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Abstract

A speech/audio codec based on Frequency Domain Linear Pre-
diction (FDLP) exploits auto-regressive modeling to approxi-
mate instantaneous energy in critical frequency sub-bandsof
relatively long input segments. The current version of the
FDLP codec operating at66 kbps has been shown to provide
comparable subjective listening quality results to state-of-the-
art codecs on similar bit-rates even without employing stan-
dard blocks such as entropy coding or simultaneous masking.
This paper describes an experimental work to increase compres-
sion efficiency of the FDLP codec by employing entropy cod-
ing. Unlike conventional Huffman coding employed in current
speech/audio coding systems, we describe an efficient way to
exploit arithmetic coding to entropy compress quantized spec-
tral magnitudes of the sub-band FDLP residuals. Such an ap-
proach provides11% (∼ 3 kbps) bit-rate reduction compared
to the Huffman coding algorithm (∼ 1 kbps).
Index Terms: Audio Coding, Frequency Domain Linear Pre-
diction (FDLP), Entropy Coding, Arithmetic Coding, Huffman
Coding

1. Introduction
Traditionally, a two-step process is carried out to perform
source coding of analog audio/visual input signals. First,a lossy
transformation of the analog input data into a set of discrete
symbols is performed. Second, lossless compression, oftenre-
ferred to as noiseless/entropy coding, is employed to further im-
prove compression efficiencies. In many current audio/video
codecs, such a distinction does not exist, or only one step is
applied [1].

In conventional speech/audio compression applications, en-
tropy coding is carried out by Huffman coding techniques
(e.g., [2, 3]). Either the source symbols are compressed indi-
vidually, or they are grouped to create symbol strings which
are then processed by a vector based entropy coder. Since
the entropy of the combined symbols is never higher than the
entropy of the elementary symbols (usually it is significantly
lower), a high compression can be achieved: nearly2 : 1 in
the case of variable-length Huffman coding employing several
codebooks [2]. However, a considerable lookahead is required.
Therefore, vector based entropy coding is usually exploited for
high quality speech/audio coding where an algorithmic delay is
available.

Recently, a new speech/audio coding technique based on
approximating temporal evolution of the spectral dynamicswas
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proposed [4, 5]. The compression strategy is based on pre-
dictability of slowly varying amplitude modulations to encode
speech/audio signals. On the encoder side, an input signal is
split into frequency sub-bands following critical sub-band de-
composition. In each sub-band, the Hilbert envelope is es-
timated using Frequency Domain Linear Prediction (FDLP),
which is an efficient technique for Auto-Regressive (AR) mod-
eling of temporal envelopes of a signal [6]. Sub-band FDLP
residuals are processed using the Discrete Fourier Transform
(DFT). Magnitude and phase spectral components are quantized
using Vector Quantization (VQ) and Scalar Quantization (SQ),
respectively. The process of quantization is controlled bya per-
ceptual model simulating temporal masking. The decoder in-
verts the steps from encoder to reconstruct the signal back.

In this paper, we describe noiseless coding experiments
performed to efficiently encode selected codebook indices ob-
tained using VQ, and thus to improve overall compression ef-
ficiency of the FDLP speech/audio codec. More particularly,
VQ is employed to quantize magnitude spectral components
of the sub-band FDLP residuals. Sufficiently low quantization
noise as well as acceptable computational load is achieved by
split VQ [7]. It provides significantly higher SNRs compared
to simple scalar (per-symbol) quantization. However, Huffman
coding, successfully applied on scalar quantized spectralcoef-
ficients (e.g., in an AAC system), does not bring any additional
compression when combined with split VQ in the FDLP codec.
This is due to the fact that VQ has already removed most of the
redundancy in the encoded data. Therefore, we propose to use
another entropy coding technique, arithmetic coding [8], to be
employed to operate on top of split VQ indices. Due to a minor
time correlation of phase spectral components, only magnitude
spectral components of sub-band FDLP residuals are quantized
using efficient split VQ and further entropy encoded.

Since arithmetic coding has advantageous properties for
small alphabets [9], VQ codebooks are first pruned down (with-
out the significant increase of quantization noise). Input se-
quences provided by successive VQ indices are then split into
two sub-streams (with reduced alphabets) which are then inde-
pendently entropy compressed.

The compression efficiency of the extended arithmetic cod-
ing technique employed in the FDLP codec is emphasized by
comparing ratios with the Huffman coding algorithm on chal-
lenging speech/audio data.

