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Capturing Order in Social Interactions

Alessandro Vinciarelli

Following Aristotle, “Man is by nature a social animal; an individual who is unsocialnaturally and not

accidentally is either beneath our notice or more than human” (Politika, ca. 328 BC). This is more than

an abstract philosophical statement if, twenty five centuries after the great Greek philosopher, domains as

diverse as psychology, physiology and neurology, just to mention a few, still investigate how humans are

the perfect machines for social interaction: the muscles ofour faces are aimed at expressing our subtlest

feelings and emotions to others [1], our ears are tuned to human voices more than to any other sound [2],

specific brain structures (the mirror neurons) are aimed at imitating and learning from others [3], and the

list could continue.

As humans appear to be literally wired for social interaction, it is not surprising to observe that social

aspects of human behavior and psychology attract interest in the computing community as well [4][5]. The

gap between social animal and unsocial machine was tolerable when computers were nothing else than

improved versions of old tools (e.g., word processors replacing typewriters), but nowadays computers

go far beyond that simple role. Today, computers are the natural means for a wide spectrum of new,

inherently social, activities like remote communication,distance learning, online gaming, social network-

ing, information seeking and sharing, training in virtual worlds, etc. In this new context, computers must

integrate human-human interaction as seamlessly as possible and deal effectively with spontaneous social

behaviors of their users. In concise terms, computers need to becomesocially intelligent[6].

Such an ambitious plan of filling the social intelligence gapbetween humans and machines starts from

a fundamental problem, namely how to make social phenomena accessible to computers when the only

evidence these have at disposition about the world are signals captured with devices like microphones and

cameras. The consequent question is: “Do social phenomena leave physical, machine detectable, traces

in signals captured with sensors?”

One possible answer comes from the findings of human sciences(sociology, anthropology, social

psychology, etc.) showing thatsocial phenomena, while appearing unconstrained and spontaneous, are

governed by principles and laws and give rise to ordered and predictable behavioral patterns[7]. For

example, during social interactions, people tend to mirrorpostures and facial expressions of individuals

they like, play with pencils and other little objects when they are uncomfortable, avoid exchanging mutual

gaze with people they consider of a superior social level, interrupt others to show disagreement, and give
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off many other behavioral cues that have no other function than conveying socially relevant information

(see [8] for an extensive monography).

These ordered and predictable patterns allow people to makesense, often unconsciously, of social

interactions they both observe and participate in [2]. Patterns that are accessible to eyes and ears are

typically detectable through microphones and cameras (or any other suitable sensor) and, once detected,

they can be automatically understood in terms of social information they convey. Since one of the most

important facets of social intelligence is exactly about understanding of socially relevant behavioral

patterns, an automatic approach including both detection and understanding of these patterns can be

considered as a form ofartificial social intelligence.

The rest of this article shows a few examples of how above ideas can be applied to the analysis of social

phenomena taking place in conversations. In particular, the examples show how turn-taking patterns, one

of the most salient behavioral cues in any conversation, canbe analyzed and interpreted in terms of roles

that people play, social groups that form around different subjects, and conflict dynamics in competitive

discussions. After the examples, the article outlines someof the most promising research directions aimed

at artificial social intelligence in computing and signal processing communities.

CAPTURING ORDER IN CONVERSATIONS

Conversation is the most common form of social interaction, one of the most important situations where

social intelligence operates to understand, beyond the verbal content of messages being exchanged, the

social phenomena at work. Human sciences have extensively investigated conversations and suggest turn-

taking as a key evidence of social interaction processes:

[...] the most widely used analytic approach is based on an analogy with the workings of the

market economy. In this market there is a scarce commodity called the floor which can be

defined as the right to speak. Having control of this scarce commodity is called aturn. In any

situation where control is not fixed in advance, anyone can attempt to get control. This is called

turn-taking [9].

In technical terms, the turn-taking is a sequence of pairsS encodingwho talks when and how much:

S = {(s1, ∆t1), . . . , (sN , ∆tN)}, (1)

where N is the number of turns,∆ti is the length of turni, and si is a participant identifier, with

si ∈ A = {a1, . . . , aG} (G is the number of conversation participants).

