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Abstract—A speaker diarization system based on an informa- BIC [3], [4], Generalized Log-Likelihood Ratio [5], Kulltzk-
tion theoretic framework is described. The problem is formuated | eibler divergence [6] or cross-likelihood distance [7heT
according to the Information Bottleneck (IB) principle. Unlike choice of this distance measure is somewhat arbitrary.
other approaches where the distance between speaker segrten . . . . .
is arbitrarily introduced, the IB method seeks the partition that m. this paper we 'n_VeSt'gat? the use of.a clustering tecteniqu
maximizes the mutual information between observations and Motivated from an information theoretic framework known
variables relevant for the problem while minimizing the distortion ~ as thelnformation BottleneckIB) [8]. The IB method has
between observations. This solves the problem of choosinbet peen applied to clustering of different types of data like
distance between speech segments, which becomes the Jenseqocuments [9], [10] and images [11]. IB clustering [8], [12]

Shannon divergence as it arises from the IB objective funatin . N . . - -
optimization. We discuss issues related to speaker diarizian is a distributional clustering inspired from Rate-Distont

using this information theoretic framework such as the crieria  theory [13]. In contrast to many other clustering techngjue
for inferring the number of speakers, the trade-off between it is based on preserving the relevant information speaific t

quality and compression achieved by the diarization systerand g given problem instead of arbitrarily assuming a distance
the algorithms for optimizing the objective function. Furthermore  ¢,+tion between elements. Furthermore, given a data set to
we benchmark the proposed system against a state-ofthetar o, ,qiereq IB tries to find the trade-off between the most
system on the NIST RT06 (Rich Transcription) data set for ! > . .
speaker diarization of meetings. The IB based system achiey a COmMpact representation and the most informative reprasent
Diarization Error Rate of 23.2% compared to 23.6% for the tion of the data. The first contribution of this paper is the
baseline system. This approach being mainly based on non-investigation of IB based clustering for speaker diar@atind
parametric clustering, it runs significantly faster than the baseline ;¢ comparison with state-of-the-art systems based on a Hid
gigﬂr'i\ggct;igﬁnl\.ﬂ based system, resulting in faster-than-real-time 0"\ oy Model/Gaussian Mixture Model (HMM/GMM)

o . _ framework. We discuss differences and similarities of thie t
Boltggﬁ)égl? ms—Speaker Diarization, Meetings data, Information  55r0aches and benchmark them in a speaker diarization task

’ for meeting recordings.

Speaker diarization has been applied to several types of
data e.g. broadcast news recordings, conversationahtabep
speech recordings and meeting recordings. The most recent

Speaker Diarization is the task of decidingho spoke efforts in the NIST Rich Transcription campaigns focus on
whenin an audio stream and is an essential step for sevefi@eting data acquired in several rooms with different aous
applications such as speaker adaptation in Large Vocabul@roperties and with a variable number of speakers. The audio
Automatic Speech Recognition (LVCSR) systems, speakgdta is recorded in a non-intrusive manner using Multiple
based indexing and retrieval. This task involves detemgni Distant Microphones (MDM) or a microphone array. Given
the number of speakers and identifying the speech segmefis variety of acoustic environments, the conversatioral n
associated with each speaker. ture of recordings and the use of distant microphones, those

The number of speakers is not a priori known and mustcordings represent a very challenging data set. Progness
be estimated from data in an unsupervised manner. The mibgt diarization task for meeting data can be found in [14] and
common approach to speaker diarization remains the adng15].
proposed in [1] which consists of agglomerative bottom-up Recently, attention has shifted onto faster-than-reaéti
clustering of acoustic segments. Speech segments arereldstdiarization systems with low computational complexitygse
together according to some similarity measure until a stapp e.g. [16], [17], [18], [19]). In fact in the meeting case sasn,
criterion is met. Given that the final number of clusters ifaster than realtime diarization would enable several iappl
unknown and must be estimated from data, the stoppiogtions (meeting browsing, meeting summarization, speake
criterion is generally related to the complexity of the mstied retrieval) on a common desktop machine while the meeting is
model. The use oBayesian Information Criteriorf2] as a taking place.
model complexity metric has been proposed in [1] and is Conventional systems model the audio stream using a fully
currently used in several state-of-the-art diarizatiostems. connected HMM in which each state corresponds to a speaker

Agglomerative clustering is based on similarity measuretuster with emission probabilities represented by GMMgpro
between segments. Several similarity measures have been ability density functions [3], [20]. Merging two segments
sidered in the literature based on BIC [1], modified versiois implies estimating a new GMM model that represents data

I. INTRODUCTION
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coming from both segments as well as the similarity measyseeserved (Y, C') and the compression of the initial represen-
between the new GMM and the remaining speaker clustetation I(C, X).
This procedure can be computationally demanding. Let us develop mathematical expressions f6€, X) and
As second contribution, this paper also investigates the IBY, C'). The compression of the representatinis charac-
clustering for a fast speaker diarization system. IB is a-noterized by the mutual informatioh(C, X):
parametric framework that does not use any explicit modelin
of speaker clusters. Thus, the algorithm does not need to I1(C, X) = Z p(x)p(c|x)zogp(c|x) 2)
estimate a GMM for each cluster, resulting in a considerably z€X,ceC ()
reduced computational complexity with similar performanc
to conventional systems.
The remainder of the paper is organized as follows.
Section Il, we describe the Information Bottleneck priheip p(ylc)
Sections II-A and II-B, respectively, summarize agglontieea 1(Y,C) = Z p(e)p(yle)log () ®)
and sequential optimization of the IB objective functions. yEeYicel
Section Il discusses methods for inferring the number of The objective functionF must be optimized w.r.t the
clusters. Section IV describes the full diarization syste#nile  stochastic mapping(C|X) that maps each element of the
Sections V and VI present experiments and benchmark teststasetX into the new cluster representatioh

The amount of information preserved abauin the repre-
sentation is given by (Y, ) :

