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Abstract. This paper presents the algorithms and results of the “idiap”
team participation to the ImageCLEFmed annotation task in 2008. On
the basis of our successful experience in 2007 we decided to integrate
two different local structural and textural descriptors. Cues are com-
bined through concatenation of feature vectors and through the Multi-
Cue Kernel. The challenge this year was to annotate images coming
mainly from classes with only few training examples. We tackled the
problem on two fronts: (1) we introduced a further integration strategy
using SVM as an opinion maker; (2) we enriched the poorly populated
classes adding virtual examples. We submitted several runs considering
different combinations of the proposed techniques. The run jointly using
the feature concatenation, the confidence-based opinion fusion and the
virtual examples ranked first among all submissions.

1 Introduction

The rapid development of new medical image acquisition techniques and the
widespread use of computerized equipment to save, transfer, and store medical
imagery in digital format have led to the need for new methods to manage and
archive this data. Automatic image annotation systems turn out to be impor-
tant tools to manage big databases, in avoiding manual classification errors and
helping in image retrieval. In 2008 the ImageCLEFmed annotation task provided
participants with 12076 x-ray images as training data spread across 197 classes.
The task consisted in assigning the correct label to 1000 test images. To recognize
these images, an automatic annotation system has to face two major problems:
intra-class variability vs inter-class similarity, and data imbalance. The Image-
CLEFmed organizers decided to focus on this second problem introducing in the
training set 82 classes with a maximum of 6 images each and preparing a test
set mainly with images from these low populated classes.

?? This work was supported by the EMMA project (B.C. and F.O.) thanks to the Hasler
foundation (www.haslerstiftung.ch) and by the Blanceflor Boncompagni Ludovisi
foundation (T.T., www.blanceflor.se).
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This paper describes the algorithms submitted by the “idiap” team as its
second participation to the CLEF benchmark competition1. Last year we pro-
posed different cue-integration approaches based on Support Vector Machine
(SVM, [1]), using global and local features. They proved robust and able to
tackle the inter-vs-intra class variability problem. Our run based on the use of
the Multi-Cue Kernel (MCK, [2]) ranked first in 2007. After the competition we
compared the results obtained by MCK with a scheme consistent in concatenat-
ing the different feature vectors. The benchmark showed that the two methods
do not produce significatively different results [2]. This year we decided to reuse
both the above described methods changing the selected features into two dif-
ferent types of local descriptors: Scale Invariant Feature Transform (SIFT, [3])
and Local Binary Pattern (LBP, [4]). We also propose two strategies to tackle
the imbalancing problem. On one hand we explore a technique to estimate the
confidence of the classifier’s decision. When it is not considered reliable, a soft
decision is made using SVM as an opinion maker and combining its first two
opinions to produce a less specific label. On the other hand we created examples
for the classes with few images to enrich them. The new images were produced
as slightly modified copies of the original ones through translation, rotation and
brightness changes. We submitted several runs. The one which combines feature
concatenation with confidence based opinion fusion and introduction of virtual
examples ranked first among all submissions.

2 Cue Integration

In the previous editions of the challenge, top-performing methods were based on
local features which thus seem to be the most discriminative cues for medical
image annotation [5, 6]. Our past experience confirms this assumption, so this
year we decided to explore two local approaches. We considered them separated
and combined through two different SVM-based integration schemes.

2.1 Feature Extraction

In 2007 for the medical annotation task we defined a modified version of the
classical SIFT descriptor that we called modSIFT. We used it through a “bag of
words” approach [2]. The two runs based on this feature ranked third and fourth
in 2007, so we decided to reuse it doing only a slight modification, inspired by the
approach in [7]. We added to the original feature vector the histogram obtained
extracting modSIFT from the entire image producing a vector of 2500 elements.
In this way we are considering the image at two different space levels: in our
preliminary tests this simple method brought a gain of approximately 2 score
points.

