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Abstract

The Support Vector Machine (SVM) is an ac-
knowledged powerful tool for building classi-
fiers, but it lacks flexibility, in the sense that the
kernel is chosen prior to learning. Multiple Ker-
nel Learning (MKL) enables to learn the ker-
nel, from an ensemble of basis kernels, whose
combination is optimized in the learning process.
Here, we propose Composite Kernel Learning
to address the situation where distinct compo-
nents give rise to a group structure among ker-
nels. Our formulation of the learning problem
encompasses several setups, putting more or less
emphasis on the group structure. We characterize
the convexity of the learning problem, and pro-
vide a general wrapper algorithm for computing
solutions. Finally, we illustrate the behavior of
our method on multi-channel data where groups
correpond to channels.

1. Motivation

Kernel methods have been extensively used in learning
problems (Scḧolkopf & Smola, 2001). In these models,
the observations are implicitly mapped in a feature space
via a mappingΦ : X → H, whereH is a Reproduc-
ing Kernel Hilbert Space (RKHS) with reproducing kernel
K : X × X → R.

We address the problem of learning the kernel in Support
Vector Machines (SVM) and related methods. Indeed, the
kernel is crucial in many respects, and its relevance is es-
sential to the success of kernel methods. Formally, the pri-
mary role ofK is to define the evaluation functional inH:
∀f ∈ H, f(x) = 〈f,K(x, ·)〉H , butK also defines (i)H
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itself, since∀f ∈ H, f(x) =
∑∞

i=1 αiK(xi,x) ; (ii) a
metric, and hence a smoothness functional inH: ‖f‖2

H =
∑∞

i=1

∑∞
j=1 αiαjK(xi,xj) ; (iii) a distance between ob-

servations:‖Φ(x) − Φ(x′)‖2 = K(x,x) + K(x′,x′) −
2K(x,x′) .

In this paper, we devise Composite Kernel Learning
(CKL), a framework where the kernel is learned in a way to
favor the selection of variables or groups of variables. Sec-
tion 2 motivates our approach while briefly reviewing the
different means proposed to extend kernel methods beyond
the predefined kernel setup. We then follow in Section 3 by
considering some recent developments in variable selection
that are relevant for our aims. Section 4 describes the CKL
framework; the optimization algorithm is provided in Sec-
tion 5, and experiments are reported in Section 6.

2. Flexible Kernel Methods

From now on, we restrict our discussion to classification,
where, from a learning setS = {(xi, yi)}

n
i=1 of pairs of

observations and label(xi, yi), one aims at building a de-
cision rule that predicts the class labely of any observa-
tion x. We furthermore focus on the binary case, where
(xi, yi) ∈ X × {±1}. However, it should be kept in mind
that most of our observations carry on to other settings,
such as multiclass classification, clustering or regression
with kernel methods.

2.1. Support Vector Machines

A SVM builds the decision rulesign (f⋆(x) + b⋆), where
f⋆ andb⋆ are defined as the solution of















min
f,b,ξ

1
2‖f‖

2
H + C

n
∑

i=1

ξi

s. t. yi

(

f(xi) + b
)

≥ 1 − ξi 1 ≤ i ≤ n
ξi ≥ 0 1 ≤ i ≤ n .

(1)

The regularization parameterC is the only adjustable pa-
rameter in this procedure. This is usually not flexible
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enough to provide good results when the kernel is chosen
prior to seeing data. Hence, most applications of SVM in-
corporate a mechanism for learning the kernel.

2.2. Learning the Kernel

Cross-validation is the most rudimentary, but also the most
common way to learn the kernel. It consists in (i) defin-
ing a family of kernels (e.g. Gaussian), indexed by one
or more parameters (e.g. bandwidth), the so-called ker-
nel hyper-parameters, (ii) running the SVM algorithm on
each hyper-parameter setting, and (iii) finally choosing the
hyper-parameter minimizing a cross-validation score.

A thorough discussion of the pros and cons of cross-
validation is out of the scope of this paper, but it is clear
that this approach is inherently limited to one or two hyper-
parameters and few trial values. This observation led to
several proposals allowing for more flexibility.