2. Structure of the FDLP codec
The FDLP codec is based on processing relatively long tem-
poral segments. As described in [5], the full-band input sig-
nal is decomposed into non-uniform frequency sub-bands. In
each sub-band, FDLP is applied and Line Spectral Frequen-
cies (LSFs) approximating the sub-band temporal envelopesare



FDLP

DFT

Masking
Temporal

...

Phase

Residualx[n]

to channel
Magnitude

Dynamic
Phase

Quantize

Su
b−

ba
nd

VQ

VQ

SQ

An
al

ys
is

Envelope (LSFs)

En
tro

py
 c

od
in

g

Pa
ck

et
iz

er

32

1

Figure 1: Scheme of the FDLP encoder with block of entropy
coding.

quantized. The residuals (sub-band carriers) are obtainedby fil-
tering sub-band signals through a corresponding AR model re-
constructed from the quantized LSF parameters (quantization
noise is introduced using an analysis-by-synthesis approach).
Then these sub-band residuals are segmented into sub-segments
and processed in the DFT domain. Magnitude and phase spec-
tral components are quantized using VQ and SQ, respectively.
A graphical scheme of the FDLP encoder is given in Fig. 1.

In the decoder, shown in Fig. 2, quantized spectral compo-
nents of the sub-band carriers are reconstructed and transformed
into the time-domain using the inverse DFT. The reconstructed
FDLP envelopes (from LSF parameters) are used to modulate
the corresponding sub-band carriers. Finally, sub-band synthe-
sis is applied to reconstruct the full-band signal. The finalver-
sion of the FDLP codec operates at66 kbps.

Among the important blocks of the FDLP codec belong:

• Non-uniform QMF decomposition: A perfect reconstruc-
tion filter-bank is used to decompose a full-band signal
into 32 (critically band-sized) frequency sub-bands.

• Temporal masking: A first order forward masking model
of the human hearing system is implemented and em-
ployed in encoding the sub-band FDLP residuals.

• Dynamic Phase Quantization (DPQ): DPQ represents
a special case of magnitude-phase polar quantization,
which enables to better control the selection of scalar
quantization levels and thus to reduce the bit-rate con-
sumption of phase spectral components.

• Noise substitution: FDLP filters in frequency sub-bands
above12 kHz (last 3 sub-bands) are excited by white
noise in the decoder. This has shown to have a minimal
impact on the quality of reconstructed signal [5].

2.1. Quantization of spectral magnitudes and phases in the
FDLP codec

Spectral magnitudes together with corresponding phases repre-
sent200 ms long sub-segments of the sub-band FDLP resid-
uals. At the encoder side, spectral magnitudes are quantized
using VQ (corresponding codebooks generated using the LBG
algorithm).

VQ is a well known technique which provides the best
quantization scheme for a given bit-rate. However, a full-
search VQ exponentially increases computational and memory
requirements of vector quantizers with the bit-rate. Moreover,
usually a large amount of training data is required. Therefore,
a sub-optimal (split) VQ is employed in the FDLP codec. Each
vector of spectral magnitudes is split into a number of sub-
vectors and these sub-vectors are quantized separately (using

...

from channel

Inverse

Inverse

Inverse

x’[n]

VQ

VQ

SQ Phase

Magnitude

IDFT

Generator
Noise
White

S
ub

−b
an

d
S

yn
th

es
is

Residual

FDLP

InverseEnvelope (LSFs)

D
e−

P
ac

ke
tiz

er

32

1

E
nt

ro
py

 d
ec

od
in

g

Figure 2: Scheme of the FDLP decoder with block of entropy
decoding.

separate VQ). Due to the unequal width of frequency sub-bands
introduced by the non-uniform QMF decomposition, the vector
lengths of spectral magnitudes differ in each sub-band. There-
fore, the number of splits differs, as well. In addition, more
precise VQ (more splits) is performed in lower frequency sub-
bands where the quantization noise has been shown to be more
perceptible than in higher sub-bands.

Finally, codebook pruning is performed in the lower fre-
quency sub-bands (bands1 − 26) in order to reduce their size
and to speed up VQ search. Objective quality evaluations
proved that25% codebook reduction (i.e., the least used cen-
troids are removed based on the statistical distribution estimated
on training data) has a minimum impact on resulting quality.

The distribution of phase spectral components of the sub-
band FDLP residuals was found to be close to uniform, thus
their correlation across time is minor. A uniform SQ is per-
formed (controlled by DPQ block) without applying additional
entropy coding.