As second local descriptor we chose the LBP operator, a powerful method
well known in face recognition, object classification [8, 9] and also in the medical

1 In 2007 the name was “BLOOM” due to our sponsors.
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Fig. 1. A schematic drawing which shows how we built the texture feature vector com-
bining the 1-dimensional histograms produced by the LBP operators in 2-dimensional
histograms.

area [10, 11]. The LBP basic idea is to build a a binary code that describes
the local texture pattern in a circular region thresholding each neighborhood
on the circle by the gray value of its center. After choosing the dimension of
the radius R and the number of points P to be considered on each circle, the
images are scanned with the LBP operator pixel by pixel and the outputs are
accumulated into a discrete histogram [4]. The operator is gray-scale invariant,
moreover we used the riu2 rotational invariant LBP version which considers the
uniform patterns with two spatial transitions (LBPriu2

P,R , [4]).
Our preliminary results on a validation set showed that the best way to use

LBP on the medical image database at hand was combining in a two dimensional
histogram LBPriu2

8,8 together with LBPriu2
16,12 and concatenating it with the two

dimensional histogram made by LBPriu2
16,18 together with LBPriu2

24,22. In this way a
feature vector of 648 elements is obtained. Each image is divided in four parts,
one vector is extracted from each subimage and from the central area and then
they are concatenated producing a vector of 3240 elements (see Figure 1).

2.2 Low and Mid Level Integration Schemes

In the computer vision and pattern recognition literature some authors suggested
different methods to combine information derived from different cues. They can
all be reconducted to one of these three approaches: high-level, mid-level and
low-level integration [12]. Considered our results in the ImageCLEF 2007 [2], we
decided to use again the Multi-Cue Kernel as mid-level integration scheme and
the concatenation of feature vectors as low-level integration.

The Multi-Cue Kernel is a linear combination of kernels each dealing with a
single feature. Suppose that for each image Ii, we extract a set of P different cues,
Tp(Ii), p = 1 . . . P . Hence we have P different training sets and a corresponding
set of P kernels Kp, p = 1 . . . P . The Multi-Cue Kernel between two images, Ii
and Ij , is defined as

KMC(Ii, Ij) =
P∑

p=1

apKp(Tp(Ii), Tp(Ij)) (1)
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where ap ∈ <+ are weighting factors found through cross validation while deter-
mining the optimal separating hyperplane.

On the other hand, in the low-level scheme, the single features vectors are
combined in a unique vector, which is normalized to have sum equal to one.

2.3 Classification

For the classification step we used an SVM with an exponential χ2 as kernel [13],
for both the local structural and textural approaches and the cue-integration
methods:

K(X,Y ) = exp

(
−γ

N∑
i=1

(Xi − Yi)2

Xi + Yi

)
. (2)

The parameter γ was tuned through cross-validation. In our experiments we
used also the linear, RBF and histogram intersection kernel but all of them gave
worse results than the χ2.

Even if the labels are hierarchical, we have chosen to use the standard multi-
class approaches. This choice is motivated by the finding that, with our features,
the error score was higher using an axis-wise classification.

3 Confidence Based Opinion Fusion

The evaluation scheme for the medical image annotation task addresses the
hierarchical structure of the IRMA code by allowing the classifier to decide a
“don’t know” at any level of the code, independently for each of the four axes
[14]. To effectively support this scheme, models which estimate the classifier’s
confidence in its decision could be useful. Discriminative classifiers usually do
not provide any out-of-the-box solution for estimating confidence of the decision,
but in some cases they can be transformed in opinion makers on the basis of
the value of the used discriminative function. In case of SVM, it can be done
considering the distances between the test samples and the hyperplanes. This
approach turns out to be very efficient due to the use of kernel functions and
does not require additional processing in the training phase. In the One-vs-
All multiclass extension of SVM, if M is the number of classes, M SVMs are
trained each separating a single class from all remaining ones. The decision is
then based on the distances of the test sample, x, to the M hyperplanes, Dj(x),
j = 1 . . .M . The final output is the class corresponding to the hyperplane for
which the distance is largest:

j∗ = argmax
j=1...M

Dj(x) . (3)

If now we think at the confidence as a measure of unambiguity of the decision,
we can define it as the difference between the maximal and the next largest
distance:

C(x) = Dj∗(x)− max
j=1...M,j 6=j∗

Dj(x) . (4)
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The value C(x) can be thresholded to obtain a binary confidence information.
Confidence is then assumed if C(x) > τ for threshold τ . In the cases in which
the decision is not confident, we decided to compare the labels corresponding to
the first two margins and to put a “don’t know” term in the points of the code
in which they differ.