2.2.1. FILTERS, WRAPPERS& EMBEDDED METHODS

Learning the kernel amounts to learn the feature mapping.
It should thus be of no surprise that the approaches inves-
tigated bear some similarities with the ones developed for
variable selection, where one encounters filters, wrappers
and embedded methods (Guyon & Elisseeff, 2003). Some
general frameworks do not belong to a single category but
the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before build-
ing the SVM, with no explicit relationship to the objective
value of Problem (1). For example, the kernel target align-
ment of Cristianini et al. (2002) adapts the kernel to the
available data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of
two nested optimizers, whose outer loop is dedicated to ad-
just the kernel. This tuning may be guided by various gen-
eralization bounds (Cristianini et al., 1999; Weston et al.,
2001; Chapelle et al., 2002).

Kernel learning can also be embedded in Problem (1), with
the SVM objective value minimized jointly with respect
to the SVM parameters and the kernel hyper-parameters
(Grandvalet & Canu, 2003). Our approach, which belongs
to this family of methods, is based on the Multiple Kernel
Learning (MKL) framework (Lanckriet et al., 2004).

2.2.2. MULTIPLE KERNEL LEARNING

MKL is a joint optimization problem of the coefficients of
the SVM classifier and a convex combination of kernels
that defines the actual SVM kernel

K(x,x′) =
M
∑

m=1

σmKm(x,x′) , (2)

where each kernelKm is associated to a RKHSHm whose
elements will be denotedfm, and {σm}M

m=1 are coeffi-
cients to be learned under the convex combination con-
straints

M
∑

m=1

σm = 1 , σm ≥ 0 , 1 ≤ m ≤ M . (3)

Bach et al. (2004) proposed the following formulation of
MKL 1:


















min
f1,...,fM ,

b,ξ

1
2

(
∑

m
‖fm‖Hm

)2
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n ,

(4)

whose solution leads to a decision rule of the form
sign (

∑

m f⋆
m(x) + b⋆). This expression of the learning

problem is remarkable in that it only deviates slightly from
the original SVM problem (1). The squared RKHS norm
in H is simply replaced by a mixed-norm, with the stan-
dard RKHS norm within each feature spaceHm, and an
ℓ1 norm inR

M on the vector built by concatenating these
norms. Thisℓ1 norm encourages sparse solutions, that is,
solutions where some functionsfm have zero norm. In this
respect, the MKL problem may be seen as the kernelization
of the group-LASSO (Yuan & Lin, 2006).

2.2.3. COMPOSITEKERNEL LEARNING

When the individual kernelsKm represent a series, such
as Gaussian kernels with different scale parameters, MKL
may be used as an alternative to cross-validation. When the
input data originates fromM differents sources, and that
each kernel is affiliated to one input variable, MKL can be
used to select relevant input variables.

However, MKL is not meant to address problems where
several kernels pertain to one input variable. In this situ-
ation, the sparseness mechanism of MKL does not favor
solutions discarding all the kernels computed from an ir-
relevant input. Although most of the related coefficients
should vanish in combination (2), spurious correlation may
cause irrelevant input variables to participate to the solu-
tion.

The flat combination of kernels in MKL does not include a
mechanism to cluster the kernels related to one input vari-
able. In order to favor the selection of kernels within prede-
fined groups, one has to define a group structure among ker-
nels, which will guide the selection process through a struc-
tured kernel combination. This type of hierarchy among

1To lighten notations, the range of indexes is often omitted in
summations, in which case: indexesi andj refer to examples and
go from 1 ton; indexm refers to kernels and goes from 1 toM ;
indexℓ refers to groups of kernels and goes from 1 toL.
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variables has been investigated in linear models (Szafran-
ski et al., 2008; Zhao et al., to appear). We briefly recapitu-
late the general framework in the following section, before
discussing its adaptation to kernel learning in Section 4.

