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Abstract

Brain-computer interfaces (BClIs), as any other interaction modality based on physiological
signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors
in the recognition of subject’s intent. An elegant approach to improve the accuracy of BCls
consists of a verification procedure directly based on the presence of error-related potentials
(ErrP) in the EEG recorded right after the occurrence of an error. Two healthy volunteer
subjects with little prior BCI experience participated in a real-time human-robot interaction
experiment where they were asked to mentally move a cursor towards a target that can be
reached within a few steps using motor imagery. These experiments confirm the previously
reported presence of a new kind of ErrP. These “Interaction ErrP” exhibit a first sharp
negative peak followed by a positive peak and a second broader negative peak (~270, ~330
and ~430 ms after the feedback, respectively). The objective of the present study was to
simultaneously detect erroneous responses of the interface and classifying motor imagery at
the level of single trials in a real-time system. We have achieved online an average recognition
rate of correct and erroneous single trials of 84.7% and 78.8%, respectively. The off-line
post-analysis showed that the BCI error rate without the integration of ErrP detection is
around 30% for both subjects. However, when integrating ErrP detection, the average online
error rate drops to 7%, multiplying the bit rate by more than 3. These results show that
it’s possible to simultaneously extract in real-time useful information for mental control to
operate a brain-actuated device as well as correlates of cognitive states such as error-related
potentials to improve the quality of the brain-computer interaction.

1 Introduction

People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS),
etc.) need alternative ways of communication and control for their everyday life. Over the past
two decades, numerous studies proposed electroencephalogram (EEG) activity for direct brain-
computer interaction [1]-[2]. EEG-based brain-computer interfaces (BCIs) provide disabled people
with new tools for control and communication and are promising alternatives to invasive methods.
However, as any other interaction modality based on physiological signals and body channels (e.g.,
muscular activity, speech and gestures), BCIs are prone to errors in the recognition of subject’s
intent, and those errors can be frequent. Indeed, even well-trained subjects rarely reach 100% of
success. In contrast to other interaction modalities, a unique feature of the “brain channel” is
that it conveys both information from which we can derive mental control commands to operate a
brain-actuated device as well as information about cognitive states that are crucial for a purposeful
interaction, all this on the millisecond range. One of these states is the awareness of erroneous
responses, which a number of groups have recently started to explore as a way to improve the
performance of BCIs [3]-[7].

In particular, [6] recently reported the presence of error-related potentials (ErrP) elicited by erro-
neous feedback provided by a BCI during the recognition of the subject’s intent. In this off-line
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study, six subjects were asked to mentally drive a cursor towards targets that can be reached
within a few steps using motor imagery. However, since the subjects had no prior BCI experience,
the system was not moving the cursor following the mental commands of the subject, but with a
20% error rate, to avoid random or totally biased behavior of the cursor. The main components
of these “Interaction ErrP” are a negative peak 290 ms after the feedback, a positive peak 350
ms after the feedback and a second broader negative peak 470 ms after the feedback. This study
shows the feasibility of simultaneously and satisfactorily detecting erroneous responses of the in-
terface and classifying motor imagery for device control at the level of single trials. Indeed, the
recognition rate of correct and erroneous single trials are 81.8% and 76.2%, respectively while the
average recognition rate of the subject’s intent is 73.1%. Finally, the average theoretical increase
of the BCI performance (in terms of bit rate) when integrating ErrP detection is over 100%.

The objective of the present study is to simultaneously detect erroneous responses of the interface
and classifying motor imagery at the level of single trials in a real-time BCI system. In this paper
we report new experimental results recorded with two healthy volunteer subjects with little prior
BCI experience during a simple real-time human-robot interaction that confirm similar results
obtained off-line [6], as explained above. We have achieved online an average recognition rate of
correct and erroneous single trials of 84.7% and 78.8%, respectively. The off-line post-analysis
showed that the BCI error rate without the integration of ErrP detection is around 30% for both
subjects. However, when integrating ErrP detection, the average online error rate drops to 7%,
multiplying the bit rate by more than 3. These results confirm that it’s possible to simultaneously
extract in real-time useful information for mental control to operate a brain-actuated device as
well as correlates of cognitive states such as error-related potentials to improve the quality of the
brain-computer interaction.