4 Adding Virtual Examples

An SVM, working with classes very sparsely populated is not able to produce re-
liable results. To create the models it is forced to individuate the best hyperplane
which separates classes with few examples, to all the rest of the training set. To
improve the classification reliability, we enriched the poorly populated classes.
In [15] the creators of the IRMA corpus describe that small transformation of
the images do not alter the class membership. So we produced modified copies of
the training images increasing and decreasing each side (100, 50 pixels); rotating
them right and left (20,40 degrees); shifting right, left, up, down and in the four
diagonal directions (50 pixels); increasing and decreasing brightness (add and
subtract 20 to the original gray level). Thus for each of the images belonging to
poorly populated classes we produced 17 different versions.

5 Experiments

Before starting our validation experiments, we studied in-depth how to divide the
released database to consider the high imbalancing between classes. We decided
to separate the training images in:

– rich set: images belonging to classes with more than 10 elements. A total of
11947 images divided in 115 classes. From this group we built 5 disjoint sets,
rich traini/rich testi, each with of 11372/575 images, where the test sets
were created randomly extracting five images for each of the 115 classes.
Note that in this way we are automatically considering a normalization on
the classes.

– poor set: images belonging to classes with less than 10 elements. A total of
129 images divided in 82 classes. We used the whole poor set as a second
test set.

We trained the classifier on the rich traini set and tested both on the rich testi

and on the poor set, for each of the 5 splits. The error score was evaluated using
the program released by the ImageCLEF organizers. The score values were nor-
malized by the number of images in the corresponding test set, producing two
average error scores. They were then multiplied by 500 and summed together to
produce the value of the score on the test set of the challenge as if it was con-
stituted half by images from the rich set and half by images form the poor set.
The expected value of the score is then defined as the average of the scores ob-
tained on the 5 splits. Each parameter in our methods was found optimizing this
expected score.
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Cross validation was done considering for LBP SVM C=[50 100 150 200],
γ=[0.5 1.5 2.5 3.5] and for modSIFT SVM C=[80 120 160 200], γ=[0.01 0.025
0.05 0.1]. For the two cue integration schemes we used: low level feature con-
catenation SVM C=[50 100 150 200], γ=[0.5 1 2 4]; MCK SVM C=[50 100 150
200], γLBP =[0.25 0.5 1 1.5], γmodSIFT =[0.25 0.5 1 1.5], aLBP =[0.4 0.3 0.2 0.1],
amodSIFT =[0.6 0.7 0.8 0.9]. The best parameters are in bold.

On top of these preliminary experiments we applied, the confidence based
opinion fusion technique described in Section 3. Both the single-cue and the
multiple-cue runs were executed using the One-vs-All SVM multiclass extension.
The first two higher margins for every test images were subtracted and the
difference compared to the threshold τ varying in [0.1, 0.2, . . . 0.9]. The best
threshold led to the lowest expected score.

To evaluate the effect of introducing virtual examples in the poor set we ex-
tracted from it only images belonging to classes with more than one element. We
called this set poor more, it contained a total of 76 images from 29 classes. From
it we created 6 poor more trainj/poor more testj splits of 29/47 images, where
the train sets were defined extracting one image from each of the 29 classes.
We also introduced virtual examples as described in Section 4 such that each
poor more train set was enriched with 29*17=493 images. Then we combined
these sets joining rich traini and poor more trainj to build the training set and
testing separately on rich testi and poor more testj . We run experiments with
this setup and the best kernel parameters obtained form the previous single and
multiple-cue experiments. The described procedure, for each i, j couple produced
again two classification outputs. The error scores were normalized and combined
as described above. We also repeated this group of experiments without intro-
ducing the virtual examples and the score resulted lower of approximately 4
points on average showing that the addition of virtual elements is useful for the
classification task.

