convex (Boyd & Vandenberghe, 2004, p. 89). Thefirst, ( min 13 > Lful}, +CX &
second and fourth constraints define convex sets, and th fl"l;"ng’ £ meGy i

third one also provided (iézmecg o'Tln/q>q is a norm, that 5. t. Ui (X fm(xi) +0) >1-&,1<i<n (13)
is0 < ¢ < 1,and (i) 3, ¢}/ "™ is convex int,, that is &>0,1<i<n.
0<p+qg<1L 0

The global optimization problem consists thus of two

nested problems. In the inner loop, the criterion is opti-
Within the values ofy andq ensuring convexity, we pick Mized with respecttdi, ..., fas, b andg, considering that
the following particular cases of interest: the coefficientsr are fixed. In the outer loopsr is updated

to decrease the criterion, with,, b and¢ being fixed.

e p = 0,q = 1 yields a LASSO type penalty on the Equation (12) may be used to updatein closed form.
RKHS norms. It results in the generalization of the However, this approach lacks convergence guarantees and
group-LASSO known as MKL, as formulated in (4); may lead to numerical problems, in particular when some

elements o& approach zero. Hence, following Rakotoma-

e p=1, ¢ = 0yields a group-LASSO type penalty on Mmonjy et al. (2007), we use that the objective function
the RKHS norms. It results in another MKL, with /(o) is actually an optimal SVM objective value to update

effective kerneldk,, defined adt, = 3 Kynu; o by an efficient projected gradient descent scheme.
meGy

[
ep =gq = % yields a hierarchical-penalization type
penalty on the RKHS norms. Itis a true CKL, where
there areM effective kernels, and where the penalty The dual formulation offers a convenient means to compute
favors sparse solutions at the group level, with fewthe gradientV.J(o). The derivation of the Lagrangian of
leading kernels within the selected groups. Problem (13), which is omitted here for brevity, shows that
its dual formulation is identical to the one of a standard
SVM using the aggregated kernél, defined in Equa-
éi_on (2). Hence, the dual problem takes the usual form

5.2. Computing the Gradient

Hence, wher goes from zero to one, with= 1 — p, the
penalty gives more and more emphasis to the group stru
ture. For most applications where convexity is a key issue 1 47
! max—z ;Y Ko (X, i) + >
we recommend the balanced sejug ¢ = 3. a” 2 %: 59y Ko (@i, 25) 21: !

Note however that convex penalties restrict the sparseness 5. & ; @iyi =0 (14
of the solution to either the group level or the kernel level. C>a; >0 1<i<n
In Section 6, we will illustrate that giving up convexity may

turn out to be an interesting option when considering interWhich can be solved by any SVM solver.

Y

pretability issues. As J(o) is defined as the optimal objective value of the
convex Problem (13) for which strong duality applies,
. Algorithm J (o) is also the dual objective value:
5. Algorit (o) j

algorithm of Rakotomamonjy et al. (2007). We use the
wrapper scheme described below, where the outer loop is
carried out by a projected gradient descent update. wherea* solves Problem (14).

Our approach to solve Problem (10) draws on the MKL J(o) = _% Zaﬁa]*-yiyjfa(fvhwj) n Zai* . (15)
i,j i
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The existence and computation of the derivatives/ 0 recorded from specific electrode positions. However, as
follow from general results on optimal values, such as Thestated by Sclader et al. (2005), automated channel se-
orem 4.1 of Bonnans and Shapiro (1998), which, in a nutdection should be performed for each single subject since
shell states that the differentiability of(o) is ensured by it leads to better performances or a substantial reduction
the unicity ofa*, and by the differentiability of (15%. Fur-  of the number of useful channels. Reducing the number of
thermore, the derivatives of (o) can be computed as if channels involved in the decision function is of primary im-
a* were not to depend osr. Thus, the gradien?J (o) is portance for BCI real-life applications, since it makes the
simply acquisition system easier to use and to set-up.

0J 1 . x We use here the dataset from the BCI 2003 competition for

do, 2 Zai Yy Kom (@i, ;) - the task of interfacing the P300 Speller (Blankertz et al.,
" 2004). The dataset consists 7660 EEG signals paired

) with positive or negative stimuli responses. The signal; pr

5.3. CKL Algorithm cessed as in (Rakotomamoniy et al., 2005), leadz560

Now, we have all the ingredients to adapt the machinerygxamples of dimensiosb6 (14 time frames for each of the

developed for MKL by Rakotomamonjy et al. (2007). Ac- 64 channels).

cording to the process described in Section 5.1, we proposgne experimental protocol is then the following: we have
Algorithm 1. randomly picked567 training examples from the datasets
and used the remaining as testing examples. For each pa-
rameter,C' has been selected by retaining a small part of