Finally, Section VII discusses results and conclusions. This minimization yields the following set of self -congist
equations that defines the conditional distributions nesgliio
Il. INFORMATION BOTTLENECK PRINCIPLE compute mutual informations (2) and (3) (see [8] for de}ails

The Information Bottleneck (IB) [8], [12] is a distributiah

_  _p(o) _
clustering framework based on information theoretic ffinc plelr) = 75z Pl 5Df(§)[p(y|x)”p(ylc)])
ples. It is inspired from the Rate-Distortion theory [13] in plyle) = >, p(ylz)p(clz) p(0) )
which a set of elementX is organized into a set of clusters | p(c) = >, p(cJz)p(z)

C minimizing the distortion betweeX and C. Unlike the

Rate-Distortion theory, the IB principle does not make a

assumption about the distance between elementX .oDn

the other hand, it introduces the use of a setralévance p(ylx)

variables Y, which provides meaningful information about Drrlp(ylo)llp(yle)] = Zp(y|x) log p(ylo) ®)

the problem. For instance, in a document clustering proplem yey

the relevance variables could be represented by the vagbul We can see from the system of equations (4) that as co

of words. Similarly, in a speech recognition problem, ththe stochastic mappingc|z) becomes a hard partition df,

relevance variables could be represented as the targedsoune. p(c|z) can take value$ and1 only.

IB tries to find the clustering representatiéhthat conveys  Various methods to construct solutions of the IB objective

as much information as possible abdat In this way the IB  function include iterative optimization, deterministiareal-

clustering attempts to keep the meaningful informatiorhwiting, agglomerative and sequential clustering (for exhasise-

respect to a given problem. view see [12]). Here we focus only on two techniques referred
Let Y be the set of variables of interest associated with to as agglomerative and sequential information bottlepeck

such thatvz € X andVy € Y the conditional distribution which will be briefly presented in the next sections.

p(y|z) is available. Let cluster€’ be a compressed represen-

tation of input dataX. Thus, the information thak” contains

about Y is passed through the compressed representaﬂ%‘n

(bottleneck) C. The Information Bottleneck (IB) principle Agglomerative Information Bottleneck (alB) [9] is a greedy

states that this clustering representation should presasv approach to maximize the objective function (1). The alB

much information as possible about the relevance variabkgorithm creates hard partitions of the data. The algoriih

Y (i.e., maximize [(Y,C)) under a constraint on the mu-initialized with the trivial clustering of X| clusters i.e, each

tual information betweenX and C i.e. I(C,X). Dually, data point is considered as a cluster. Subsequently, etsmen

the clusteringC should minimize the coding length (or theare iteratively merged such that the decrease in the obgecti

compression) ofX usingC i.e. I(C, X) under the constraint function (1) at each step is minimum.

of preserving the mutual informatioHY, C'). In other words, =~ The decrease in the objective functid# obtained by

IB tries to find a trade-off between the most compact and maserging clusters; andc; is given by:

informative representation w.r.t. variabl&s This corresponds -

nwhere Z(B,z) is a normalization function andg[., ]
%presents the Kullback-Liebler divergence given by:

Agglomerative Information Bottleneck

to maximization of the following criterion: AF(ciy¢j) = (p(ei) +p(ej)) - dig (6)
B 1 whereciij is given as a combination of two Jensen-Shannon
F=I1,0) - BI(C’ X) (1) divergences:

where (notation consistent with [8]) is the Lagrange multi- 1
plier representing the trade off between amount of infoiomat % = JS[P(yled), p(yle;)] — B‘]S[pmci)’pmcﬂ’)] 7



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 3

However, at each agglomeration step, the algorithm takes
Input: the merge decision based only on a local criterion. Thus alB
Joint Distributionp(z, y) is a greedy algorithm and produces only an approximation to
Trade-off parametef the optimal solution which may not be the global solution to
Output: the objective function.
Cyn: m-partition of X, 1 < m < | X|
Initialization: B. Sequential Information Bottleneck
C=X Sequential Information Bottleneck (sIB) [10] tries to im-
Fori=1...N prove the objective function (1) in a given partition. Uik
ci = {x;} agglomerative clustering, it works with a fixed number of
p(e;) = p(x;) clustersM. The algorithm starts with an initial partition of
p(yle:) = p(ylzi)Vy €Y the space intd\/ clusters{ci, ..., car}. Then some element
p(cilz;) =1 1if j = 1,0 otherwise is drawn out of its cluster,;; and represents a new singleton
Fori,j=1...N,i<j cluster. z is then merged into the cluster,., such that
Find AF(c;, ¢;) Cnew = arg ?Qg AF(x,c) whereAF(.,.) is as defined in (6).
Main Loop: It can be verified that i€,,c., # coiq thenF (Crew) < F(Cota)
m 1 i.e., at each step the objective function (1) either impsove
o . stays unchanged. This is performed for eacke X. This
{i,7} = argminy ; AF(ci,c;) . d i il th . h .
Merge {ci. ¢;} = ¢, in C process is repeated several times until there is no change in
the clustering assignment for any input element. To avoid
pler) :p([ci() Tg{j((?))Jr (wles)p(es)] local maxima, this procedure can be repeated with several
p(yle,) = B PR A random initializations. The sIB algorithm is summarized fo
pler|z) = 1,Vz € ¢, ¢ completeness in Fig 2.
CalculateAF (¢,, ¢), Ve € C
I1l. M ODEL SELECTION

Fig. 1. Agglomerative IB algorithm [12] In typical diarization tasks, the number of speakers in a
given audio stream is not a priori known and must be estimated
rom data. This means that the diarization system has t@solv
ﬁhultaneously two problems: finding the actual number of
speakers and clustering together speech from the sameespeak

+ This problem is often cast into a model selection probleng Th
) @) number of speakers determines the complexity of the model in
N terms of number of parameters. The model selection criterio

where JS denotes the Jensen-Shannon (JS) divergence
tween two distributions and is defined as:

JS(p(ylei), p(yle;))

mi Dicr[p(yle:)llay ()]
+7j Drcr[p(ylej)llay (y
i Dicr[p(ele)lax (2)] chooses the model with the right complexity and thus the

)
+7; D r[p(xle)llgx (z)] (9) number of speakers. Let us consider the theoretical foiordat
of model selection.