3. Grouped and Hierarchical Selection

The introduction ofℓ1 penalties, with the seminal paper of
Tibshirani (1996) on the LASSO, gave rise to many im-
portant theoretical and practical advances in the statistics
and machine learning fields. As stated in Section 2.2.2,
MKL itself belongs to the series of algorithms affiliated to
the LASSO, through its relationship with group-LASSO. In
this lineage, Zhao et al. (to appear) defined the very general
Composite Absolute Penalties (CAP) family.

3.1. Composite Absolute Penalties

Consider a linear model withM parameters,β =
(β1, . . . , βM )t, and letI = {1, . . . ,M} be a set of index
on these parameters. A group structure on the parameters
is defined by a series ofL subsets{Gℓ}

L
ℓ=1, whereGℓ ⊆ I.

Additionally, let{γℓ}
L
ℓ=0 beL+1 norm parameters. Then,

the member of the CAP family for the chosen groups and
norm parameters is

Ω =
∑

ℓ

(

∑

m∈Gℓ

|βm|γℓ

)γ0/γℓ

. (5)

Mixed-norms correspond to groups defined as a partition
of the set of variables. A CAP may also rely on nested
groups,G1 ⊂ G2 ⊂ . . . ⊂ GL, andγ0 = 1, in which
case it favors what Zhao et al. call hierarchical selection,
that is, the selection of groups of variables in the predefined
order{I \ GL}, {GL \ GL−1}, . . . , {G2 \ G1}, G1. This
example is provided here to stress that Zhao et al.’s notion
of hierarchy differs from the one that follows.

3.2. Hierarchical Penalization

Hierarchical penalization uses shrinking coefficients to
transform a ridge-like penalty into a sparse penalizer
(Szafranski et al., 2008). The model parameterized byβ

is fitted by minimizing a differentiable loss functionJ(·),
subject to a ridge penalty with adaptive coefficients that en-
courages sparseness among and within groups:



















min
β,σ1,σ2

J(β) + λ
∑

ℓ

∑

m∈Gℓ

β2

m√
σ1,ℓ σ2,m

s. t.
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M .

(6)

The Lagrange parameterλ controls the amount of shrink-
age, anddℓ is the size of groupℓ. The constraints expressed

on the two last lines encourage sparseness inσ1,ℓ andσ2,m,
which induces sparseness inβm.

Here, the groupsGℓ form a partition ofI, and the hierar-
chy refers to the tree-structure of the shrinking coefficients:
σ2,m shrinks parameterβm, whileσ1,ℓ shrinks the parame-
ters for groupGℓ. In the words of Zhao et al., the objective
here is grouped variable selection.

The minimizer of Problem (6) is the minimizer of

min
β

J(β) + λ

(

∑

ℓ

d
1/4
ℓ

(

∑

m∈Gℓ

|βm|4/3
)3/4

)2

,

which is essentially a CAP estimate, where parameterdℓ

only accounts for the group sizes (Szafranski et al., 2008).
The innerℓ4/3 norm and the outerℓ1 norm form a mixed-
norm penalty that will be denotedℓ(4/3,1). The overall pe-
nalizer favors sparse solutions at the group level, with few
leading coefficients within the selected groups.

4. From Multiple to Composite Kernels

MKL has been formalized as a quadratically constrained
program by Lanckriet et al. (2004), then as a second-order
cone program by Bach et al. (2004). More recently, other
formulations led to wrapper algorithms, where the opti-
mization with respect to kernel hyper-parameters is still
based on the SVM objective value, but is performed in an
outer loop that wraps a standard SVM solver. The outer
loop is cutting planes for Sonnenburg et al. (2006), and gra-
dient descent for Rakotomamonjy et al. (2007). Wrapper
algorithms have appealing features: (i) they benefit from
the developments of solvers specifically tailored for the
SVM problem in the inner loop; (ii) they allow to address
large-scale problems; (iii) they are multipurpose, since the
SVM inner loop may be replaced by another algorithm with
little or no adjustments.

We chose to build on gradient-based MKL. First, it has
been shown to be more efficient than the SILP approach
of Sonnenburg et al. (2006), thanks to the stability of the
updates performed in the outer loop, which induces good
initializations for the inner loop solver (Rakotomamonjy
et al., 2007). Second, and even more important for our pur-
pose, gradient-based MKL is amenable to the extension to
groups of kernels, thanks to the formulation of hierarchical
penalization of Section 3.2.

