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Abstract

This paper demonstrates the robustness of group-delay based

features for speech processing. An analysis of group delay func-

tions is presented which show that these features retain formant

structure even in noise. Furthermore, a speaker verification task

performed on the NIST 2003 database show lesser error rates,

when compared with the traditional MFCC features. We also

mention about using feature diversity to dynamically choose the

feature for every claimed speaker.

Index Terms: group delay functions, speaker verification

1. Introduction

A crucial task in the development of automatic speaker recogni-

tion systems is choosing a parametric representation for speech

signals which is robust to mismatches in the training and testing

conditions. In real world data, there are high levels of varia-

tion in the speech signals the system typically encounters. The

sources of variability include intra-speaker variations (due to

health, emotional state etc. of the speaker) and also channel

variability (due to the use of a different telephone handset, mi-

crophone or environment the speaker is speaking from.)

Popular parametric representations of speech are based on

cepstral representations of the magnitude spectrum. In recent

speaker recognition evaluations conducted by NIST, the Mel-

frequency cepstral coefficients (MFCC) are a commonly used

feature. The MFCCs are derived from the short time magnitude

spectrum of speech. The spectral representation of speech is

complete only when the magnitude and phase spectra are spec-

ified. Study of phase-based parametrisation of speech has re-

sulted in several representations including the modified group

delay feature (MODGDF) [3].

The objective of this paper is to demonstrate, both analyt-

ically and experimentally, that group delay based features are

robust to additive noise.

2. Group delay processing of speech

The group delay function τ (ω) of a signal x(n) can be com-

puted directly from the signal as follows [7]:

τ (ω) = −Im

„

d

dω
log(X(ω))

«

(1)

=
XR(ω)YR(ω) + XI(ω)YI(ω)

|X(ω)|2
(2)

where Im denotes the imaginary part, x(n) ↔ X(ω) and

y(n) ↔ Y (ω) are Fourier transform pairs and y(n) = nx(n).
Several studies have been done on the effectiveness of

group delay representations of speech signals [2] [3] [4]. The

group delay function is ill behaved when there are zeros near the

unit circle. To mitigate the effect of these zeros, the modified

group delay function is defined as [3]:

τm(ω) =

„

τ̃m(ω)

|τ̃m(ω)|

«

(|τ̃m(ω)|)α
(3)

where

τ̃m(ω) =
XR(ω)YR(ω) + XI(ω)YI(ω)

|Xc(ω)|2γ
(4)

The MODGDF is decorrelated by using the discrete cosine

transform (DCT).

3. Analysis of group delay in noise

In this section, we analytically show why group delay functions

are robust to noise.

Let x[n] denote a clean speech signal degraded by uncorre-
lated, zero-mean, additive noise v[n]. Then, the noisy speech,

y[n], can be expressed as,

y[n] = x[n] + v[n] (5)

Taking the Fourier transform, we have

Y (ω) = X(ω) + V (ω) (6)

Multiplying by corresponding complex conjugates and taking

the expectation, we have the power spectrum

PY (ω) = PX(ω) + σ
2(ω) (7)

where we have used the assumption that the expectation of noise

is zero. The power spectra of the resulting noisy speech signal

can be related to noise power and (clean) speech power in one

of three mutually exclusive frequency regions: (i) the high noise

power case where PX(ω) ≪ σ2(ω) (ii) the high signal power

case where PX(ω) ≫ σ2(ω) and (iii) the equal power case

where PX(ω) ≈ σ2(ω). The power spectra of the noisy speech
signal in each case are denoted respectively as P n

Y (ω), P s
Y (ω)

and P e
Y (ω). We analyse the group delay representation of noisy

speech in the three cases mentioned above.



3.1. High noise power spectral regions (P n
Y (ω))

In this subsection, we consider frequencies ω such that

PX(ω) ≪ σ2(ω), i.e., regions where the noise power is higher
than signal power. From Equation 7 we have

P
n
Y (ω) = PY (ω) ∀ω s.t. PX(ω) ≪ σ

2(ω)

= PX(ω) + σ
2(ω)

= σ
2(ω)

„

1 +
PX(ω)

σ2(ω)

«

Taking logarithms on both sides, using the Taylor series expan-

sion1 of ln(1 + PX (ω)

σ2(ω)
), and ignoring the higher order terms,

ln (P n
Y (ω)) = ln

»

σ
2(ω)

„

1 +
PX(ω)

