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Automatic annotation of medical images is an increasingly important tool for physicians in their daily
activity. Hospitals nowadays produce an increasing amount of data. Manual annotation is very costly
and prone to human mistakes. This paper proposes a multi-cue approach to automatic medical image
annotation. We represent images using global and local features. These cues are then combined using
three alternative approaches, all based on the support vector machine algorithm. We tested our methods
on the IRMA database, and with two of the three approaches proposed here we participated in the 2007
ImageCLEFmed benchmark evaluation, in the medical image annotation track. These algorithms ranked

first and fifth, respectively among all submission. Experiments using the third approach also confirm
the power of cue integration for this task.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The amount of medical image data produced nowadays is con-
stantly growing, with average-sized radiology departments pro-
ducing several tera-bytes of data annually. The cost of manually
annotating these images is very high; furthermore, manual classi-
fication induces errors in the tag assignment, which means that a
part of the available knowledge is not accessible anymore to phy-
sicians Gueld et al. (2002). This calls for automatic annotation algo-
rithms able to perform the task reliably, and benchmark
evaluations are thus extremely useful for boosting advances in
the field. The ImageCLEFmed annotation task has been established
in 2005, and in 2007, it provided participants with 11,000 training
and development images, spread across 116 classes. The task con-
sisted in assigning the correct label to 1000 test images. For further
information on the annotation task of ImageCLEF 2007 we refer the
reader to Miiller et al. (2007).

An open challenge for automatic annotation of medical images
is that images that belong to the same visual class might look very
different, while images that belong to different visual classes might
look very similar. An example of this phenomenon is shown in Figs.
1 and 2. In particular, Fig. 1 shows some examples of visual vari-
ability within the class ‘foot, AP unspecified’: images of the same
body region, with the same orientation, taken from different per-
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sons show high variability, because of differences in age or individ-
ual body structures. This problem can be solved with classification
algorithms able to generalize well without compromising robust-
ness. Fig. 2 shows exemplar images of different classes which share
some visual characteristics: ‘chest, PA unspecified’, ‘chest, PA expi-
ration’, ‘chest, AP inspiration’ and ‘chest, AP supine’. They must be
classified differently because of clinical needs, but they present a
strong visual similarity because they all contain the body part
‘chest’. This problem calls for classification algorithms able to use
the most discriminative information from the available data. The
challenge described above is well known in the medical image
annotation literature, where it is usually referred to as the inter-
class vs intra-class variability problem (Setia et al., 2006; Lehmann
et al., 2004; Florea et al., 2006a). It appears also in other visual clas-
sification problems, such as face recognition and robotics (Sim and
Zhang, 2004; Kim et al., 2007).

Several authors tried to address this problem using local and
global features, and more generally different types of descriptors,
separately or combined together in a multi-cue approach. Regard-
ing the medical image annotation field, in 2006 three groups pro-
posed cue integration methods for the ImageCLEFmed annotation
task. Miiller et al. (2006) combined different global and local fea-
tures together. The annotation strategy was based on the GNU Im-
age Finding Tool image retrieval engine. A similarity score is
calculated based on the training data. In particular features that
appear in images of the same class are weighted more than fea-
tures appearing across many classes. The run was not submitted
to the challenge, but given its results it would have ranked 26th
among 28 real submissions. Giild et al. (2006) used the texture fea-
tures proposed in Tamura et al. (1978) and Castelli et al. (1998),
evaluating, respectively, the Jensen-Shannon divergence and the
Mahalanobis distance to compare the query and the reference
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Fig. 1. Images from the IRMA database. Note the high visual variability within the images. They all belong to the same class annotated as: acquisition modality ‘overview
image’; body orientation ‘AP unspecified’; body part ‘foot’; biological system ‘muscolosceletal’.