4.1. Variational Multiple Kernel Learning

Problem (4) is not differentiable at‖fm‖Hm
= 0, a diffi-

culty that causes a considerable algorithmic burden. The
MKL formulation of Rakotomamonjy et al. (2007) can
be viewed as a variational form of Problem (4), whereM
new variablesσ1, . . . , σM are introduced in order to avoid
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these differentiability issues. The resulting problem, which
is equivalent to Problem (4), is stated as:































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

m
σm = 1 , σm ≥ 0 1 ≤ m ≤ M .

(7)

Here and in what follows,u/v is defined by continuation at
zero asu/0 = ∞ if u 6= 0 and0/0 = 0.

The constraints expressed on the last line encourage sparse-
ness inσm, which induces sparseness infm. As already
mentioned in Section 2.2.2, the sparseness applies at the
kernel level, ignoring the group structure. The latter is
taken into account in the formulation proposed in the fol-
lowing section.

4.2. Variational Composite Kernel Learning

Here, we build on the variational form of the composite
absolute penalties presented in Section 3.2 to take into ac-
count the group structure. Hierarchical penalization can
deal with kernel methods if the ridge penalties are replaced
by RKHS norms. We first generalize Problem (6) to obtain
smooth variational formulations for arbritrary mixed-norm
penalties, so that to address a wide variety of problems in-
cluding MKL:











































min
f1,...,fM ,

b,ξ,σ1,σ2

1
2

∑

ℓ

σ−p
1,ℓ

∑

m∈Gℓ

σ−q
2,m‖fm‖2

Hm
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M,

(8)

wherep andq are exponents to be set according to the prob-
lem at hand.

This formulation, which is difficult to optimize, is simpli-
fied by replacing the two shrinking coefficientsσ1 andσ2

by σ, defined byσm = σp
1,ℓσ

q
2,m. In a first step, we con-

sider the change of variable that mapsσ2 to σ. When
q 6= 0, this mapping is one-to-one providedσ1,ℓ 6= 0. Fur-
thermore, ifσ⋆

1,ℓ andσ⋆
2,m denote the optimalσ1,ℓ andσ2,m

values for Problem (8), we have thatσ⋆
1,ℓ = 0 ⇒ σ⋆

2,m = 0,

hence Problem (8) is equivalent to






















































min
f1,...,fM ,

b,ξ,σ1,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L

∑

ℓ

σ
−p/q
1,ℓ

∑

m∈Gℓ

σ
1/q
m ≤ 1

σm ≥ 0 1 ≤ m ≤ M .

(9)

The new problem is simplified further by showing thatσ1

can be dropped out from the optimization process, leading
to the following formulation of Composite Kernel Learning
(CKL):














































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n

∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ
1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0 1 ≤ m ≤ M ,

(10)

Before considering particular settings of interest, we state
below two helpful propositions. The first one gives a more
interpretable formulation of Problem (10); the second one
presents the conditions for convexity of formulation (10),
that will guaranty the convergence towards the global min-
imum for the algorithm described in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equiv-
alent to the following MKL problem with a CAP-like
penalty on the RKHS norms:























min
f1,...,fM ,

b,ξ

1
2

(

∑

ℓ

dγ∗

ℓ

(
∑

m∈Gℓ

‖fm‖γ
Hm

)γ0/γ
)2/γ0

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n,

(11)

with γ = 2
q+1 , γ0 = 2

p+q+1 andγ∗ = 1 − γ0

γ .

Sketch of proof.Let L be the Lagrangian of problem (10).
The optimality conditions forσm are obtained from the first
order optimality conditions forσm ( ∂L

∂σm
= 0):

σm =
(

∑

ℓ

dγ∗

ℓ s
γ0/γ
ℓ

)(γ0−2)/γ0

d−γ∗

ℓ sγ∗

ℓ ‖fm‖2−γ
Hm

, (12)

wheresℓ =
∑

m∈Gℓ

‖fm‖γ
Hm

. Plugging this expression in

Problem (10) yields the claimed result.
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Note that the outer exponent2γ0

only influences the strength
of the penalty, not its type. Hence, the penalty in the ob-
jective function (11) differs from (5) in the RKHS norms
‖ · ‖Hm

and in the parametersdℓ that accommodate for
group sizes.