σ2(ω)

«–

= ln
`

σ
2(ω)

´

+ ln

„

1 +
PX(ω)

σ2(ω)

«

≈ ln
`

σ
2(ω)

´

+
PX(ω)

σ2(ω)
(8)

Expanding PX(ω) as a Fourier series (PX(ω) is a periodic, con-
tinuous, function of ω with a period ω0 = 2π),

ln (P n
Y (ω)) ≈ ln

`

σ
2(ω)

´

+
1

σ2(ω)

"

d0

2
+

∞
X

k=1

dk cos

„

2π

ω0
ω k

«

#

(9)

where, dk are the Fourier series coefficients in the expansion of

PX(ω). Since PX(ω) is an even function, coefficients of the

sine terms are zero.

For a minimum phase signal, the group delay function can

be computed in terms of the cepstral coefficients of the log-

magnitude spectrum, as given in [4],

log |X(ω)| =
a0

2
+

∞
X

k=1

ak cos(ω k)

τ (ω) =
∞

X

k=1

k ak cos(ω k) (10)

where, τ is the group delay function and ak are the cepstral

coefficients. From (10), it can be observed that the group delay

function can be obtained from the log-magnitude response by

ignoring the dc term, and by multiplying each coefficient with

k. Applying this observation to Equation (9), we get the group

delay function as:

τY n(ω) ≈
1

σ2(ω)

∞
X

k=1

k dk cos(ω k) (11)

This expression shows that the group delay function is inversely

proportional to the noise power (σ2(ω)) in regions where noise
power is greater than the signal power.

3.2. High signal power spectral regions (P s
Y (ω))

Now consider frequencies ω such that PX(ω) ≫ σ2(ω). Start-
ing with Equation (7), and following the steps similar to those

in previous subsection:

ln (P s
Y (ω)) ≈ ln (PX(ω)) +

σ2(ω)

PX(ω)
(12)

1Taylor series expansion of ln(1 + x) is: ln(1 + x) =
P

∞

n=0
(−1)n

n+1
xn+1 |x| < 1

Since PX(ω) is non-zero, continuous, and periodic in ω, 1
PX(ω)

is also periodic and continuous. Consequently, ln(PX(ω)) and
1

PX(ω)
can be expanded using Fourier series, giving

ln (P s
Y (ω)) ≈

d0 + σ2(ω) e0

2
+

∞
X

k=1

`

dk + σ
2(ω) ek

´

cos(ω k)

Using the properties of group delay function listed in Equation

(10), and following the steps in the previous case2, we obtain

the expression for the group delay function as,

τY s (ω) ≈
∞

X

k=1

k (dk + σ
2(ω) ek) cos(ω k) (13)

where dk and ek are the Fourier series coefficients of

ln(PX(ω)) and 1
PX(ω)

respectively. It is satisfying to observe

that if σ2(ω) is negligible, the group delay function can be ex-

pressed solely in terms of log-magnitude spectrum.

3.3. Signal power ≈ noise power regions (P e
Y (ω))

For frequencies ω such that PX(ω) ≈ σ2(ω), we again start

with Equation (7), and follow the steps similar to those in pre-

vious subsections, except in this case we do not need the Taylor

series expansion:

P
e
Y (ω) ≈ 2PX(ω)

ln (P e
Y (ω)) ≈ ln 2 + ln (PX(ω)) (14)

Expanding ln (PX(ω)) as a Fourier series, since it is a periodic,
continuous, function of ω with a period 2π, the group delay

function can be computed as,

τY e(ω) ≈
∞

X

k=1

k dk cos(ω k) (15)

where dk are the Fourier series coefficients of ln(PX(ω)).

3.4. Behaviour of minimum phase group delay functions in

noise

From Equations 11, 13, and 15, the estimated group delay func-

tions are summarised respectively for the three cases:

τ (ω) ≈

8

>

<

>

:

1
σ2(ω)

P

∞

k=1 k dk cos(ω k)
P

∞

k=1 k (dk + σ2(ω) ek) cos(ω k)
P

∞

k=1 k dk cos(ω k)

(16)

where the first case is for ∀ω such that PX(ω) ≪ σ2(ω), the
second for ∀ω such that PX(ω) ≫ σ2(ω), and the third for

∀ω such that PX(ω) ≈ σ2(ω). From Equation 16, we note that

the group delay function of a minimum phase signal is inversely

proportional to the noise power for frequencies corresponding

to high noise regions in the power spectrum. Similarly, for low

noise regions, from Equation 13, the group delay function be-

comes directly proportional to the signal power. In other words,

its behaviour is similar to that of the magnitude spectrum. This

shows that the group delay function of a minimum phase signal

preserves the peaks and valleys in the magnitude spectrum well

even in the presence of additive noise.