Algorithm 1 Composite Kernel Learning

initialize o the training set as a validation set, for selecting the param

solve the SVM problem- J (o) eter which the highest AUC. This overall procedure has

repeat o been repeatedo times. Using a small part of the exam-
compute directionl = —V.J(o) ples for training can be justified by the use of ensemble of
repeat SVMs (that we do not consider here) on a latter stage of

computed’, the projection off onto the tangent of  the EEG classification procedure (Rakotomamoniy et al.,
the surface of the admissible set 2005), and the AUC performance measure is justified by
compute the smallest step that nullifies a compo-ow the EEG recognition is transformed into selected char-

nent ofo acter in the P300.
S={j:dj<0ando; #0} _
.0y .0 The 896 features extracted from the EEG signals are not
V= ‘}22 T d k= arg ‘}22 Td dr =0 tranformed before classification: we do not use any kernel-
ol =o+v d/J ! ization. However, to unify the presentation, we will refer t
projecto’ onto the surface of the admissible set these features as linear kernels. Hence, in this applitatio
solve the SVM problem- J(a) where the kernels related to a given chapnel form a group
if J(o1) < J(o)then o = ot of kerr_1els, we have to learh! = 896 coefficientss,,,, di-
until J(o) > J (o) vided intoL = 64 groups.
computer* = argmin, J(o + v d) CKL is well-suited to the classification objectives, since
o=0+v'd we aim at classifying the EEG trials with as few channels
until convergence as possible. Furthermore, it is also likely that some time

frames are irrelevant, so that variable selection may be car
The stopping criterion for assessing the convergence of théed out within each channel. To reach a sparse solution at
outer loop can be based on standard criteria for gradienthe channel and the time frame levels, we test a non-convex
based algorithms or on the duality gap. In the following parametrization of CKL that encourages sparseness within
experiments, it is based on the stabilitycofind.J (o). and between groups.

In the following, CKL, , stands for a convex version of
6. Channél Selection for BCI our algorithm, withp = ¢ = 1/2 (a {(4/3,1) Mixed-
. . . . . I norm), CKL; is a non-convex version, with = ¢ = 1
This e_xperlment.deals with .smgle trial classification of (al(1.5/3) (pseudo) mixed-norm). Note that MKL is also
EEG S|g'nals coming from Braijomputer Interfaqe (BCI). implémented by our algorithm, with— 0 andg — 1.
Depending on each BCI paradigm, these EEG signals are
_ Table 1 summarizes the average performance of SVM,
MKL, and CKL, that is, for4 different penalization terms:
guadratic penalization for the classical SVM (which is

2The unicity ofa* is ensured provided that the Gram matrix
built from kernelK , is positive-definite. To enforce this property,
a small ridge may be added to the diagonal.
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trained with the mean d§96 kernels),/; norm for MKL,
and mixed-norms for the two versions of CKL: CKl,

to tackle a wide variety of problems. This formulation is
not restricted to convex mixed-norm, a property that turns

and CKL;. The number of channels and kernels selectedut to be of interest for reaching sparser, hence more inter-
by these algorithms is also reported.

Table 1.Average Results for SVMs with different penalization

terms on the BCI datasets.

pretable solutions.

Our approach is embedded, in the sense that the kernel
hyper-parameters are optimized jointly with the parame-
ters of classifier to minimize the soft-margin criterionisit
however implemented by a simple wrapper algorithm, for

Algorithms AUC # Channels| # Kernels which the inner and the outer subproblems have the same
SVM 83.87+0.8 64 896 objective function, and where the inner loop is a standard
MKL 8543+ 0.9 | 622+1 |2568+£15  gyM problem.

CKL,,, || 85.49+1.1| 62.9+1 | 835.7+25 _ o _ _
CKL, 84.15+ 08| 24.0+4 60.9+ 10 In particular, this implementation allows to use available

solvers for kernel machines in the inner loop. Hence, al-

The prediction performances of tHealgorithms are simi- though this paper considered p|nary classification prob-
lems, our approach can be readily extended to other learn-

lar, with a slight advantage for sparse methods. @)5['15 ing problems, such as multiclass classification, clusterin
much less sparse than MKL, which itself keeps about four gp ' » cluste

times as much kernels compared to GKLn the number regression or ranking.
of groups, MKL and CKL /, behave similarly, with only
one or two channels removed. CKis much sparser and Acknowledgments

removes about two thirds of the channels. This work was supported in part by the IST Program of

Figure 6 represents the median relevance of the electrodelse European Community, under the PASCAL Network of
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