JS(p(x|ci), p(xle;))

with: Consider a dataseX, and a set of parametric models
av(y) = miplyle) + 7 p(yle)) (10) {ma,---,mun} _Where m; IS a parametric moglel vv_ithzj
_ R . 11 parz_;tmeters trained on the dala Model selection aims at
ax (x) mip(wlei) + m; p(zle) (11) finding the model? such that:
m = plei)/(pci) + p(c))) X|m;) )
m= ple)/(pler) + pley) 1= srgma{p(n )} = g | L5 GH00 )
J J

The objective function (1) decreases monotonically with t
number of clusters. The algorithm merges cluster paird unti

the desired number of clusters is attained. The new cIusPerab'“t'eSp(mj) on modelsr;, maximization of (14) only

. . L L epends omp(X|m;). In case of parametric modeling with
Z%aorl;::ziglriezdeg)g;pergmg the individual clusters and c; is parameter sef;, e.g. HMM/GMM, it is possible to write:

pler) = ple) +plcj) (12) p(X|mj):/p(X79j|mj)d9j (15)

i)p(ci) + j j . . .
p(yleip(e )( 1;(y|c])p(c]) (13) This integral cannot be computed in closed form in the case
pier of complex parametric models with hidden variables (e.g.
It is interesting to notice that the JS divergence is neiMM/GMM). However several approximations for (15) are

an arbitrarily introduced similarity measure between @ata possible, the most popular one being Beyesian Information
but a measure that naturally arises from the maximization gfiterion (BIC) [2]:

the objective function. For completeness we report the full . D,
procedure described in [12] in Fig 1. BIC(my) = log(p(X|0;,m;)) — = -log N (16)

iven that p(X) is constant and assuming uniform prior

p(yler)
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Input:
Joint Distributionp(z, y)
Trade-off parametef
Cardinality valueM

Output:
PartitionC' of X into M clusters
Initialization:
C « random partition ofX into M clusters
For everyc; € C-.
p(ci) = 2 u e, P(%5)
pWyle) = 505 2oy ec PYlT;)P(;5)
p(cilz;) =1 1f z; € ¢;, 0 otherwise
Main Loop:
While not Done
Done+— TRUE
For everyx € X:
Cold < Clusterz belongs
Split corg = {c),4, {z}}
p(cgld) = p(cotq) — p(x)
p(y|C:)ld) _ P(y\cozd)i(cc/:;)—:ﬂ(y@)
p(chglei) = 1,V € coa, v # @
Cnew = argmin.ecc AF ({2}, ¢)
Merge {chew, {z}} = ¢
p(C;ww) = p(cnew) + p(x)

_ pylcnew)p(Crew)+p(y,x)
D[ ery) = PUlenswlEoncn) tplpa

P(Chew|Ti) = 15V € Chew, i =
If Cnew 7& Cold
Done«+ FALSE

Fig. 2. Sequential IB algorithm [12]

optimal model minimizes the following criterion.
Fupr(m) = L(im)+ L(X|m) a7)

where L(m) is the code length to encode the model with a
fixed length code and.(X|m) is the code length required
to encode the data given the model. As model complexity
increases, the model explains the data better, resulting in
decrease in number of bits to encode the data given the model
(lower L(X|m)). However, the number of bits required to
encode the model increases (higfm)). Thus, MDL selects a
model that has the right balance between the model complexit
and data description.

In case of IB clustering, leNV = | X| be the number of input
samples, and/ = |C| the number of clusters. The number of
bits required to code the model and the dataX given the
model is :

L( = Nlog% (18)
L(X|m) = NHYO)+HC)] — (19)

Since HY|C) = H(Y) — I(Y,C) the MDL criterion be-
comes:

m)
m)

f]uDL:N[H(Y)—I(Y,C)+H(C)]+N10g% (20)

Similar to the BIC criterionN log % acts like a penalty term
that penalizes codes that uses too many clusters.

When alB clustering is applied, expression (20) is evalu-
ated for each stage of the agglomeration that prodyi&es
different clustering solutions ranging from each inpunedat
considered as a singleton clusté€|( = |X]) to all input
elements assigned to one clust€t(= 1). Then the number
of clusters that minimizes (20) is selected as the actuabmum
of speakers.

Another way of inferring the right number of clusters can be

based on théNormalized Mutual Information (NMI}((}?%.
(¥,C)

. . : (Y,
where p; is the number of free parameters in the moddihe Normalized Mutual Information;i*¢4 represents the
my, éj is the MAP estimate of the model computed fronfraction of original mutual information that is captured by
dataX, and N is the number of data samples. The rationaf@€ current clustering representation. This quantity eleses
behind (16) is straightforward: models with larger numbfrs monotonically with the number of clusters (see Figure 3). It

parameters will produce higher valuesog(p(X|6;,m;)) but

can also be expected that this quantity will decrease more

will be more penalized by the terf§ log N. Thus the optimal when dissimilar clusters are merged. Hence, we investigate

1(Y,C)

model is the one that achieves the best trade-off between datSimple thresholding of7<5 as a possible choice to
explanation and complexity in terms of number of parametefietermine the number of clusters. The threshold is hecaisfi

However, BIC is exact only in the asymptotic lim — oc.

determined on a separate development data set.