2Ignoring the dc term, and multiplying each coefficient with k



3.5. The modified group delay function

Practically, a frame of speech is typically non-minimum phase,

due to the zeros introduced by nasals, pitch and the analysis

window. Thus, the above analysis is directly applicable only to

the minimum phase components derived from speech signals.

To overcome this, we use the modified group delay (MODGD),

which is an approximation to the minimum phase group de-

lay. Using the modified group delay enables computation of the

group delay even when the signal is not minimum phase [3].

3.6. The modified group delay feature

The modified group delay feature or MODGDF (also called

modified group delay cepstra) is formed by converting the mod-

ified group delay (MODGD) into cepstral features using the

discrete cosine transform [3]. This results in features that are

linearly decorrelated. When compared to MODGD features,

MODGDF features can be of considerably lower dimension.

4. Experimental verification of robustness

4.1. Speaker recognition system

For experimental evaluation of MODGDF features, a speaker

detection task is performed on the NIST 2003 SRE dataset.

Gaussian mixture models [5] were used to model the target

speaker models and the background models.

For each frame of speech, the MODGDF feature is ex-

tracted as given in [3].

4.2. Performance analysis

To compare results, the MODGDF-based speaker recognition

system is evaluated against a conventional MFCC-based sys-

tem. The DET curves for this are shown in Figure 1.
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Figure 1: DET plots for MFCC and MODGDF based systems.

MODGDF shows better performance in most operating points.

The target and imposter score distributions for MFCC and

MODGDF features are shown in Figures 2 and 3 respectively.

The likelihood ratio scores from every test are pooled for all tar-

get speakers as is done in the NIST SREs [6]. The MODGDF

scores show narrower variances than the MFCC scores, result-

ing in better separability between target and imposter scores.

From these results, we conclude that phase-based features
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Figure 2: Target and imposter score distributions for MFCC.
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Figure 3: Target and imposter score distributions for MOD-

GDF.

like MODGDF more accurately model speakers in noisy con-

ditions, and are more robust to channel effects. The DET

curves indicate that at most operating points (except at low

flase alarm probablities), MODGDF features give better per-

formance. Furthermore, score normalization techniques like

ZNorm and HNorm can be applied to further reduce verifica-

tion errors, but these experiments are not done in this paper.

5. Dynamic feature switching for speaker
verification

After analysing the results of a closed-set speaker identifica-

tion task on the NIST 2003 database, it was observed that

some speakers are consistently accurately identified by MFCC,

whereas others were identified by MODGDF. The feature (in

this case, MFCC or MODGDF) which more accurately identi-

fies a speaker is known as the optimal feature for that speaker.

Similarly, the other feature is known as the non-optimal feature

for that speaker. This can be made use of advantageously for

a speaker verification task by dynamically choosing the better

feature based on the speaker claim. For instance, if we know a

priori that the claimed speaker has MFCC as the optimal fea-

ture, we perform verification with MFCC features. On the other

hand, if MODGDF is the optimal feature, we perform verifica-



tion with MODGDF features.

Based on this principle, the verification task was repeated

incorporating feature switching. To compare results, the veri-

fication task was also done using the non-optimal feature. The

score distributions for both optimal and non-optimal features

are shown in Figures 4 - 7.
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Figure 4: Target and imposter score distributions for speakers

with optimal MFCC feature.
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Figure 5: Target and imposter score distributions for speakers

with optimal MODGDF feature.

The score distributions clearly show more separability with

optimal features than with non-optimal features. This feature

diversity can be used to improve performance of speaker ver-

ification systems. Methods of arriving at optimal features for

each speaker is being investigated with measures like mutual

information and KL-divergence.

6. Conclusion

In this paper, we demonstrated analytically that the phase-based

modified group feature is robust to additive noise. A speaker

verification task on the NIST 2003 dataset resulted in better

performance for MODGDF features when compared to conven-

tional MFCC features. Also, we looked into the concept of fea-

ture switching to always use a claimed speaker’s optimal feature

while performing recognition, resulting in better performance.
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