Proposition 2. Conditions for Convexity: Problem (10) is
convex if and only if0 ≤ q ≤ 1 and0 ≤ p + q ≤ 1.

Proof. A problem minimizing a convex criterion on a con-
vex set is convex. The objective function of Problem (10)
is convex (Boyd & Vandenberghe, 2004, p. 89). The first,
second and fourth constraints define convex sets, and the

third one also provided (i)
(

∑

m∈Gℓ
σ

1/q
m

)q

is a norm, that

is 0 ≤ q ≤ 1, and (ii)
∑

ℓ t
1/(p+q)
ℓ is convex intℓ, that is

0 ≤ p + q ≤ 1.

Within the values ofp andq ensuring convexity, we pick
the following particular cases of interest:

• p = 0, q = 1 yields a LASSO type penalty on the
RKHS norms. It results in the generalization of the
group-LASSO known as MKL, as formulated in (4);

• p = 1, q = 0 yields a group-LASSO type penalty on
the RKHS norms. It results in another MKL, withL
effective kernelsKℓ, defined asKℓ =

∑

m∈Gℓ

Km;

• p = q = 1
2 yields a hierarchical-penalization type

penalty on the RKHS norms. It is a true CKL, where
there areM effective kernels, and where the penalty
favors sparse solutions at the group level, with few
leading kernels within the selected groups.

Hence, whenp goes from zero to one, withq = 1 − p, the
penalty gives more and more emphasis to the group struc-
ture. For most applications where convexity is a key issue,
we recommend the balanced setupp = q = 1

2 .

Note however that convex penalties restrict the sparseness
of the solution to either the group level or the kernel level.
In Section 6, we will illustrate that giving up convexity may
turn out to be an interesting option when considering inter-
pretability issues.

5. Algorithm

Our approach to solve Problem (10) draws on the MKL
algorithm of Rakotomamonjy et al. (2007). We use the
wrapper scheme described below, where the outer loop is
carried out by a projected gradient descent update.

5.1. A Gradient-Based Wrapper

The wrapper scheme considers the following constrained
optimization problem:



















min
σ

J(σ)

s. t.
∑

ℓ

(

dp
ℓ

(

∑

m
σ

1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0, 1 ≤ m ≤ M ,

whereJ(σ) is defined as the objective value of


















min
f1,...,fM ,

b,ξ

1
2

∑

ℓ

∑

m∈Gℓ

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi , 1 ≤ i ≤ n

ξi ≥ 0 , 1 ≤ i ≤ n .

(13)

The global optimization problem consists thus of two
nested problems. In the inner loop, the criterion is opti-
mized with respect tof1, . . . , fM , b andξ, considering that
the coefficientsσ are fixed. In the outer loop,σ is updated
to decrease the criterion, withfm, b andξ being fixed.

Equation (12) may be used to updateσ in closed form.
However, this approach lacks convergence guarantees and
may lead to numerical problems, in particular when some
elements ofσ approach zero. Hence, following Rakotoma-
monjy et al. (2007), we use that the objective function
J(σ) is actually an optimal SVM objective value to update
σ by an efficient projected gradient descent scheme.

i

5.2. Computing the Gradient

The dual formulation offers a convenient means to compute
the gradient∇J(σ). The derivation of the Lagrangian of
Problem (13), which is omitted here for brevity, shows that
its dual formulation is identical to the one of a standard
SVM using the aggregated kernelKσ defined in Equa-
tion (2). Hence, the dual problem takes the usual form















max
α

− 1
2

∑

i,j

αiαjyiyjKσ(xi,xj) +
∑

i

αi

s. t.
∑

i

αiyi = 0

C ≥ αi ≥ 0 1 ≤ i ≤ n ,

(14)

which can be solved by any SVM solver.