2 Materials & Methods

To test the ability of BCI users to concentrate simultaneously on a mental task and to be aware
of the BCI feedback at each single trial, we have simulated a human-robot interaction task where
the subject has to bring the robot to targets located 3 steps away, either to the left or to the right.
This virtual interaction is implemented by means of a green square cursor that can appear on any
of 20 positions along a horizontal line. The goal with this protocol is to bring the cursor to a
target that randomly appears either on the left (blue square) or on the right (red square) of the
cursor. The target is no further away than 3 positions from the cursor (symbolizing the current
position of the robot). This prevents the subject from habituation to one of the stimuli since the
cursor reaches the target within a small number of steps. Each target corresponds to a specific
mental task. Subjects were asked to imagine a movement of their left hand for the left target and
to imagine a movement of their right foot for the right target.

After the presentation of the target, the subject focuses on the corresponding mental task until
the cursor moves. The system uses a 1 second window to determine the subject’s intent. Then
the system uses a 400 ms window to detect the presence of ErrP just after the presentation of
the feedback (movement of the cursor). If no ErrP are detected, nothing happens and about 600
ms later, the system starts to accumulate data for the next classification of motor imagery. If
ErrP are detected, the movement is canceled, and again after about 600 ms the system starts
accumulating data for the next step. Figure 1 illustrates this timing. At t=0, the target is 3 steps
on the right of the cursor. The subject is therefore imagining a movement of his right foot. At
t=1 second, the system makes a mistake and moves the cursor to the left while the subject was
imagining a movement of his right foot. At t=1.4 second, the system detects ErrP and cancels
the wrong movement. It is to note that the system is only canceling the movement, not replacing
the wrong command (left) by the opposite one (right). After a delay of about 600 ms, the system
starts accumulating data for the next motor imagery classification, i.e. for the next single trial.
In any case, the cursor is moving on average every 2 seconds, and some movements are canceled if
ErrP are detected. When the cursor reached a target, it briefly turned from green to light green
and then a new target is randomly selected by the system. If the cursor didn’t reach the target



after 10 steps, a new target is selected. Two healthy volunteer subjects performed 10 sessions of
15 targets (~ 90 single trials per session) on 2 different days, the delay between the two days of
measurements was about 2 weeks. The 20 sessions were split into 4 groups of 5. For the first
day (Groups I & II) we used classifiers built with data recorded during a previous off-line study
described above [6], and for the second day (Groups III & IV) we used the data of the first day
to build classifiers. This rule applies for both motor imagery classification and for ErrP detection.
The data acquisition and processing as well as the classification procedures can be found in [(].
For both subjects we used a 150 ms window starting 250 ms after the feedback for channels FCz
and Cz for ErrP detection. For motor imagery classification, we used EEG channels Cz, C2, C4
and frequencies 12 Hz, 14 Hz for Subject I and EEG channels Cz, C4, CP4 and frequencies 12 Hz,
24 Hz, 26 Hz for Subject II.

Motor imagery
classification

t=14s

~ 0.6 second delay . I:l
t=0 \l

Figure 1: Timing of the protocol. At t=0, the target is 3 steps on the right of the cursor. At
t=1 second, the system makes a mistake and moves the cursor to the left while the subject was
imagining a movement of his right foot. At t=1.4 second, the system detects ErrP and cancels the
wrong movement. After a delay of about 600 ms, the system starts accumulating data for the next
motor imagery classification, i.e. for the next single trial.