It has been shown [1] that in the finite sample case, like in

speaker clustering problems, the penalty term must be tuned
according to a heuristic threshold. In [3], [4], [21], a mibetil

IV. APPLYING IB TO DIARIZATION
To apply the Information Bottleneck principle to the di-

BIC criterion that needs no heuristic tuning has been pregosgrization problem, we need to define input variablésto

and will be discussed in more details in Section VI-A.

be clustered and the relevance variablégepresenting the

In the case of IB clustering, there is no parametric modgieaningful information about the input.
that represents the data and model selection criteria b@sed In the initial case of document clustering, documents repre
a Bayesian framework like BIC cannot be applied. Seversént the input variablé’. The vocabulary of words is selected
alternative solutions have been considered in the litegatu as the relevance variable. Associated conditional digiobs
Because of the information theoretic basis, it is straightf {p(y;|xz;)} are the probability of each worg; in document

ward to apply theMinimum Description LengtiMDL) prin-

x;. Documents can be clustered together with IB using the

ciple [22]. The MDL principle is a formulation of the modelfact that similar documents will have similar probabilief
selection problem from an information theory perspectifee  containing the same words.
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the space of Gaussian components of the GMM. Adopting the
notation used in previous sections, the space induced by GMM
components would represent the relevance variable
Computation ofp(y;|sk) is then simply given by:
p(yilse) = wiN (g, pi, Xi)
Sy wiN (s, 5, 55)
The probability p(y;|si) estimates the relevance that the
it" component in the GMM has for speech frame Since
segmentz; is composed of several speech framgs },
distributions {p(y;|s7.)} can be averaged over the length of
the segment to get the conditional distributiefy”| X).
100 200 200 200 500 In other words, a speech segmeiitis projected into the
ICI space of relevance variabl&sestimating a set of conditional
probabilitiesp(Y] X).

i

o
©

o
©

o
3

i=1,...,L (21)

o
)

5 geeey

I(CYKY)
o o o o
N w B [4;]

o
[

o

Fig. 3. Normalized mutual information decreases monotilyicwith the

number of clusters. C. Clustering

Given the variablesX andY’, the conditional probabilities
In this paper, we investigate the use of IB for clustering(Y'|X), and trade-off paramete#, Information Bottleneck
of speech segments according to cluster similarity. We definlustering can be performed. The diarization system ire®lv
in the following the input variableX = {z;}, the relevance two tasks: finding the number of clusters (i.e. speakers) and
variablesY” = {y;} and the conditional probabilitiegy;|z;). an assignment for each speech segment to a given cluster.
The procedure we use is based on the agglomerative 1B
A. Input Variables X described in Section II-A. The algorithm is initialized twvit
{\/[ clusters with)M = |X| and agglomerative clustering is
performed, generating a set of possible solutions in betwee
1 and 1 clusters.

The Short Time Fourier Transform (STFT) of the inpu
audio signal is computed usimi)ms windows shifted by a

1 . ici . . .
step ofl0ms. 19 Mel Frequency Cepstral Coefficients (MFCC Out of theM = | X| possible clustering solutions of alB, we

are extracted from each windowed frame. Ket, s, - - s1} . : iteria d )
be the extracted MFCC features. Subsequently, a unifo?rlﬂoose. one a_ccor(_jlng to the mo_de_l selection criteria B
In Section 1l i.e.Minimum Description Lengtbr Normalized

linear segmentation is performed on the feature sequenc 8tua| Information
obtain segments of a fixed lengih (typically 2.5 seconds).

The input variablesX are defined as the set of these segs It-_|oweverf, igglogner?tlvef clui_termg goes not seek thte ?lOb?l
ments{zy,z2,---,ra}. Thus each segment; consists of a ptimuMm of the objective function and can converge 1o foca

sequence of MFCC featurds’ 1, ... . minima. For this reason, the sIB algorithm described in

If the length of the segment is small enoughi, may be Section 1I-B can be applied to improve the partition. Given

. . . that sIB works only on fixed cardinality clustering, we prepo
considered as generated by a single speaker. This hyp@tbesgo use it to improve the greedy solution obtained with the. alB

generally true in case of Broadcast News audio data. Howeve i . .

. . . 0 summarize, we study the following four different types
in case of conversational speech with fast speaker chatge [)6} clusterina/model selection alaorithms:
and overlapping speech (like in meeting data), initial segi® 9 9 '

may contain speech from several speakers. 1 agglomerative IB + MDL model selection.
2 agglomerative IB + NMI model selection.

3 agglomerative IB + MDL model selection + sequential

IB.

Motivated by the fact that GMMs are widely used in speaker 4 agglomerative IB + NMI model selection + sequential IB.
recognition and verification systems (see e.g. [23]), weosho
the relevant variable¥” = {y;} as components of a GMM o .
estimated from the meeting data. A shared covariance matrix Diarization algorithm
GMM is estimated from the entire audio file. The number of We can summarize the complete diarization algorithm as
components of the GMM is fixed proportional to the lengtfpllows:

B. Relevance Variables Y

of the meeting i.e. the GMM ha% components wheré is 1 Extract acoustic features, s, - - -, sy} from the audio

the length of the audio stream (in seconds) dnds length file.

of segments (in seconds) defined in section IV-A. 2 Speech/non-speech segmentation and reject non-speech
The computation of conditional probabilitie§Y” = y;| X = frames.

x;) is straightforward. Consider a Gaussian Mixture Model 3 Uniform segmentation of speech in chunks of fixed size

f(s) = Zle w;N (s, pj,X;) where L is the number of D, i.e. definition of setX = {z1, 22, -,z }.

componentsw; are weights,;;; means andx; covariance 4 Estimation of GMM with shared diagonal covariance
matrices. It is possible to project each speech framento matrix i.e. definition of sel’.
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5 Estimation of conditional probability(Y'| X). We study the impact of different system parameters on the
6 Clustering based on one of the methods described davelopment dataset which contains meetings from previous
Section IV-C. years’ NIST evaluations for “Meeting Recognition Diariza-

7 Viterbi realignment using conventional GMM systention” task [14]. This development dataset contaiRaneeting
estimated from previous segmentation. recordings each one around minutes. The best set of

Steps 1 and 2 are common to all diarization systems. Spe@@iameters is then used for benchmarking the proposedrsyste
is segmented into fixed length segments in step 3. This sRgainst a state-of-the-art diarization system. Compariso
tries to obtain speech segments that contain speech froyn dprformed on the NIST RTO6 evaluation data for “Meeting
one speaker. We use a uniform segmentation in this woRecognition Diarization” task . The dataset contains nine
though other solutions like speaker change detection or Reeting recordings of approximately) minutes each. After
means algorithm could be employed. evaluation, the TNQ20041103-1130 was found noisy and

Step 4 trains a background GMM model with shared covaM@s not included in the official evaluation. However, result
ance matrix from the entire audio stream. Though we use daf# reported with/without this meeting in the literature][2
from the same meeting, it is possible to train the GMM on &5]- We present results with and without this meeting fa th
large independent dataset i.e. a Universal Background Modiirpose of comparison.