Finally we applied the confidence based decision fusion on the output of the
just presented experiments with the virtual examples in the training set. Inde-
pendently of the selected feature or combination of features, applying together
our two proposed methods improved the score.

Even if the cross validation experiments required a preliminary effort in com-
putational resources and time to select the best parameters, the subsequent
confidence based opinion fusion, introduction of virtual examples and the com-
bination of these two strategies turned out to be very fast.

All the parameters of the validation phase were then used to run our submis-
sion experiments on the 1000 unlabelled images of the challenge test set using
all the 12076 images of the original dataset as training. We submitted 9 runs.
One of them (idiap-MCK pix sift) consisted simply in repeating our 2007 winner
run, that is combining modSIFT and pixel features through MCK using exactly
the same parameters of last year [2]. As expected, this run ranked last this year,
due to the fact that the dataset varied a lot respect of 2007 and a new search for
all the parameters was needed. It is interesting to note that simply applying the
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Table 1. Ranking of our submitted runs, name, score and gain respect to the best run
of the other participants. The extension MULT stands for image multiplication, that is
the use of virtual examples. 2MARG stands for the combination of the first two SVM
margins for the confidence based opinion fusion.

Rank Name Score Gain

1 idiap-LOW MULT 2MARG 74.92 30.83
2 idiap-LOW MULT 83.45 22.30
3 idiap-LOW 2MARG 83.79 21.96
4 idiap-MCK MULT 2MARG 85.91 19.84
5 idiap-LOW lbp siftnew 93.20 12.55
6 idiap-SIFTnew 100.27 5.48
7 TAU-BIOMED-svm full 105.75 0
11 idiap-LBP 128.58 −22.83
19 idiap-MCK pix sift 2MARG 227.82 −122.07
24 idiap-MCK pix sift 313.01 −207.26

confidence based opinion fusion on the this run (idiap-MCK pix sift 2MARG)
we have a gain in score of 85.19.

Considering that our validation results did not show great differences between
the low-level and the mid-level integration scheme we decided to use just the low-
level cue-integration scheme for sake of simplicity. We submitted only one MCK
run using both the confidence based opinion fusion and the virtual examples.
Hence the remaining runs consisted in:

– using the two new cues separately (idiap-SIFTnew, idiap-LBP);
– applying cue-integration (idiap-LOW lbp siftnew);
– combining cue-integration with the confidence based opinion fusion (idiap-

LOW 2MARG);
– combining cue-integration with the introduction of virtual examples in the

training set (idiap-LOW MULT);
– combining cue-integration with the confidence based opinion fusion and the

introduction of virtual examples in the training set (idiap-LOW MULT 2MA-
RG, idiap-MCK MULT 2MARG).

The ranking, name and score of our submitted runs together with the score
gain respect to the best run of other participants are listed in Table 1.

6 Conclusions

This paper presents a combination of three different strategies to face the med-
ical image annotation in a highly imbalanced database with great inter-vs-intra
class variability. The first consists in combining cues through two different SVM
approaches. The second allows to estimate the confidence of the classifier deci-
sion and, on this basis, to assign to a test image the class label corresponding
to the hard decision of the classifier, or to a combination of the labels related to
the first two produced opinions. The third consists in enlarging the training set
through virtual examples. The method obtained combining the low-level cue-
integration scheme together with the confidence based opinion fusion and the
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introduction of virtual examples obtained a score of 74.92 ranking first among
all submissions.

This work can be extended in many ways. First, it could be interesting to
understand if the low-level cue-integration scheme results still better then the
mid-level one when the number of combined cues grows. Second, we would like to
integrate the confidence estimation and the cue integration in a unique strategy.
The classifier should measure its own level of confidence and, in case of uncer-
tainty, to seek for extra information considering multiple cues, so to increase its
own knowledge only when necessary. Future work will explore these directions.
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