As J(σ) is defined as the optimal objective value of the
convex Problem (13) for which strong duality applies,
J(σ) is also the dual objective value:

J(σ) = −
1

2

∑

i,j

α⋆
i α

⋆
jyiyjKσ(xi,xj) +

∑

i

α⋆
i , (15)

whereα⋆ solves Problem (14).
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The existence and computation of the derivatives ofJ(·)
follow from general results on optimal values, such as The-
orem 4.1 of Bonnans and Shapiro (1998), which, in a nut-
shell states that the differentiability ofJ(σ) is ensured by
the unicity ofα⋆, and by the differentiability of (15).2 Fur-
thermore, the derivatives ofJ(σ) can be computed as if
α⋆ were not to depend onσ. Thus, the gradient∇J(σ) is
simply

∂J

∂σm
= −

1

2

∑

i,j

α⋆
i α

⋆
jyiyjKm(xi,xj) .

5.3. CKL Algorithm

Now, we have all the ingredients to adapt the machinery
developed for MKL by Rakotomamonjy et al. (2007). Ac-
cording to the process described in Section 5.1, we propose
Algorithm 1.

Algorithm 1 Composite Kernel Learning
initialize σ

solve the SVM problem→ J(σ)
repeat

compute directiond = −∇J(σ)
repeat

computed′, the projection ofd onto the tangent of
the surface of the admissible set
compute the smallest step that nullifies a compo-
nent ofσ
S =

{

j : d′j < 0 andσj 6= 0
}

ν = min
j∈S

−
σj

d′j
k = arg min

j∈S
−

σj

d′j
dk = 0

σ† = σ + ν d′

projectσ† onto the surface of the admissible set
solve the SVM problem→ J(σ†)
if J(σ†) < J(σ) then σ = σ†

until J(σ†) ≥ J(σ)
computeν⋆ = arg minν J(σ + ν d)
σ = σ + ν⋆ d

until convergence

The stopping criterion for assessing the convergence of the
outer loop can be based on standard criteria for gradient-
based algorithms or on the duality gap. In the following
experiments, it is based on the stability ofσ andJ(σ).

6. Channel Selection for BCI

This experiment deals with single trial classification of
EEG signals coming from Brain-Computer Interface (BCI).
Depending on each BCI paradigm, these EEG signals are

2The unicity ofα⋆ is ensured provided that the Gram matrix
built from kernelKσ is positive-definite. To enforce this property,
a small ridge may be added to the diagonal.

recorded from specific electrode positions. However, as
stated by Schr̈oder et al. (2005), automated channel se-
lection should be performed for each single subject since
it leads to better performances or a substantial reduction
of the number of useful channels. Reducing the number of
channels involved in the decision function is of primary im-
portance for BCI real-life applications, since it makes the
acquisition system easier to use and to set-up.

We use here the dataset from the BCI 2003 competition for
the task of interfacing the P300 Speller (Blankertz et al.,
2004). The dataset consists in7560 EEG signals paired
with positive or negative stimuli responses. The signal, pro-
cessed as in (Rakotomamonjy et al., 2005), leads to7560
examples of dimension896 (14 time frames for each of the
64 channels).

The experimental protocol is then the following: we have
randomly picked567 training examples from the datasets
and used the remaining as testing examples. For each pa-
rameter,C has been selected by retaining a small part of
the training set as a validation set, for selecting the param-
eter which the highest AUC. This overall procedure has
been repeated10 times. Using a small part of the exam-
ples for training can be justified by the use of ensemble of
SVMs (that we do not consider here) on a latter stage of
the EEG classification procedure (Rakotomamonjy et al.,
2005), and the AUC performance measure is justified by
how the EEG recognition is transformed into selected char-
acter in the P300.

The 896 features extracted from the EEG signals are not
tranformed before classification: we do not use any kernel-
ization. However, to unify the presentation, we will refer to
these features as linear kernels. Hence, in this application
where the kernels related to a given channel form a group
of kernels, we have to learnM = 896 coefficientsσm, di-
vided intoL = 64 groups.