Fig. 2. Images from the IRMA database. Note the high visual similarity between the images. Each of them belongs to a different class. They all have as acquisition modality
‘high beam energy’, as body region ‘chest unspecified’, as biological system ‘unspecified’, but they differ for the body orientation: (a) ‘PA unspecified’, (b) ‘PA expiration’ (c) ‘AP

inspiration’, and (d) ‘AP supine’.

image. They also used a down-scaled representation of the original
images evaluating the cross correlation function and the image dis-
tortion model value as distance measure. All these normalized dis-
tances are weighted and summed producing a single total distance
which is considered as the basis of a nearest-neighbor decision
function. The authors’ run ranked 12th. Florea et al. (2006) used
texture based features combined through concatenation with sta-
tistical gray level measures. Principal component analysis is then
applied to reduce the number of feature elements. The obtained re-
sults corresponded to the 4th rank position. For some of these
examples the performance was not very high. Still years of re-
search on visual recognition in other domains have shown clearly
that multiple cue methods outperform single feature approaches
(Matas et al.,, 1995; Mel, 1997; Sun, 2003). Heterogeneous and
complementary visual cues, bringing different information con-
tent, were successfully used in Nilsback and Caputo (2004), Mel
(1997), Slater and Healey (1995). The usefulness of feature combi-
nation is even more evident when cues are extracted from different
modalities, like vision and sound (Jie et al., 2008) or vision and la-
sers (Tapus and Siegwart, 2005).

In this paper we follow this route, and we propose to tackle the
inter-class versus intra-class variability problem using a discrimi-
native cue integration approach, based on support vector machines
(SVM) (Cristianini and Shawe-Taylor, 2000). We extract local and
global descriptors and we combine the two features using three
integration schemes. The first is the discriminative accumulation
scheme (DAS), proposed first in Nilsback and Caputo (2004). For
each feature type, an SVM is trained and its output consists of
the distance from the separating hyperplane. Then, the decision
function is built as a linear combination of the distances, with
weighting coefficients determined via cross validation. The second
integration scheme consists of designing a new Mercer kernel,'
able to take as input different feature types for each image data.
We call it multi-cue kernel (MCK). The main advantage of this ap-

1 A very similar approach was proposed simultaneously and independently in
Bosch et al. (2007).

proach is that features are selected and weighted during the SVM
training, thus the final solution is optimal as it minimizes the struc-
tural risk (Vapnik, 1998). The third integration scheme creates a un-
ique feature vector from the original two by concatenating them, and
then uses an SVM for classification. We tested our approaches on the
IRMA database used for the ImageCLEFmed 2007 benchmark evalu-
ation, in the medical image annotation track. DAS and MCK were
submitted to the benchmark evaluation. They achieved, respectively
a score of 29.90 and 26.85, ranking fifth and first among all submis-
sions. The third approach, developed after the submission deadline,
achieved a score of 26.96, which would have corresponded to rank-
ing second among all submissions. We also tested the approaches on
a different task, namely object categorization on a subset of the Cal-
tech database (Fergus et al., 2003), using various feature types. Re-
sults in both domains clearly prove the power of using multiple cues.

The rest of the paper is organized as follows: Section 2 describes
the two types of feature descriptors we used at the single-cue
stage, and gives a brief review of the theory behind SVMs. Section
3 gives details on the three alternative SVM-based cue integration
approaches. Section 4 reports the experimental procedure adopted
and the results obtained, with a detailed discussion of the perfor-
mance of each algorithm. Conclusions are drawn and potential ave-
nues for future work are given in the last section.

2. Single-cue image annotation

The strategy we propose is to extract a set of features from each
image and to use SVM for the classification task. We used a local
approach, SIFT-based descriptors, and a global approach, raw
pixels.

2.1. Local features

We adopted the framework of “bag of words” commonly used
in many state of the art approaches in images classification (Nowak
et al., 2006; Nister and Stewenius, 2006) and medical image anno-
tation (Deselaers et al., 2006). In analogy to text classification, the
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basic idea is to sample image patches, following some specific cri-
teria (e.g., an interest point detector), and to match these patches
to a set of prespecified “visual words” (BOVW, Bag Of Visual
Words). Note that the ordering of the visual words is not important
and only the frequency of appearance of each word is used to form
the feature vectors. The main implementation choices are thus: (1)
how to sample patches, (2) what visual patch descriptor to use, and
(3) how to build the vocabulary.