3 Results

3.1 Performances

For both subjects, Table 1 shows the classification rates for ErrP detection (error and correct
single trials) for the four groups of recordings and for the average of them. It also shows the error
rates and the rejection rates for motor imagery, with and without ErrP detection. Finally the
increase in performance expressed in bits per trials (BpT) is also shown. For both subjects, ErrP
detection rate is around 80% and pretty stable over the different groups. Without the use of ErrP
detection, Subject I shows a stable error rate of 34% for motor imagery, whereas for Subject II
this rate is just above 30%. These rates are relatively high for a two tasks BCI, but keeping in
mind that the subjects had very little BCI experience and that these are real-time experiments
performed using classifiers built with data from previous sessions recorded several weeks before,
they are satisfactory. When integrating ErrP detection, the error rates drop below 10% for both
subjects with acceptable rejection rates around 35%. This clearly shows the benefit of using ErrP
detection to filter out wrong decisions. This benefit is clear in term of performance, the bit rate
is multiplied by more than 3 for both subjects.



Table 1: Classification rates and performance increase. For both subjects, this table presents
the classification rates for ErrP detection (error and correct single trials) for the four groups of
recordings and for the average of them. It also shows the error rates and the rejection rates for
motor imagery, with and without ErrP detection. Finally the increase in performance is also shown.
The ErrP detection rate is around 80% and the error rate of the standard BCI is around 30%. When
integrating ErrP detection, this error rate is below 10% with an acceptable rejection rate of 30-35%.
Finally, for both subjects the bit rate is multiplied by more than 3 when using ErrP detection.

Subject 1 (Cz, C2, C4 and 12 Hz, 14 Hz)
| 1 I III IV | Average S.D.

ErrP detection Error trials [%] 74.8 83.7 76.1 67.5 75.5 6.6
Correct trials [%] | 83.3 82.1 91.1 81.6 85.8 4.7

. Error rate [%] 33.0 275 343 39.0 33.5 4.7

BClL without ExrP || p . tion rate [%] | 0.0 00 0.0 00 0.0 0.0
. Error rate [%] 83 45 82 127 8.4 3.4

BCL with BrrP | g ccction rate [%] || 325 36.0 32.0 37.6 34.5 2.7
BpT initial 0.09 0.15 0.07 0.04 0.09 0.05

Performance BpT final 0.31 0.41 0.32 0.17 0.30 0.10
Increase [%)] 244 173 357 325 275 83

Subject 2 (Cz, C4, CP4 and 12 Hz, 24 Hz, 26 Hz)
| 1 I III IV | Average S.D.

ErrP detection Error trials [%] 94.8 76.6 76.5 80.2 82.0 8.7
Correct trials [%] 68.0 885 86.1 914 83.5 10.6

. Error rate [%] 31.3 302 31.1 29.2 30.5 1.0

BCI without ExrrP || p . ction rate [%] | 0.0 00 0.0 00 0.0 0.0
. Error rate [%] 1.6 7.6 7.6 5.8 5.7 2.8

BCL with BrrP || g cection rate [%] || 51.6 325 331 205 36.7  10.1
BpT initial 0.10 0.12 0.11 0.13 0.12 0.01

Performance BpT final 0.38 0.36 0.33 0.42 0.37 0.04
Increase [%)] 280 200 200 223 226 38

3.2 DMotor imagery

Subjects were asked to imagine a movement of their left hand when the left target was proposed
and to imagine a movement of their right foot when the right target was proposed. The most
relevant EEG channels and frequencies were selected by a simple feature selection algorithm based
on the overlap of the distributions of the different classes. The data recorded during the off-line
study [6] mentioned in Section 1 and 2 was used to select the relevant features (EEG electrodes
and frequencies) for motor imagery classification as well as to build the initial statistical classifier
used for these real-time experiments. For Subject I the relevant features are EEG channels Cz, C2,
C4 and frequencies 12 Hz, 14 Hz whereas for Subject II we used EEG channels Cz, C4, CP4 and
frequencies 12 Hz, 24 Hz, 26 Hz. Previous studies confirm these results. Indeed, alpha and beta
rhythm over left and/or right sensorimotor cortex have been successfully used for BCI control [8].
Event-related de-synchronization (ERD) and synchronization (ERS) refer to large-scale changes in
neural processing. During periods of inactivity, brain areas are in a kind of idling state with large
populations of neurons firing in synchrony resulting in an increase of amplitude of specific alpha (8-
12 Hz) and beta (12-26 Hz) bands. During activity, populations of neurons work at their own pace
and the power of this idling state is reduced, the cortex has become de-synchronized [9]-[10]. In
our case, the most relevant electrodes for both subjects are in the C4 and Cz area. These locations
confirm previous studies since C3 and C4 areas usually show ERD/ERS during hands movement
or imagination whereas foot movement or imagination are focused in the Cz area [9]-[10].