From a machine analysis point of view, turn-taking is appealing because it can be effectively extracted

with a large variety of speaker diarization approaches, i.e. techniques aimed at segmenting audio recordings

into single speaker intervals. Futhermore, human sciencesprovide insights about the way social phenomena
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Fig. 1. Extraction of a Social Affiliation Network from the turn-taking. Actors correspond to participants and events to uniform

nonoverlapping segments spanning the whole length of the conversation.

shape turn-taking. However, two major questions remain open: does such a simple object asS actually

convey enough information about social interactions? Are order and predictability induced by social

phenomena robust to speaker diarization errors? The rest ofthis section shows a few examples where the

answer to the above questions is positive.

Role recognition

As they are ubiquitous in everyday life, social interactions take the most diverse forms in terms of settings,

goals, contexts, etc. However, there is one aspect that theyall have in common, their participants play

roles: “People do not interact with one another as anonymous beings. They come together in the context

of specific environments and with specific purposes. Their interactions involve behaviors associated with

defined statuses and particular roles.” [7]. This section addresses the problem of automatically recognizing

roles in formal settings like news and talk-shows (where roles correspond to functions likeanchorman,

guest, headline person, etc.), or meetings (where roles correspond to company positions like project

manager, industrial designer, etc.).

Do roles leave traces in turn-taking? Social psychology suggests that conversations involving more

than two persons can be thought of as sequences of one-to-oneinteractions between pairs of participants.

Thus, for two individuals, proximity in time of respective turns is likely to account for direct interaction.

Such a simple information allows one to build a Social Affiliation Network (SAN) capturing the overall

interaction structure of a conversation under exam [10]. Ifroles actually leave a trace, they are likely to

do it in such a structure because a person playing a given roletends to interact only with people playing
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TABLE I

ROLE RECOGNITION RESULTS.

setting size α π α
∗ avg G |R|

news 18h 56m 81.2% 0.82 95.3% 12 6

talk-shows 27h 00m 83.9% 0.78 96.5% 30 5

meetings 45h 38m 43.6% 0.99 49.5% 4 4

certain roles and not with others.

A SAN [10] is a graph with two kinds of nodes,actors and events(see Figure 1). In conversations,

actors correspond to participants and events correspond to, as a simple approximation, uniform non-

overlapping segments spanning the whole length of the conversation. Actors are linked to an event when

they participate in it (in this case when they talk during thecorresponding segment). Each actorai is

represented with an-tuple xi, where componentxij accounts for participation ofai in eventwj. In the

simplest case,xij is set to1 when ai participates in eventwj and to 0 otherwise (see lower part of

Figure 1).

Such a simple representation has been applied in extensive experiments performed over roughly90

hours of material including news, talk-shows, and meetings(see all details in [11]). The overall approach

includes three different steps, automatic extraction of ofturn-taking with an unsupervised diarization

approach, extraction of SAN and representation of actors asdescribed above, and mapping ofn-tuplesxi

into roles belonging to a predefined setR. If r is a G-tuple such thatri is the role ofai, then the role

recognition step can be thought of as finding theG-tuple r
∗ satisfying the following equation:

r
∗ = arg max

r∈RG

p(X,T |r)p(r), (2)

whereR is the set of predefined roles,X = {x1, . . . ,xG} contains then-tuples representing the par-

ticipants, andT = {τ1, . . . , τG} contains the fractionsτi of time each actor talks for (see above for the

meaning of other symbols). After assuming thatxi andτi are statistically independent given the role and

that roles are independent, the above expression boils downto:

r
∗ = arg max

r∈RG

G∏

i=1

p(xi|ri)p(τi|ri)p(ri). (3)

The termp(xi|ri) is estimated with Bernoulli distributions,p(τi|ri) with Gaussians, anda-priori role

probabilitiesp(r) with the fraction of training set each role accounts for.

Table I reports the results and shows interaction setting, size of the corresponding dataset, overall

accuracyα (percentage of time correctly labeled in terms of role), purity π of the speaker diarization
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(the closer to1 the better), accuracyα∗ achieved over the groundtruth turn-taking, average numberof

participants, and cardinality of predefined role setR.

The performances seem to suggest thatroles actually bring order and predictability in turn-taking. The

effect is machine detectable and an automatic approach, based on a simple representation of turn-taking

behavior, recognizes roles with a performance significantly higher than chance even in highly spontaneous

settings like meetings. The difference betweenα andα∗ shows that, at least in the case of news and talk-

shows, errors are mostly due to speaker diarization. However, role related turn-taking patterns are still

evident enough to achieve satisfactory performances.