Regarding point (1), we used random sampling. Due to the low
contrast of the radiographs it would be difficult to use any interest
point detector. Moreover, it has been pointed out by Nowak et al.
(2006) that a dense random sampling is always superior to any
strategy based on interest points detectors.

Regarding point (2), we decided to use a modified version of the
SIFT descriptor (Lowe, 1999). SIFTs are designed to describe an area
of an image so to be robust to noise, illumination, scale, translation
and rotation changes. Given the specific constraints of our classifi-
cation task, we slightly modified the classical version of this
descriptor. The SIFT rotation-invariance is not relevant for the
ImageCLEFmed classification task, as the various structures in the
radiographs are likely to appear always with the same orientation.
Moreover, the scale is not likely to change too much between
images of the same class. Hence, a rotation- and scale-invariant
descriptor could discard useful information for the classification.
So we extracted the points at only one octave, the one that gave
us the best classification performance on a validation set, and we
removed the rotation-invariance. We call the modified SIFT
descriptor modSIFT.

Regarding point (3), we built the vocabulary randomly sampling
30 points from each input image and extracting modSIFT in each
point. The visual words are created using an unsupervised K-means
clustering algorithm. Note that, in this phase all the 12,000 images
could be used, because the process does not need the labels. We
chose K template modSIFTs with K equal to 500, so we defined a
vocabulary with 500 words. Various sizes of vocabulary were
tested (K=500, 1000, and 2000). Preliminary results on a valida-
tion set showed no significant differences in performance between
these three vocabulary sizes. We chose therefore K=500, the
smallest, for computational reasons.

Finally, the feature vector for an image is defined extracting a
random collection of points from the images. The resulting distri-
bution of descriptors in the feature space is then quantized in
the visual words of the vocabulary and converted into a histogram
of votes. To add some spatial information we decided to divide the
images in four parts, collecting the histograms separately. In this
way the dimension of the input space is multiplied by four but in
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our tests we gained about 3% in classification performance. We ex-
tracted 1500 modSIFTs in each subimage: such dense sampling
adds robustness to the process. Fig. 3 shows an example of the ex-
tracted local features.

2.2. Global features

As global descriptor we used the simplest possible one: the raw
pixels. Preliminary results on a validation set showed that down-
scaling images to 32 x 32 pixels did not produce any significant
difference than downscaling to 48 x 48, but the classification per-
formance was better than that obtained on 16 x 16 images. So the
images were resized to 32 x 32, regardless of the original dimen-
sion, and normalized to have sum equal to 1 to use the ;2 kernel.
The obtained 1024 values were then used as input features. This
approach is at the same time a baseline for the classification sys-
tem and a useful “companion” method to boost the performance
of the modSIFT-based classifier (see Section 3). Fig. 4 shows how
we built the raw pixel representation for each image.

2.3. Support vector machines

SVM are a class of learning algorithms based on statistical learn-
ing theory (Vapnik, 1998). Born as a linear classifier, SVM can be
easily extended to non-linear domains through the use of kernel
functions. The kernels implicitly map the input space to a higher
dimensional space, even with infinite dimension. At the same time
the generalization power of the classifier is kept under control by a
regularization term that avoid overfitting in such high dimensional
spaces (Cristianini and Shawe-Taylor, 2000).

The choice of the kernel heavily affects the performance of the
SVM. We used an exponential y* kernel for both feature types
(Fowlkes et al., 2004):

N ) .
)

We used this kernel because: (1) it has been demonstrated to be po-
sitive definite by Fowlkes et al. (2004), thus it is a valid kernel (Cris-
tianini and Shawe-Taylor, 2000); (2) in our experiments we tested
also linear kernel and the RBF kernel, but all of them gave worse re-
sults than the 2. The parameter y was tuned through cross valida-
tion together with the SVM-cost parameter C (see Section 4).