3. Arithmetic Coding
Unlike Huffman coding, Arithmetic Coding (AC) was found to
significantly increase the compression efficiency of the FDLP
speech/audio codec. The main advantage of AC is that it can
operate with symbols (to be encoded) with a fractional num-
ber of bits [8], as opposed to well-known Huffman coding. In
general, AC can be proven to reach the best compression ratio
possible introduced by the entropy of the data being encoded.
AC is superior to the Huffman method and its performance is
optimal without the need for grouping of input data. AC is also
simpler to implement since it does not require building a tree
structure. A simple probability distribution of input symbols
needs to be stored at encoder and decoder sides, which possibly
requires dynamic modifications based on input data to increase
compression efficiency.

AC processes the whole sequence of input symbols in one
time by encoding symbols using fragments of bits. In other
words, AC represents an input sequence by an interval of real
numbers between0 and 1. As a sequence becomes longer,
the interval needed to represent this sequence becomes smaller.
Therefore, the number of bits to specify the given interval
grows.

Nowadays, AC is being used in many applications, espe-
cially those with small alphabets (or with unevenly distributed
probabilities) such as compression standards G3 and G4 used
for fax transmission. In these cases, AC is maximally effi-
cient compared to the Huffman coding algorithm. It can be
shown that Huffman coding never overcomes a compression ra-
tio of (0.086 + Pmax)HM (S) for an arbitrary input sequence
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Figure 3: Mean entropy of VQ indices of the first 10 sub-
bands estimated: (a) for each VQ codebook (codebook depen-
dent sequences), (b) for each sub-band (sub-band dependentse-
quences).

S with Pmax being the largest of all occurring symbol prob-
abilities [10]. HM (S) denotes the entropy of the sequenceS

for a modelM . It is obvious that for large alphabets, where
Pmax reaches relatively small values, the Huffman algorithm
achieves better compression efficiencies. Therefore, thisjusti-
fies such a technique on large alphabets. However, for small
alphabet applications, which lead to bigger symbol occurrence
probabilities, AC is more efficient.

3.1. Experimental data

Entropy coding experiments are performed on audio/speech
data sampled at48 kHz. In all experiments, fixed model based
entropy coding algorithms are used. Unlike the Huffman algo-
rithm, which requires generating a tree structure shared bythe
encoder and the decoder, AC requires only probabilities of input
symbols to be estimated from training data.

In our experiments, the training data consists of47
speech/audio recordings (19.5 minutes), mainly downloaded
from several internet databases. The content consists of speech,
music and radio recordings. Test data consists of28 record-
ings (7.25 minutes) with mixed signal content from the MPEG
database for “explorations in speech and audio coding” [11].

3.2. Experimental setup

Entropy coding is applied on spectral magnitudes of the sub-
band FDLP residuals in all32 sub-bands. The size of VQ code-
books employed in the FDLP codec differs for lower and higher
frequency bands. Codebooks in bands1-26 and 27-32 con-
tain 3096 and512 centroids, respectively. This corresponds to
11.5962 bits/symbol and9 bits/symbol, respectively.

Several experiments are conducted to optimize the perfor-
mance of AC. In these experiments, VQ indices (symbols) only
from the first10 sub-bands (0 ∼ 4 kHz) are used to form the
input sequences for AC. Sub-bands1 − 10 utilize 26 (band in-
dependent) VQ codebooks to quantize magnitude spectral com-
ponents. Since AC operates over sequences of symbols, it mat-
ters how these symbol sequences are generated. We experiment
with two ways:

• Input sequences comprise symbols generated by the
same VQ codebook (codebook dependent sequences): A
fixed probability modelfor each VQ codebookis esti-
mated from training data. Mean entropy estimated from
training data is shown in Fig. 3 (a). Different lengths of
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Figure 4: Compression ratio of arithmetic coder for different
lengths of input sequences. Input sequences are generated:
(a) for each codebook (codebook dependent sequences), (b) for
each sub-band (sub-band dependent sequences).

input test sequences are created from test data to be en-
coded by AC. Compression ratios achieved for different
test sequence lengths are shown in Fig. 4.

• Input sequences comprise symbols belonging to the
same sub-band (sub-band dependent sequences): A fixed
probability modelfor each sub-bandis generated from
training data. Mean entropy estimated from training data
is shown in Fig. 3 (b). Compression ratios achieved for
different test sequence lengths created from test data are
given in Fig. 4.