(UBM) can be used. Preprocessing consists of the following steps: signals

Step 5 involves conditional probability(y|x) estimation. recorded with Multiple Distant Microphones are filterednggi
In step 6 clustering and model selection are performed on theyiener filter denoising for individual channels followey b
basis of the Information Bottleneck principle. a delay-and-sum beamforming [26], [15]. This was performed

Step 7 refines initial uniform segmentation by performingsing theBeamformittoolkit [27]. Such pre-processing pro-
a set of Viterbi realignments. This step modifies the speakgiices a single enhanced audio signal from individual fa-fie
boundaries and is discussed in the following section. microphone channels. 19 MFCC features are then extracted

from the beam-formed signal.

E. Viterbi Realignment The system performance is evaluated in terms of Diarization

As described in IV-A, the algorithm clusters speech segéor Rates (DER). DER is the sum of missed speech errors
ments of a fixed length D. Hence, the cluster boundarié¥Peech classified as non-speech), false alarm speech error
obtained from the IB are aligned with the endpoints of the§BOn-speech classified as speech) and speaker error [28].
segments. Those endpoints are clearly arbitrary and can $Reech/non-speech (spnsp) error is the sum of missed speech

improved by re-aligning the whole meeting using a Viternd false alarm speech. For all experiments reported in this
algorithm. paper, we include the overlapped speech in the evaluation.

The Viterbi realignment is performed using an ergodic Speech/non-speech segmentation is obtained using a forced
HMM. Each state of the HMM represents a speaker clustatignment of the reference transcripts on close talkingronic
The state emission probabilities are modeled with Gaussighone data using the AMI RTO06 first pass ASR models [29].
Mixture Models, with a minimum duration constraint. EaclResults are scored against manual references force allgned
GMM is initialized with a fixed number of components. an ASR system. Being interested in comparing the clustering

The IB clustering algorithm infers the number of clusteralgorithms, the same speech/non-speech segmentatiobewill
and the assignment frol¥ segments ta’' clusters. A sepa- used across all experiments. The missed speech, false alarm
rate GMM for each cluster is trained using data assignmespgeech and total speech/non-speech error for all meetngs i
produced by the IB clustering. The whole meeting data is théme development dataset and evaluation dataset are listed i
re-aligned using the ergodic HMM/GMM models. During th&able | and Table Il respectively.
re-alignment a minimum duration constraint of 2.5 secosds i

used as well.
TABLE |
MISSEDSPEECH FALSE ALARM AND TOTAL SPEECHNON-SPEECH

V. EFFECT OFSYSTEM PARAMETERS ERROR FOR THEDEVELOPMENTDATASET

In this section we study the impact of the trade-off pa- Meeting | Miss | FA | spnsp
rameters (SectionV-B), the performance of the agglomerative AMI_20041210-1052] 0.40 | 1.20 | 1.60
and sequential clustering (Section V-C), the model saacti AMI_20050204-1206) 2.60 | 2.10 | 4.70

10 Seq , 9 ' >l S CMU_20050228-1615| 9.40 | 1.10 | 0.50
criterion (Section V-D) and the effect of the Viterbi re- CMU_20050301-1415| 3.80 | 1.60 | 5.40
alignment (Section V-E) on development data. ICSI_20000807-1000| 4.70 | 0.30 | 5.00

ICSI_20010208-1430| 3.70 | 1.00 | 4.70

LDC_20011116-1400, 2.10 | 1.70 | 3.80

A. Data descriotion LDC_20011116-1500, 5.90 | 1.00 | 6.90
P _ . . NIST_20030623-1409| 1.00 | 0.60 | 1.60

The data used for the experiments consist of meeting NIST_20030925-1517| 7.70 | 5.70 | 3.40
recordings obtained using an array of far-field microphones VT_20050304-1300/ 0.60 | 1.00 | 1.60

. . i VT_20050318-1430| 1.40 | 6.20 | 7.60
also referred as Multiple Distant Microphones (MDM). Those AL [ 350 180 530

data contain mainly conversational speech with high speake
change rate and represent a very challenging data set.
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TABLE I
MISSEDSPEECH FALSE ALARM AND TOTAL SPEECHNON-SPEECH 55
ERROR FOR THEEVALUATION DATASET

501

Meeting | Miss FA | spnsp 455
CMU_20050912-0900| 11.60 | 0.20 | 11.80
CMU_20050914-0900( 10.30 | 0.00 | 10.30

EDI_20050216-1051| 4.90 | 0.10 5.00
EDI_20050218-0900| 4.30 | 0.10 | 4.40
NIST_20051024-0930; 7.00 | 0.20 7.20
NIST_20051102-1323| 6.10 | 0.10 6.20 251
TNO_20041103-1130| 3.80 | 0.10 | 3.90
VT_20050623-1400| 5.20 | 0.20 5.40
VT_20051027-1400| 3.50 | 0.30 | 3.80 15¢
ALL 6.50 | 0.10 | 6.60