We used both one-vs-one (_oo) and one-vs-all (_oa) multi-class
extensions for SVM (Cristianini and Shawe-Taylor, 2000). Even, if
the labels are hierarchical, we used these standard multi-class
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Fig. 3. (a) The four most present visual words in the image are drawn, each with a different color (better viewed in color). The square in the upper left corner represents the
size of the patch used for computing the modSIFT descriptor. (b) Total counts of the visual words in the four subimages.
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Fig. 4. An example showing the raw pixel representation.

approaches because, with our features, the recognition rate was
lower using an axis-wise classification. This could be due to the
fact that each super-class has a variability so high that our features
are not able to model it, while they can very well model the small
sub-classes.

3. Multi-cue image annotation

Psychophysical evidence suggests that natural vision-based
classification tasks are performed better when multiple visual cues
can be combined to reduce ambiguity (Tanaka et al., 1991). Thus,
we expect that by combining multiple cues through an integration
scheme, we will achieve a better performance, namely higher clas-
sification performance and higher robustness. In the computer vi-
sion and pattern recognition literature some authors have
suggested different methods to combine information derived from
different cues. They can all be reconducted to one of these three
approaches: high-level, mid-level and low-level integration (Poli-
kar, 2006; Sanderson and Paliwal, 2004). Fig. 5 illustrates schemat-
ically the basic ideas behind these methods. In this paper, we tried
three different SVM-based integration schemes, one for each of
these different methods. They are described in details in Sections
3.1 and 3.3. Experiments showing the effectiveness of these tech-
niques are then reported in Section 4.

3.1. High-level cue integration

High-level cue integration methods start from the output of two
or more classifiers, dealing with complementary information. Each

of them produces an individual hypothesis about the object to be
classified. All those hypotheses are then combined together, to
achieve a consensus decision. In this paper, we applied this inte-
gration strategy using DAS. It is based on a weak coupling method
called accumulation, which does not neglect any cue contribution.
Its main idea is that information from different cues can be
summed together.

Suppose we are given M object classes and for each class, a set
of N; training images {I{f}fﬁ],j =1,... M. For each image, we extract
a set of P different cues T,,(Ef),p =1...P, so that for an object j we
have P new training sets. For each we train an SVM. Kernel func-
tions may differ from cue to cue and model parameters can be esti-
mated during the training step via cross validation. Given a test
image I and assuming M > 2, for each single-cue SVM we compute
the distance from the separating hyperplane D;(p), p=1,...P.
After collecting all the distances {Dj(p)}ﬁzl for all the M objects
and the P cues, we classify the image I using the linear
combination:

N M P P
j* = argmax {Z aij(p)}, > a,=1. 2)
p=1

j=1 p=1

The coefficients {ap}Z:] € R are determined via cross validation
during the training step.

3.2. Mid-level cue integration

Combining cues at the mid-level means that the different fea-
ture descriptors are kept separated, but they are integrated in a
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Fig. 5. A schematic illustration of the high-level, mid-level and low-level cue integration approaches.
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single classifier generating the final hypothesis. To implement this
approach we developed a scheme based on multi-class SVM with a
multi-cue kernel, Kyc. This new kernel combines different features
extracted from the images. The multi-cue kernel is a Mercer ker-
nel, as positively weighted linear combination of Mercer kernels
are Mercer kernels themselves (Cristianini and Shawe-Taylor,
2000):

p
da,=1. 3)

p=1

P
Kuc({Tp (1)} ATo(D},) = D apKp(Ty (1), Tp (1),
p=1

In this way, it is possible to perform only one classification step,
identifying the best weighting factors a, € ®* through cross valida-
tion while determining the optimal separating hyperplane. This
means that the coefficients a, are guaranteed to be optimal. An
advantage of this approach is that it makes, it possible to work both
with one-vs-all and one-vs-one SVM extensions to the multiclass
problem.

