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Abstract. This paper investigates the combination of evidence coming from different frequency
channels obtained filtering the speech signal at different auditory and modulation frequencies. In
our previous work [1], we showed that combination of classifiers trained on different ranges of
modulation frequencies is more effective if performed in sequential (hierarchical) fashion. In this
work we verify that combination of classifiers trained on different ranges of auditory frequencies
is more effective if performed in parallel fashion. Furthermore we propose an architecture based
on neural networks for combining evidence coming from different auditory-modulation frequency
sub-bands that takes advantages of previous findings. This reduces the final WER by 6.2% (from
45.8% to 39.6%) w.r.t the single classifier approach in a LVCSR task.
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Figure 1: Set of temporal filter obtained by first (G1 left picture) and second (G2 right picture) order
derivation of Gaussian function. G1 and G2 are successively split in two filter bank (Gl-low and
G2-low, dashed line) and (G2-high and G2-high continuous line) that filter respectively high and low
modulation frequencies.

1 Introduction

Typical Automatic Speech Recognition (ASR) features are obtained through short term spectrum
of 20-30 ms segments of speech signal. This representation only extracts instantaneous frequency
components of the signal. Power spectrum is then integrated using a bank of filters equally spaced on
an auditory scale (e.g. Bark scale or Mel scale) thus obtaining the auditory spectrum.

The spectral dynamics are generally recovered from the short-term spectrum adding dynamic
features (temporal differentials of the spectral trajectory at the given instant) or considering the
modulation spectrum of the signal (long segments of spectral energy trajectories obtained by STEFT

[2],13])-

Combining information obtained training separate classifiers on different frequency sub-bands of
the original signal is a well accepted practise in speech recognition. Separate processing of auditory
frequency ranges has been proposed in the multi-band framework (see [4],[5]). This method is based
on the idea that the human hearing provides for performing the recognition independently in each
frequency sub-band and the final decision can be taken merging decisions obtained from each sub-band.
Multi-band speech recognition is particularly useful in noisy conditions.

Motivated by findings in modulation frequencies perception [6], in our previous work [1], it is shown
that separate processing of modulation frequency sub-bands can significantly improve the performance
in ASR systems. Furthermore the use of parallel and sequential combination is investigated show-
ing that sequential processing moving from high to low modulation frequencies outperforms parallel
processing.

In this paper, we first investigate whether the combination of auditory frequency sub-bands should
be parallel or hierarchical completing thus the results of [1]. Then we consider combination of joint
auditory-modulation frequency sub-bands and we investigate the relative improvements w.r.t. the sin-
gle classifier approach. Those methods are motivated by physiological findings in auditory processing
( see [7]) and are currently investigated by the speech processing community for application to ASR
(see [8],[9]). Contrary to previous related works, we pursue the investigation in a large vocabulary
task.

The paper is organized as follows: section 2 describes the preprocessing steps for extracting the
auditory-modulation frequency channels, section 3 describes the experimental setting and the LVCSR
system used for experiments, section 4 investigate parallel and sequential (hierarchical) combination
of auditory frequencies only. Section 5 describes experiments on combination of auditory-modulation
frequencies and finally in section 6 we discuss results.
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Figure 2: Auditory-modulation frequency channels extraction: auditory spectrum is filtered with a
set of Gaussian filters that extracts high and low modulation frequencies (G-High and G-Low). After
that auditory frequencies are split in two channels (F-High and F-Low) .This produces four different
channels.

2 Time-frequency processing

This section describes the processing for extracting evidence from different auditory-modulation fre-
quency sub-bands. Feature extraction is composed of the following parts: critical band auditory
spectrum is extracted from Short Time Fourier Transform of a signal every 10 ms. 15 critical bands
are used.

In order to extract different modulation frequencies, MRASTA filtering is then applied (see [10]
for details). A one second long temporal trajectory in each critical band is filtered with a bank of
band-pass filters. Those filters represent first derivatives (G1) and second derivatives (G2) of Gaussian
functions with variance o; varying in the range 8-130 ms (see figure 1). They have constant bandwidth
on a logarithmic scale. This processing is qualitatively consistent with the perceptual model proposed
n [6]. In effect, the MRASTA filters are multi-resolution band-pass filters on modulation frequency,
dividing the available modulation frequency range into its individual sub-bands. As proposed in [1],
filter-Banks G1 and G2 (6 filters each) are split in two separate filter-banks referred as G-Low and G-
High that filter respectively high and low modulation frequencies. This produces 15 x 6415 x 6 = 180
features. Identical filters are used for all critical bands. Then, as in the conventional multi-band
framework, the auditory frequencies are split into two sub-bands of respectively 7 and 8 critical
bands. We refer to those as F-Low and F-High.