401

35F

-DER -

30r

B. Trade-offs Fig. 4.  Effect of varying paramete on the diarization error for the

The parameter represents the trade-off between th&evelopment dataset. The optimalis chosen asj = 10
amount of information preserved and the level of compressio
To determine its value, we studied the diarization errothef t L i .
IB algorithm in the development dataset. The performance - Thus the optimization tries to minimiz&C, X). The
the algorithm is studied by varying on a log-linear scale @gorithm uses hard partitions i.e(c|z) € {0,1}, this leads
and applying alB clustering. The optimal number of clustef€ (C1X) = =3¢ x p(x) > .cc p(clz) log p(c|z) = 0 and
is chosen according to an oracle. Thus, the influence of the @ result’(C,X) = H(C) — H(C|X) = H(C). Hence
parameter can be studied independently of model selectf®¥imizing I(C; X) is equivalent to minimizing7 (C). Thus
methods or thresholds. The Diarization Error Rate (DEF\_?(_C) is minimized while clustering with low values of.
of the development dataset for different values of beta [4!iS léads to a highly unbalanced distribution where most of
presented in Fig 4. These results do not include Viterbi ré1€ €lements are assigned to one single Cluster) ~ 0).
alignment. The value of8 = 10 produce the lowest DER. Thus the algorithm always converges towards one largeariust
In order to understand how the optimal value fchanges followed by several spurious clusters and the DER staysstimo
across different meetings, we report in Table IIl optingal constant. Conversely, whefis high (eg:/5 = o), effect of
for each meeting, DER for the optimal and for 3 = 10. this regularization term vanishes. The optimization cidte
In eight meetings out of the twelve, th# that produces the focuses only on the relevance variable €Y, C') regardless
lowest DER is equal to 10. In four meetings the optirak of the data compression. The DER curve thus becomes less

different from 10, but only in one (CMWR0050228) the DER SMooth.

is significantly different from the one obtained usifig= 10. For intermediate values df, the clustering seeks the most
To summarize the optimal value of seems to be consistentinformativeand compact representation. For the valuedot
across different meetings. 10, the region of low DER is almost constant for comparatively
more values oflC|. In this case, the algorithm forms large
TABLE 1l speaker clusters initially. Most of the remaining clustare

OPTIMAL VALUE FOR [3 FOR EACH MEETING IN THE DEVELOPMENT

DATASET. DERFOR THE OPTIMAL3 AS WELL AS 3 = 10 ARE REPORTED small and merging these clusters does not change the DER

considerably. This results in a regularized DER curve as a
function of number of clusters (see Figure 5).

DER at | DER at
Meeting | optimal 3 | optimal3 | B8 =10
AMI_20041210-1052 10 46 46
AMI_20050204-1206 10 10.0 10.0 . . .
CMU_20050228-1615 50 20.4 253 C. Agglomerative and Sequential clustering
CMU_20050301-1415 10 9.4 9.4 . . .
ICSI_20000807-1000 100 11.9 123 In 'FhIS section, we compare the ggglomeranve and se-
ICSI_20010208-1430 10 12.9 12.9 quential clustering described in Sections II-A, 1I-B on the
LDC_20011116-1400 1000 6.2 8.7 development data. As before model selection is performed
LDC_20011116-1500 10 18.7 18.7 : s
NIST_20030623-1409 10 6.0 6.0 QSIng an O-ra.Cle and_ the value ﬁls.flxed at 10 as fqund
NIST_20030925-1517 10 24.3 24.3 in the previous section. Agglomerative clustering achseae
VT_20050304-1300 10 7.3 7.3 ; ; ; ;
VT 20050318-1430 100 o8 s 97 DER of 13.3% while sequential clustering achieves a DER

of 12.4%, i.e. 1% absolute better. Results are presented in
Table IV. Improvements are obtained on 8 of the 12 meetings
Figure 5 shows the DER curve w.r.t. number of clusteiscluded in the development data.
for two meetings (LDC20011116-1400 and CML20050301-  Also the additional computation introduced by the sequen-
1415). It can be seen that the DER is flat for= 1 and tial clustering is small when initialized with alB outputh@&
does not decrease with the increase in number of clustesis algorithm converges faster in this case than using nando
This low value of3 implies more weighting to the regular-initial partitions ¢ iterations as compared # iterations on
ization term%I(C’,X) of the objective function in Equation an average across the development dataset).
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LDC_20011116-1400 CMU_20050301-1415
50 50
—o—p=1 ——p=1
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35 35
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Fig. 5. DER as a function of number of clustet§’|) for different values of parametg?
TABLE IV TABLE V
DIARIZATION ERROR RATE OF DEVELOPMENT DATA FOR INDIVIDUAL OPTIMAL VALUE FOR NMI THRESHOLD FOR EACH MEETING IN THE
MEETINGS FOR AB AND AIB+SIB USING ORACLE MODEL SELECTION DEVELOPMENT DATASET. THE DER IS REPORTED FOR THE OPTIMAL
AND WITHOUT VITERBI RE-ALIGNMENT. VALUE AS WELL AS FOR0.3. THE CLUSTERING IS PERFORMED WITH
B =10
alB
Meeting | alB | + sIB i
AMI_20041210-1052] 4.6 37 ) optimal NMI' | DER at | DER at
AMI|_20050204-1206| 10.0 8.3 Meeting threshold opt th. | thres 0.3
CMU_20050228-1615| 25.3 25.2 AMI_20041210-1052 0.3 9.6 9.6
CMU_20050301-1415| 9.4 10.1 AMI _20050204-1206 0.3 14.9 14.9
ICSI_20000807-1000| 12.3 13.2 CMU_20050228-1615 0.3 26.5 26.5
ICSI_20010208-1430| 12.9 | 13.0 CMU_20050301-1415 0.3 9.6 9.6
LDC_20011116-1400 8.7 7.0 ICSI_20000807-1000 0.4 13.5 20.0
LDC_20011116-1500| 18.7 175 ICS1_20010208-1430 0.3 14.4 14.4
NIST_20030623-1409| 6.0 5.7 LDC_20011116-1400 0.3 9.2 9.2
NIST_20030925-1517| 24.3 239 LDC_20011116-1500 0.2 20.6 21.9
VT_20050304-1300| 7.3 5.2 NIST_20030623-1409 0.4 7.8 11.9
VT_20050318-1430| 29.7 256 NIST_20030925-1517 0.4 25.2 30.6
ALL | 133 12.4 VT_20050304-1300 0.3 5.9 5.9
VT_20050318-1430 0.3 34.9 34.9
D. Model selection
In this section, we discuss experimental results with the -
model selection algorithms presented in Section Ill. Two
different model selection criteria — Normalized Mutualdnf aof
mation (NMI) and Minimum Description Length (MDL) —
are investigated to select the number of clusters. They are 35
compared with an oracle model selection which manually é
. . . 30
chooses the clustering with the lowest DER. The Normalized i
Mutual Information is a monotonically increasing function -y
with the number of clusters. The NMI value is compared
against a threshold to determine the optimal number of @fast 20
in the model. Figure 6 illustrates the change of overall DER
over the whole development dataset for changing the value 1 02 03 o4 o5 os 07 08 09
of this threshold. The lowest DER is obtained for the value =~ NMI Threshold