3.3. Low-level cue integration

To combine cues it is also possible to use a low-level (LL) fusion
strategy, starting from the descriptors and combining them in a
new representation. In this way, the cue integration does not di-
rectly involve the classification step. Here, we used feature concat-
enation: two feature vectors f; and ¢; are combined into a single
feature vector v; = (f;, ¢;) that is normalized to one and is then used
for classification. In this way the information related to each cue is
mixed without a weighting factor that allows to control the influ-
ence of each information channel on the final recognition result. A
general drawback of this method is that the dimension of the fea-
ture vector increases as the number of cues grows, implying longer
learning and recognition times, greater memory requirements and
possibly curse of dimensionality effects. Moreover, it is not always
possible to use the LL integration approach: there are features that
have a variable number of vector’s elements per image, while some
other have a defined number of them. Due to their intrinsic nature,
the first ones ask for specialized classification algorithms and it is
not possible to combine them with vectors of the second kind. We
refer the reader to Section 4.2 for an example.

4. Experiments
4.1. Experiments on medical image annotation

4.1.1. The IRMA database:

The database for the CLEF medical image annotation task was
provided by the IRMA group from the University Hospital of Aa-
chen, Germany. It consists of 11,000 fully classified anonymous
radiographs taken randomly from medical routine and 1000 radio-
graphs for which the classification labels were not available to the
ImageCLEF participants. The classification performance is judged
according to an error count that takes into account the IRMA code
(Deselaers et al., 2008). This produces a score: the lower it is, the
better the annotation is. For further details on the database and
the ImageCLEF benchmark evaluation for the medical annotation
task, we refer the reader to Deselaers et al. (2008).

4.1.2. Experimental setup

The original dataset was divided into two parts: training and
validation. In order to obtain reliable results, we merged them
and extracted five random and disjoint train/test splits of 10,000/
1000 images. As a preliminary step we run experiments to find
the best kernel parameter v, the best SVM C parameter and the best

Table 1

Ranking of our runs, name, best feature’s weights, percentage of support vectors
respect to the total number of training vectors, score, gain with respect to the best run
of other participants and recognition rate

Rank Name G~ Opixel  #SV Score  Gain Recognition
(%) rate (%)

1 MCK_oa 080 020 72.0 26.85 4.08 89.7
LL_oa 73.6 26.96 3.96 89.1
LL_oo 63.3 26.99 3.93 89.3

2 MCK_oo 090 0.10 64.0 27.54 338 89.0

3 modSIFT_oo 65.2 28.73 220 88.4

4 modSIFT_oa 70.0 2946 147 88.5

5 DAS 076 024 826 2990 1.03 88.9

6 RWTHi6- 3093 0
4RUN-MV3

28 PIXEL_oa 75.7 68.21 -37.28 79.9

29 PIXEL_oo 67.1 7241 -4148 79.2

weighting factors a, for both MCK and DAS through cross valida-
tion.? The obtained results were then used to run our submission
experiments on the 1000 unlabeled images of the challenge test
set using all the 11,000 images of the original dataset as training.
We considered as the best parameters the one giving the lower aver-
age score on the five splits. Note that, due to the score evaluation
method, the best score does not correspond necessarily to the best
recognition rate.

We first evaluated the performance of local and global features
separately through single-cue annotation experiments. Then we
adopted the same described experimental setup for DAS, MCK
and the LL cue integration method. In particular for DAS we used
the distances from the separating hyperplanes associated with
the best results of the single-cue step, so the cross validation was
used only to search the best weights for cue integration. Moreover,
we counted the support vectors summing the ones from local and
global features obtained with SVM one-vs-all multiclass extension,
but considering only once the support vectors associated with the
training images that resulted in common between the single-cues.
On the other hand, for MCK the cross validation was applied to look
for the best kernel parameters and the best feature’s weights at the
same time. In both cases weights could vary from 0 to 1. The LL
integration method combines the global descriptors and the local
descriptors in a unique feature vector. This gives rise to an exper-
imental approach identical to that used for the single-cue annota-
tion: we applied cross validation to identify the optimal kernel
parameters.