Figure 2 shows the discriminant power (DP) of frequencies (top) and electrodes (bottom) for
both subject. The DP was calculated off-line after the real-time recordings to check the stability of
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Figure 2: (Top) Discriminant power (DP) of frequencies. Sensory motor rhythm (12-16 Hz) and
some beta components are discriminant. (Bottom) Discriminant power (DP) of electrodes. The most
relevant electrodes are in the central area (C4 and Cz) according to the ERD/ERD location for hand
and foot movement or imagination.

the selected features. For Subject I, the best frequencies are 12 Hz and 14 Hz, whereas for Subject
II the best ones are 12 Hz, 24 Hz and 26 Hz. This matches exactly the selected frequencies.
For both subjects, the best EEG electrodes are located around C4, matching relatively well the
selected ones. These results indicates that the relevant features are stable over time.

3.3 Error-related potentials

Figure 3 shows the grand averages of error trials, of correct trials and the difference error-minus-
correct for channel FCz for both subjects). A first small positive peak shows up about ~200
ms after the feedback (t=0). A negative peak clearly appears ~270 ms after the feedback. This
negative peak is followed by a positive peak ~330 ms after the feedback. Finally, a second negative
peak appears ~430 ms after the feedback. Both subjects show very similar ErrP time courses whose
amplitudes slightly differ from one subject to the other. These experiments seem to confirm the
existence of a new kind of error-related potentials [7].
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Figure 3: Grand averages of error trials, of correct trials and the difference error-minus-correct
for channel FCz for both subjects. Both subjects show similar ErrP time courses whose amplitudes
slightly differ from one subject to the other.



4 Discussion

In this study we have closed the loop using a previously described protocol [6] for real-time
experimentations, i.e. with statistical classifiers for motor imagery and ErrP detection running in
real-time and simultaneously. Two subjects were able to control the cursor using motor imagery
with an average accuracy just below 70%. In parallel, the system was able to detect the presence
of ErrP with an accuracy above 80% to improve the quality of the brain-computer interaction.
Indeed, in terms of bit rate, the integration of ErrP detection multiplies the performance by a
factor 3. The features used for classification were those selected in [6]. They show a relatively
good stability, in particular the potentials used for ErrP detection.

More generally, the ErrP potentials described in this study are relatively similar for all subjects.
We could therefore maybe build a general ErrP classifier that we would use for all subjects.
This would simplify the training sessions, since no preliminary ErrP recordings to build classifiers
would be needed anymore. The duration of the window used for motor imagery classification was
1 second. This could probably be shortened to 0.5 second or maybe even less without decreasing
performances, so that if we reduce the delay after ErrP detection, we could be able to deliver
a feedback almost every second. In this study, ErrP detection was used to filter out erroneous
responses of the system. ErrP could also be used as learning signals for an unsupervised online
adaptation of the BCI classifier. Finally, the work described in this paper suggests that it could be
possible to recognize in real-time high-level cognitive and emotional states from EEG (as opposed,
and in addition, to motor commands) such as alarm, fatigue, frustration, confusion, or attention
that are crucial for an effective and purposeful interaction. Indeed, the rapid recognition of these
states will lead to truly adaptive interfaces that customize dynamically in response to changes of
the cognitive and emotional/affective states of the user.
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