of 0.3. In order to understand hOW the optl_mal value OIiig. 6. Effect of varying NMI threshold on the diarizationrar for the
the threshold changes across different meetings, we rep@klelopment dataset. The optimal threshold is fixed.as

in Table V optimal threshold for each meeting, DER for the

optimal threshold and for threshold equals. In eight out

the twelve meetings in the development data set, the thicesho

that produces the lowest DER is equal@@. Only in two The MDL criterion described in equation (20) is also
meetings (ICS120000807-1000 and NISP0030925-1517) explored for performing model selection. Speaker errcggat
results obtained with the optimal threshold are signifigantcorresponding to both the methods are reported in Table VI.
different from those obtained with the valQe3.To summarize The NMI criterion outperforms the MDL model selection by
the optimal value of the threshold seems to be consisteasacr~ 2%. The NMI criterion is2.5% worse than the oracle model
different meetings. selection.
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TABLE VI . .
DIARIZATION ERRORRATES FOR DEV DATASET WITHNMI, MDL AND In [3], the model complexity (i.e. the number of parameters)

ORACLE MODEL SELECTION before and after the merge is made the same. This is achieved
by keeping the number of Gaussians in the new madéhe

alB alB+sIB - . .
Viodel T without T with 1 without T with same, i.e, as the sum of number_ Qf Gaussglrvsajnand m;.
selection | Viterbi | Viterbi | Viterbi | Viterbi i.e., p = p; + p;. Under this condition equation (22) reduces
Oracle 13.3 10.3 12.4 10.0 to
MDL 17.3 143 16.2 138 (", ') = argmax1o p(D|m) (23)
NMI 15.4 12.6 14.3 125 )J g ¥ gp(Di|mi)p(Dj|mj)

This eliminates the need of the penalty term from the BIC.

Following the merge, all cluster models are updated using

. . ) . ) an EM algorithm. The merge/re-estimation continues urdil n
The Viterbi realignment is carried out using an ergodigerge results in any further increase in the BIC criteriomisT

HMM as discussed in Section IV-E. The number of comyetermines the number of clusters in the final model. This

ponents of each GMM is fixed a0 based on experimentsapproach yields state-of-the art results [15] in severalizti-

on the development dataset. The performance after ViteHin evaluations. The performance of the baseline system is

realignment is presented in Table VI. The DER is reduced byesented in Table VII. The table lists missed speech, false

roughly 3% absolute for all the different methods. The lowes{jarm, speaker error and diarization error.

DER is obtained using sequential clustering with NMI model

selection. TABLE VII
RESULTS OF THE BASELINE SYSTEM

E. Viterbi realignment

File Miss | FA | spnsp| spkr err | DER
All meetings 6.5 | 0.1 6.6 17.0 23.6

In this section we compare the IB system with a state-of- [ Without TNO meeting] 6.8 | 0.1 ] 69 | 157 [ 227
the-art diarization system based on HMM/GMM. Results are
provided for the NIST RTO6 evaluation data. Section VI-A
describes the baseline system while Section VI-B describ@s Results
the results of the IB based system. Section VI-C compares then this section we benchmark the 1B based diarization sys-
computational complexity of the two systems. tem on RT06 data. The same speech/non-speech segmentation
is used for all methods. According to the results of previous
sections the value of is fixed at 10. The NMI threshold value
is fixed at0.3. Viterbi re-alignment of the data is performed
The baseline system is an ergodic HMM as describegker the clustering with a minimum duration constrair2dfs
in [3], [15]. Each HMM state represents a cluster. Thg refine cluster boundaries.
state emission probabilities are modeled by Gaussian Mixtu Table VIII reports results for alB and alB+sIB clustering
Models (GMM) with a minimum duration constrain @f5s.  both with/without TNO meeting. Conclusions are drawn on
19 MFCC coefficients extracted from the beam-formed signgie original data set. Results for both NMI and MDL criteria
are used as the input features. The algorithm follows @fe reported. NMI is more effective than MDL by.7%.
agglomerative framework, i.e, it starts with a large numiifer
clusters (hypothesized speakers) and then iterativelygeser
similar clusters until it reaches the best model. After each

VI. RTO6 MEETING DIARIZATION

A. Baseline System

TABLE VI
DIARIZATION ERRORRATE FORRTOGEVALUATION DATA .

merge, data are re-aligned using a Viterbi algorithm to eefin Model alB+ | sIB+
speaker boundaries. selection | Viterbi | Viterbi
L . . . . . All meetings
The _|n|t|al HMM model is pullt using umform linear seg- ViDL ) 538
mentation and each cluster is modeled with a 5 component NMI 73.7 73.2
GMM. The algorithm then proceeds with bottom-up agglom- Without TNO meeting
erative clustering of the initial cluster models [1]. At &ac ’K'IEA'I- gg'g ggg

step, all possible cluster merges are compared using a eaddifi
version of the BIC criterion [2], [3] which is described belo

Consider a pair of clusters and c; with associated data
D; andD; respectively. Also let the number of parameters f
modeling each cluster respectively peandp; parameterized
by the GMM modelsm; andm;. Assume the new cluster
hgvmg datal) obtained by merg|r_1g7i and D; is modeled Table IX reports diarization error for individual meetings
Wlt.h a GMM modelm parameterlzed b.yo Gaqssmns. The of the RT06 evaluation data set. We can observe that overall
pair of clusters that results in the maximum increase in the

BIC criterion (given by equation 16) are merged. lwe found that one channel of the meeting in RTO6 denoted with
VT_20051027-1400 is considerably degraded. This channel waswed

N _ ) ) before beamforming. This produces better results for batbeline and 1B
(i',)) = arg H;f}X BIC(m) [BIC(mJ) + BIC(mi)] (22) systems compared to those presented in [16].