The compression ratios given in Fig. 4 clearly show that AC
is more efficient in the second mode, i.e., when applied inde-
pendently in each frequency sub-band. This means that entropy
coding can better exploit similarities in the input data distribu-
tion generated by that frequency sub-band.

With respect to the theoretical insights of AC mentioned in
Sec. 3, we further perform alphabet reduction. It is achieved by
splitting each input sequence comprising12-bit symbols into
two independent6-bit symbol sub-sequences. Training data is
used to estimate two independent probability models from6-
bit symbol distributions. During encoding, each input testse-
quence of12-bit symbols is split into two6-bit symbol sub-
sequences which are then encoded independently by two ACs
employing two different probability models. Finally, the ob-
tained compressed bit-streams are merged to create one bit-
stream to be transmitted over the channel. Compression ratios
achieved (for the first10 sub-bands) are given in Fig. 5. This
figure compares performances for the case when AC employs
the reduced and the full alphabet. As can be seen, the proposed
alphabet reduction provided by splitting of12-bit symbol se-
quences into two6-bit symbol sub-sequences significantly in-
creases compression efficiency.

4. Experimental results
Sec. 3.2 describes the experimental procedure to exploit ACin
the FDLP codec. These experiments were performed with data
(VQ indices) coming from the first10 frequency sub-bands.
The best performance was obtained for the case when AC was
applied independently in each frequency sub-band (regardless
of VQ codebook assignment). Furthermore, the reduced alpha-
bet provided better compression efficiency in all frequencysub-
bands compared to the full alphabet. Next, this configuration is
used to test the efficiency of AC applied to encode VQ indices
from all 32 frequency sub-bands. The resulting compression
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Figure 5: Compression ratio of arithmetic coder operating on
the full and the reduced alphabet.

ratios are given in Fig. 6. In these experiments, test sequence
lengths are chosen to equal50 (number of successive VQ in-
dices forming input sequences for AC).

Further, the AC performance is compared to the perfor-
mance of Huffman coding, traditionally applied in state-of-the-
art speech/audio systems. The same training data is used to
generate a fixed model provided by a tree structure shared by the
Huffman encoder and the decoder. Since better Huffman coding
performance is obtained for large alphabets [10], the original
12-bit alphabet is used. Similar to AC, Huffman coding is also
applied independently in each frequency sub-band (the Huff-
man tree structure is generated for each frequency sub-band).
The performance of the Huffman based entropy coder for dif-
ferent frequency sub-bands is also given in Fig. 6.

5. Discussions and conclusions
In this paper, an entropy coder based on Arithmetic Coding
(AC) algorithm is proposed to be implemented in an FDLP
speech/audio codec operating at66 kbps. Only VQ code-
book indices of magnitude spectral components of the sub-band
FDLP residuals from0 to 12 kHz were entropy encoded. Over-
all bit-rate reduction achieved by AC is3 kbps. This corre-
sponds to an11% bit-rate reduction to compress VQ indices of
spectral magnitudes. AC outperforms traditional Huffman cod-
ing, which provides1 kbps bit-rate reduction. Although AC
requires a sequence of symbols to be encoded at the input, it
does not increase the computational delay of the whole system.
The decoding can start immediately with the first bits transmit-
ted over the channel.

One can see in Fig. 4 that the compression efficiency of
AC increases with the length of the input sequence. Due to
applying relatively long temporal analysis in the FDLP codec,
AC algorithm provides an efficient solution to perform subse-
quent entropy compression. In our work, AC did not exploit the
adaptive probability model, which could significantly increase
performance. In this case, AC would be a powerful technique,
which would not require complex changes of the structure, as
opposed to the Huffman coding.

Objective and subjective listening tests were performed and
described in [5] to compare FDLP codec with LAME-MP3
(MPEG 1 Layer 3) [12] and MPEG-4 HE-AAC v1 [13], both
operating at64 kbps. Since AC is a lossless technique, pre-
viously achieved audio quality results are valid. Overall,the
FDLP speech/audio codec achieves similar subjective qualities
to the state-of-the-art codecs on medium bit-rates. Currently,
a low-delay version of the FDLP codec is being developed to
operate on lower variable (32 − 64 kbps) bit-rates. AC based
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Figure 6:Compression ratio of arithmetic and Huffman coding
for different frequency sub-bands.

entropy coding will represent the important part in this codec
for increasing the compression efficiency.
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