In this way the information about the signal is divided in four auditory-modulation frequency
channels: (F-Low,G-Low),(F-Low,G-High),(F-High,G-Low),(F-High,G-High) that represent all com-
bination of low and high auditory and modulation frequencies. This processing is depicted in figure
2.

For separate processing of modulation frequency sub-bands see [1]. In section 4 we analyze sep-
arate processing of auditory sub-bands and in section 5 we analyze the joint processing of auditory-
modulation sub-bands.

3 System description
Experiments are run with the AMI LVCSR system for meeting transcription described in [11]. The

training data for this system comprises of individual headset microphone (IHM) data of four meeting
corpora; the NIST (13 hours), ISL (10 hours), ICSI (73 hours) and a preliminary part of the AMI
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Figure 3: Parallel processing of two feature sets.
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Figure 4: Hierarchical processing of two feature sets.

corpus (16 hours). Acoustic models are phonetically state tied triphone models trained using stan-
dard HTK maximum likelihood training procedures. The recognition experiments are conducted on
the NIST RTO05s [12] evaluation data. We use the reference speech segments provided by NIST for
decoding. The pronunciation dictionary is same as the one used in AMI NIST RT05s system [11].
Juicer large vocabulary decoder [13] is used for recognition with a pruned trigram language model.

Table 1 reports results for the PLP plus dynamic features system and the MRASTA-TANDEM
system. Both these baseline feature sets are obtained by training a single Neural Network on the whole
training set in order to obtain estimates of phoneme posteriors. The PLP based system outperforms
the MRASTA based system.

Features | TOT | AMI | CMU | ICSI | NIST | VT
PLP 424 | 428 | 40.5 | 31.9 | 51.1 | 46.8
MRASTA | 45.8 | 47.6 | 41.9 | 37.1 | 53.7 | 49.7

Table 1: RT05 WER for Meeting data: baseline PLP system and MRASTA features

4 Hierarchical and parallel processing of auditory frequencies

In this section, we investigate from an ASR perspective whether classifiers trained on separate auditory
frequency ranges should be combined in parallel or hierarchical fashion. We limit our investigation
to the two channel F-Low and F-High. In this experiment no splitting of modulation frequencies is
considered.

In parallel processing, a separate neural network for estimating phoneme posterior probabilities is
trained for each part of the auditory spectrum. Those outputs can be combined together to provide a
single phoneme posterior estimation using a merger neural network (see figure 3). Before being used
in the merger NN, posteriors are modified according to a log/KLT transform.

In hierarchical processing, a NN is trained on a first auditory frequency range to obtain phoneme
posteriors. These posteriors are modified according to a log/KLT transform and then concatenated
with features obtained from the second auditory frequency range thus forming an input to a second
phoneme posterior-estimating NN. In such a way, phoneme estimates from the first net are modified
by a second net using an evidence from a different range of auditory frequencies (see figure 4). In
contrary to parallel processing , the order in which frequencies are presented does make a difference.
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Figure 5: Proposed architecture for combining auditory and modulation frequency channels: auditory
frequency channels are processed in parallel and modulation frequency channels are processed in
sequence (hierarchically).

In table 2, we report WER for features obtained both moving from high to low and from low to
high auditory frequencies and for features obtained processing auditory frequencies in parallel.

Features TOT | AMI | CMU | ICSI | NIST | VT
MRASTA 45.8 | 47.6 | 41.9 | 37.1 | 53.7 | 49.7
F-low to F-high | 45.0 | 48.1 | 429 | 36.0 | 51.0 | 47.7
F-high to F-low | 44.3 | 45.7 | 42.5 | 35.2 | 50.5 | 48.8
Parallel 43.9 | 46.0 | 41.0 | 35.8 | 50.7 | 47.1

Table 2: RT05 WER for Hierarchical modulation frequencies processing: from low to high and from
high to low frequencies.

In case of combination of auditory frequencies, parallel processing outperforms hierarchical pro-
cessing. Furthermore using two separate frequency channels reduces the WER by 2% absolute w.r.t.
the single classifier approach.