Sequential clustering (alB+sIB) outperforms agglomegati
clustering by 0.5%. As in the development data, the best
esults are obtained by alB+sIB clustering with NMI model
selection. This system achieves a DER8R2% as compared
to 23.6% for the baseline system.
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performances are very close to those of the baseline systelsters. i.e.%K(K—l) distance calculations. Let us consider
but results per meeting are quite different. This diffeeenan the difference between the two methods:

be mainly attributed to the different optimization crigetised
by the two systems — BIC criterion for the baseline system
and IB criterion for the proposed system.

Furthermore, the IB clustering is based on the use of a
set of relevance variables defined as the components of a
background GMM. The GMM is estimated using data from
the same meeting. As variations in signal properties like
Signal-to-noise-ratio (SNR) and amount of overlappingesbe
can deteriorate the quality of the GMM thus the clustering
results. For instance, the performance of the IB system are,
comparatively low for CMU meetings which contain large
amounts of overlapping speech and low SNR. On the other
hand, IB performs considerably better then the baselinesys
on VT meetings that have high SNR and TNO meeting which

In the HMM/GMM model, each distance calculation
involves computing the BIC criterion as given by equa-
tion (23). Thus a new parametric model has to be
estimated for every possible merge. This requires training
a GMM model for every pair of clusters. The training is
done using the EM algorithm which is computationally
demanding. In other words, this method involves the use
of EM parameter estimation for every possible cluster
merge.

In the IB framework, the distance measure is the sum of
two Jensen-Shannon divergences as described by equa-
tion (7). The JS divergence calculation is straightforward
and computationally very efficient. Thus the distance
calculation in the IB frame work is much faster as

has very less overlapping speech. compared to the HMM/GMM approach. The distribution

obtained merging two clusters is given by equations (12-
13) which simply consists in averaging distributions of
individual clusters.

In summary while the HMM/GMM systems make intensive

TABLE IX
DIARIZATION ERROR RATE FOR INDIVIDUAL MEETINGS USINGNMI
MODEL SELECTION.

Viterbi realign .

Meeting | Baseline ["alB | alB +gS|B use of.the.EM algorithm, thg 1B basgd system performs the
CMU_20050912-0900[ 17.8 | 20.1 18.7 clustering in the space of discrete distributions usingetb
CMU_20050914-0900) 153 | 219 208 form equations for distance calculation and cluster digtion

EDI_20050216-1051| 46.0 | 48.5 50.5 d Thus th d h e | .

EDI_20050218-0900, 23.8 | 33.3 331 update. Thus the proposed approach require less computatio

NIST_20051024-0930| 12.0 | 16.2 17.3 than the baseline.
ﬁﬁg—gggiﬁgg‘ﬁgg gjg %g; %g-g We perform benchmark experiments on a desktop machine
- - - - - i ™
VT 20050623-1400] 244 96 94 with AMD Athlon 2.4GH2 64 X2 Dugl Core Processor
VT_20051027-1400 21.7 | 20.0 18.4 and 2GB RAM. Table XI lists the real time factors for the
baseline and IB based diarization systems for the RTO6 meet-
ing diarization task. It can be seen that the IB based systems
TABLE X are significantly faster than HMM/GMM based system. Note
ESTIMATED NUMBER OF SPEAKERS BY DIFFERENT MODEL SELECTION that most of the algorithm time for IB systems is consumed
CRITERIA. . . . . .
for estimating the posterior features. The clustering isyve
_ alB + siB fast and takes only arourkD% of the total algorithm time.
Meeting | #speakers| NMI_[ MDL Also, introducing the sequential clustering contributesyv

CMU_20050912-0900 4 5 5 . . ;

CMU_20050914-0900 4 6 6 I|t_tle_ to '_[he total aIg_onthm 'qmeae 8%). Overall the pr(_)posed
EDI_20050216-1051 4 7 7 diarization system is considerably faster than-real time.
EDI_20050218-0900 4 7 7

NIST_20051024-0930 9 7 7 TABLE XI

NIST_20051102-1323 8 7 7 REAL TIME FACTORS FOR DIFFERENT ALGORITHMS ONRTOBEVAL DATA

TNO_20041103-1130 4 7 6
VT_20050623-1400 5 8 8 posterior Viterbi
VT_20051027-1400 4 6 4 method calculation | clustering | realign | Total

aiB 0.09 0.06 0.07 | 0.22
Table X shows the number of speakers estimated by differ- S'SS;SAE 0.09 0.08 0.7 %254
ent algorithms for the RTO6 eval data. The number of speakers
is mostly higher than the actual. This is due to the presence
of small spurious clusters with very short duration (tyfica
P y (tyfic VIl. DI1SCUSSIONS ANDCONCLUSIONS

less than 5 seconds). However those small clusters does not
significantly affect the final DER. We have presented speaker diarization systems based on

the information theoretic framework known as the Informa-

tion Bottleneck. This system can achieve Diarization Error
C. Algorithm Complexity rates close to those obtained with conventional HMM/GMM

Both the The IB bottleneck algorithm and the baselin@dglomerative clustering. In the following we discuss nifa

HMM/GMM system use the agglomerative clustering framderences between this framework and traditional appraache
work. Let the number of clusters at a given step in the « Distance measuréan the literature, several distance mea-
agglomeration be K. At each step, the agglomeration algorit sures have already been proposed for clustering speakers
needs to calculate the distance measure between each pair of e.g. BIC, generalized log-likelihood ratio, KL divergence
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