CKL is well-suited to the classification objectives, since
we aim at classifying the EEG trials with as few channels
as possible. Furthermore, it is also likely that some time
frames are irrelevant, so that variable selection may be car-
ried out within each channel. To reach a sparse solution at
the channel and the time frame levels, we test a non-convex
parametrization of CKL that encourages sparseness within
and between groups.

In the following, CKL1/2 stands for a convex version of
our algorithm, withp = q = 1/2 (a ℓ(4/3,1) mixed-
norm), CKL1 is a non-convex version, withp = q = 1
(a ℓ(1,2/3) (pseudo) mixed-norm). Note that MKL is also
implemented by our algorithm, withp = 0 andq = 1.

Table 1 summarizes the average performance of SVM,
MKL, and CKL, that is, for4 different penalization terms:
quadratic penalization for the classical SVM (which is
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trained with the mean of896 kernels),ℓ1 norm for MKL,
and mixed-norms for the two versions of CKL: CKL1/2

and CKL1. The number of channels and kernels selected
by these algorithms is also reported.

Table 1.Average Results for SVMs with4 different penalization
terms on the BCI datasets.

Algorithms AUC # Channels # Kernels
SVM 83.87± 0.8 64 896
MKL 85.43± 0.9 62.2± 1 255.8± 15
CKL1/2 85.49± 1.1 62.9± 1 835.7± 25
CKL1 84.15± 0.8 24.0± 4 60.9± 10

The prediction performances of the4 algorithms are simi-
lar, with a slight advantage for sparse methods. CKL1/2 is
much less sparse than MKL, which itself keeps about four
times as much kernels compared to CKL1. In the number
of groups, MKL and CKL1/2 behave similarly, with only
one or two channels removed. CKL1 is much sparser and
removes about two thirds of the channels.

Figure 6 represents the median relevance of the electrodes
over the 10 experiments. It displays which electrodes have
been selected by the different kernel learning methods. For
one experiment, the relevance for channelℓ is computed
by the relative contribution of groupℓ to the norm of the
solution, that is

1

Z

∑

m∈Gℓ

1

σ⋆
m

‖f⋆
m‖2

Hm
,

whereZ is a normalization factor that sets the sum of rele-
vances to one.

The results for CKL1 are particularly neat, with high rel-
evances for the electrodes in the areas of the visual cortex
(especially the lateral electrodes PO7 and PO8), and the pri-
mary motor and Somatosensory cortex (C• and CPZ). The
scalp maps for MKL and CKL1/2 are very similar and show
the importance of the same regions. In addition they also
highlight numerous frontal electrodes that are not likely to
be relevant for the BCI P300 Speller paradigm.

7. Conclusion and Further Works

This paper is at the crossroad of kernel learning and vari-
able selection. From the former viewpoint, we extended the
multiple kernel learning problem to take into account the
group structure among kernels. From the latter viewpoint,
we generalized the hierarchical penalization framework to
kernel classifiers by considering penalties in RKHS instead
of parametric function spaces.

As a side contribution, we also provide a smooth variational
formulation for arbritrary mixed-norm penalties, enabling

to tackle a wide variety of problems. This formulation is
not restricted to convex mixed-norm, a property that turns
out to be of interest for reaching sparser, hence more inter-
pretable solutions.

Our approach is embedded, in the sense that the kernel
hyper-parameters are optimized jointly with the parame-
ters of classifier to minimize the soft-margin criterion. Itis
however implemented by a simple wrapper algorithm, for
which the inner and the outer subproblems have the same
objective function, and where the inner loop is a standard
SVM problem.

In particular, this implementation allows to use available
solvers for kernel machines in the inner loop. Hence, al-
though this paper considered binary classification prob-
lems, our approach can be readily extended to other learn-
ing problems, such as multiclass classification, clustering,
regression or ranking.
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Figure 1.Electrode median relevance for MKL (left), CKL1/2 (center) and CKL1 (right). The darker the color, the higher the relevance.
Electrodes in white with a black circle are discarded (the relevance is exactlyzero). The arrow represents the frontal direction.
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