5 Parallel auditory-modulation frequency processing

In this section, we propose an experiment close in spirit to the work of [14]. A separate NN classifier is
trained on each of the four sub-bands obtained as described in section 2 in order to estimate four sets
of phoneme posteriors. WER for each of those individual classifiers are reported in table 3. Posteriors
are then combined into a single feature stream using a NN as merger classifier. This approach combines
in parallel all the four information channels of figure 2. Results are reported in table 4.

G-Low | G-High
F-Low | 65.9 66.8
F-High | 65.0 67.3

Table 3: WER for all the four auditory-modulation frequencies channels processed separately

Separate processing of auditory-modulation frequency channels reduces the WER from 45.8% to
40.7%.

To further investigate the contribution of each channel, we report in the following WER for each
of the splitting depicted in figure 2.

Let us consider two auditory frequency sub-bands for each of the two modulation frequency sub-
bands. In other words output from separate classifiers trained on sub-bands (F-Low,G-Low) and
(F-High,G-Low) is merged into a single feature stream M-Low and similarly output from separate
classifiers trained on sub-bands (F-Low,G-High) and (F-High,G-High) is merged into a single feature
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Features | TOT | AMI | CMU | ICSI | NIST | VT
40.7 | 40.7 | 38.6 | 32.6 | 47.6 | 44.5

Table 4: WER for parallel combination of evidence from four auditory-modulation frequency channels.

stream M-high. This approach is equivalent to the conventional multi-band framework where the
sub-bands are formed at different modulation frequencies. Results are reported in table 5.

Features | TOT | AMI | CMU | ICSI | NIST | VT
M-High | 40.7 | 42.6 38.3 32.6 46.7 43.9
M-Low 46.2 | 48.8 | 44.0 | 37.1 | 52.4 | 49.5

Table 5: WER for multi-band approach at different modulation frequencies

Features obtained combining auditory frequencies at high modulation frequencies outperforms
those obtained at low modulation frequencies. Performance of feature M-High is already similar
to those obtained merging all the four channels (see table 5) thus information provided from low
modulation frequencies is not effectively incorporated when parallel combination is used.

In [1], it is shown that combination of classifiers trained on separate ranges of modulation frequen-
cies is more effective when performed in hierarchical fashion. In section 4, it is shown that combination
of classifiers trained on separate ranges of auditory frequencies is more effective when performed in
parallel fashion. In the previous section, we verified that parallel combination of auditory-modulation
frequency channels does not take benefit of information coming from low modulation frequency chan-
nels.

Thus we propose an architecture for processing in parallel fashion auditory frequencies at high
modulation frequencies and hierarchically incorporating low modulation frequencies. This architecture
is depicted in figure 5.

Results for features obtained according to this method are reported in table 5.

Features | TOT | AMI | CMU | ICSI | NIST | VT
39.6 | 419 | 37.0 | 31.9 | 45.1 | 429

Table 6: WER for proposed architecture of figure 5

When low modulation frequencies are introduced in hierarchical fashion WER further reduce of
1.1%. Thus processing frequency channels as in figure 5 also take benefit of information coming from
low modulation frequency ranges.

6 Conclusions and discussions

In this work we address the combination of evidence coming from different auditory-modulation fre-
quency sub-bands. This study complete our previous work on separate processing of modulation
frequencies for ASR purposes. We can conclude that:

e In combination of classifiers trained on different modulation frequency ranges, sequential (hier-
archical) combination outperform parallel combination when processing moves from high to low
frequencies (see [1]). Those conclusions are consistent with physiological findings in [15].

e In combination of classifiers trained on different auditory frequency ranges, parallel combination
outperform sequential (hierarchical) combination. Those conclusions are consistent with several
previous works on speech perception [16] and multi-band speech recognition [4],[5].
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We then investigate the combination of classifiers trained on four different channels that combine
high and low modulation and auditory frequencies (see figure 2). This experiment is similar in spirit
to the work of [14]. We verify that in a LVCSR task, WER reduces by 5% absolute (from 45.8% to
40.7%) w.r.t. the single classifier approach.

However WER for combination of four channels is actually equivalent to WER obtained combining
only auditory sub-bands at high modulation frequencies. This indicates that evidence coming from
low modulation frequencies is not adding any extra information.

For this reason we propose the architecture depicted in figure 5 based on the fact that modulation
frequencies are combined hierarchically and auditory frequencies are combined in parallel. Separate
auditory frequencies at high modulation frequencies are processed in parallel first and subsequently
auditory frequencies at low modulation frequencies are introduced in hierarchical fashion. This further
reduces WER by 1% w.r.t. the parallel combination of the four channels and by 6.2% w.r.t. the single
classifier approach.
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