4.1.3. Results and discussion

Table 1 summarizes all the relevant information about our
experiments: the challenge ranking, name, best feature’s weights,
number of support vectors as percentage of the total number of
training vectors, score, gain with respect to the best run of other
participants, and recognition rate. The LL integration approach
was tested after the end of the ImageCLEF competition so our LL re-
sults are not part of the official rating.

Besides obtaining the optimal kernel parameters, the single-cue
annotation experiments showed that the BOVW with modSIFT fea-
tures outperform the raw pixel ones. This is not unexpected, as the
results of the ImageCLEF 2006 competition showed that local fea-
tures are generally more informative than global features for the
annotation task (Liu et al., 2006). We can say that global feature
are able to retain information on the whole image as a source of
context, while the local features capture the details, and thus they

2 We varied the kernel parameter 7 in [0.02; 0.05; 0.1; 0.25; 0.5; 1], Tpixel 10 [0.7;
1.5; 3; 5; 10], the SVM C parameter in [1; 5; 10; 20; 40; 80], the MCK a, weighting
factor between 0 an 1 with step 0.1 and the DAS a, weighting factor between 0 and 1
with step 0.01.
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Fig. 6. Local (red) and global features (blue) corresponding to the images above (better viewed in color). The first and the last image belong to the same class, while the
second comes from a different class. Local features are similar for images from the same class and different for images from different classes. On the other hand, global
features appear quite alike. Remember that both features are normalized to have sum equal to 1. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

manage better the inter and intra-class variability. We can see an
example of this in Fig. 6. The first and the third image belong to
the same class, while the second one comes from a different class.
The raw pixel features for the three images appear quite alike,
while the BOVW with modSIFT features seem able to better cap-
ture the visual dissimilarities. The reader might wonder if the
absolute number of features has an impact on these results, as it
is 2000 for BOVW and 1024 for PIXELS. This is not the case, because
we use the same kernel for both of them, with a range between 0
and 1. Note that even in case of kernels with different ranges, the a,
coefficients in DAS and MCK would rescale the features as needed.

Our two runs based on the MCK algorithm ranked first (score
26.85) and second (score 27.54) among all the challenge submis-
sions, but considering all our experiments the mid-level cue inte-
gration approach shares the highest rank positions with the low-
level integration scheme (LL_oa score 26.96, LL_oo score 26.99).
These results state the effectiveness of using multiple cues for
automatic image annotation. It is interesting to note that even if
DAS has a higher recognition rate, its score is worse than that ob-
tained using the feature modSIFT alone. It looks like DAS is not able
to capture the hierarchical structure of the data, and this affects its
score. Regarding the SVM multiclass extension, the one-vs-all over-
come the one-vs-one.

For both the one-vs-one and the one-vs-all SVM multiclass
extension, BOVW with modSIFT features need a lower number of
support vectors (SV) than PIXEL. For the MCK run using one-vs-
one multiclass SVM extension (MCK_oo) the number of SV is lower
than that of both the single-cues modSIFT_oo and PIXEL_oo. This
shows that combining two features with the MCK algorithm can
simplify the classification problem. Comparing the number of sup-
port vectors for the LL cue integration approach with that related
to the single-cue experiments leads to the same conclusions
reached for MCK. The number of SV for DAS exceeds that obtained
for both MCK_oa and MCK_oo showing a higher complexity of the
classification problem.

In general we must notice that the number of support vectors is
over 50% of the original training set. This arises from the structure
of the database: on 116 classes, 50 have less than 30 images. There-
fore, it is reasonable that the classifier retains almost all the train-
ing data, to cope with the unbalance data problem. On top of this,
one should remember that the problem presents a high inter-class
vs intra-class variability, which also pushes for storing a large
percentage of training data as support vectors. For a more detailed
discussion of the results, we refer the reader to Tommasi et al.
(2007).

4.2. Experiments on object categorization

4.2.1. Experimental setup

We ran a second set of experiments on a subset of the Caltech
database (Fergus et al., 2003), containing images of airplanes, cars,
faces, motorbikes, and leaves (see Fig. 7). Training and testing sets
consisted, respectively, of 15 and 60 images for each class. Our
aim was to analyze how the cue integration approaches used on
medical images behave when used for a different task, and with dif-
ferent features. We tested both the combination of raw pixels and
SIFT features, and the combination of Composed Receptive Field
Histograms (CRFH) (Linde and Lindeberg, 2004), and SIFT. Here,
the raw pixel features are obtained resizing the original images to
16 x 16 pixels. The local features are the original SIFTs without
any modification and not using the BOVW strategy. Note that in this
case, the LL integration approach is not usable. For SIFT we get a dif-
ferent number of interest points per image, the feature elements are
not sortable, so we need a specific kernel and we cannot mix this
kind of feature with others (Wallraven et al., 2003). For the raw pixel
and the CRFH we used the 2 kernel, while for the local features we
used the matching kernel (Wallraven et al., 2003). We determined
the best kernel parameters, the SVM C parameter and the weighting
factors through five fold cross validation. Here, we considered as
best the parameters which produced the highest recognition rate.

Fig. 7. Sample images from five classes of Caltech-101 database. They are taken, respectively from the class Airplanes, Car side, Faces, Leaves and Motorbikes.
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Table 2
Recognition rate results on the five classes of the Caltech database

Name Features Recognition rate (%)
SVM_oa SIFT 89.20+1.85

PIXEL 78.32+3.99

CRFH 84.24 +1.51
DAS SIFT + PIXEL 92.64 +1.37

SIFT + CRFH 93.60 +1.79
MCK_oa SIFT + PIXEL 92.96 + 1.85

SIFT + CRFH 92.64 +0.67

4.2.2. Results and discussion

Results are reported in Table 2. We see that for the (SIFT, PIXEL)
combination, MCK performs better than DAS on average, but the
two algorithms achieve very close performance, therefore their re-
sults can be considered equivalent. For the (SIFT, CRFH) combina-
tion instead DAS performs better than MCK on average, but here
also their results can be considered equivalent. On the other hand,
the gain in performance is very high for both the cue integration
methods with respect to the single-cue classifiers.

This result is in agreement with our findings on the IRMA data-
base, and confirms that integrating multiple cues pays off as op-
posed to use one single feature type. Still it is not clear from our
experiments, which cue integration strategy should be preferred.
Indeed, our results seem to indicate that the task and the features
used have a strong impact on which approach performs best.

5. Conclusions

In this paper, we presented a discriminative multi-cue approach
to medical image annotation. We combined global and local infor-
mation using three alternative fusion strategies: we used the dis-
criminative accumulation scheme, the multi-cue kernel able to
take as input different cues while keeping them separated during
the optimization process, and we merged features together in a un-
ique descriptor. The second method gave the best performance in
the ImageCLEF 2007 benchmark evaluation, obtaining a score of
26.85, which ranked first among all submissions. Additional exper-
iments in the domain of object categorization confirm the power of
cue integration for visual classification, and emphasize the depen-
dency from the task and the feature type in the selection of the
optimal fusion strategy.

This work can be extended in many ways. We would like to use
various types of local and global descriptors and add shape features
as well, so to test the performance of the three integration schemes
when the number of cues grows. This, combined with a thorough
theoretical and algorithmic analysis of the three methods, should
make it possible to understand better their strengths and weak-
nesses. Regarding the medical image annotation task, our algo-
rithm does not exploit at the moment the natural hierarchical
structure of the data, but we believe that this information is crucial
for achieving significant improvements in performance. Future
work will explore these directions.
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