Roles are played individually by each person involved in a given setting. However, other social phe-

nomena can be understood only in terms ofsocial groups, subsets of interaction participants that develop

mutual bonds tighter than those they have with others. The next example shows how social groups form

around the different subjects discussed during a conversation.

Groups and stories

In general, conversations are sequences ofstories, semantically coherent segments during which partici-

pants discuss about a single and specific subject. Whether thesequence is dictated by an agenda or follows

a spontaneous evolution, social psychologists have observed that each story involves only a fraction of

participants. In other words, each story corresponds not only to a specific subject, but also to asocial

group, a subset of participants characterized by a high degree of mutual interaction (see Figure 2b).

This applies in particular when conversations involve a large number of individuals and simultaneous

participation of all of them is impractical.

Does the presence of social groups induce order in turn-taking? This question has been addressed

through experments performed over27 hours of talk-shows where people interact spontaneously, but still

follow a plan expected to pass through some major predefined topics (see [12] for a full description).

The applied approach includes three main steps, the extraction of the turn-taking with an unsupervised

diarization approach, the building of a Social Affiliation Network like the one described in the previous

section, and the automatic alignment of the sequence of turns (see below for their representation) with a

sequence of stories.

The n-tuplesx used for role recognition (see previous section) capture information about groups as

well. When people belong to the same social group, they tend toparticipate in the same events (in this

case to talk during the same time intervals), thus to be represented with similarn-tuples. The turn-taking

S includes the speaker sequence{s1, . . . , sN}. This can be converted into a sequence of observations

Y = {y1, . . . ,yN}, whereyi is obtained by applying Principal Components Analysis (PCA) to xi, the
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TABLE II

STORY SEGMENTATION PERFORMANCE IN TERMS OFPURITY.

variance fraction

speak. segm. 70% 80% 90% 100%

manual 0.80 0.80 0.80 0.82

automatic 0.74 0.76 0.76 0.77

n-tuple representing the speaker talking at turni.

If a conversation is actually a story sequence, thenY is the observable evidence of an underlying,

hidden, sequence of storiesH = {h1, . . . , hN} as depicted in Figure 2b. The problem of reconstructing

the story sequence, and identifying the corresponding social groups, can be thought of as finding the

sequenceH∗ satisfying the following equation:

H∗ = arg max
H∈HN

p(Y |H)p(H), (4)

whereHN is the set of all possible story sequences of lengthN . The termp(Y |H) is estimated with a

fully connected, ergodic, Hidden Markov Model, and the termp(H) is estimated with a trigram language

model:

p(H) =
N∏

i=1

p(hi|hi−1, hi−2). (5)

The goal ofp(H) is to ensure that the order of the story is respected, i.e. that story k always follows

story k − 1 and precedes storyk + 1.

Table II reports the results in terms ofpurity, a measure of the coherence between groundtruth and

automatic story segmentation (the closer to1 the better). The results are reported, for both automatically

extracted and groundtruth turn-taking, for several amounts of variance retained after applying PCA ton-

tuplesx. The main stories, those who are sufficiently long to allow the formation of a group, are correctly

captured, while others, those that are too short to let a social group to form, are typically missed. However,

the performance is satisfactory for browsing applicationsaimed at bringing a user in correspondence of

the main talk-shows stories.

Like in the case of roles, a social phenomenon like group forming results into order and predictability

in the turn-taking. Once again, the effect is machine detectable and the story segmentation performance

shows that the approach can detect at least the most evident social groups, those that correspond to the

stories that have been discussed for more time and thus are likely to be more important. Furthermore, the

effect is robust with respect to the errors of the speaker diarization process used to extract the turn-taking

from the original data.
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Fig. 2. The turns of figurea can be grouped into stories that correspond to social groups (figureb), or used to model conflict dynamics

with Markov chains (figurec).

Order in conflicts

Conflicts are among the most investigated social phenomena asthey have a major impact on the life of

any group of individuals expected to interact with one another. Whether the group is a professional team

working towards a common task, a family addressing the basicneeds of its members, or simply a circle

of friends sharing their saturday evening, a conflict can jeopardize the welfare of individual members as

well as of the group as a whole.

Do conflicts leave machine detectable traces in turn-taking? Whoever has been involved in a heated

discussion knows that this is definitely the case. During conflicts, people are prone to break the rules of a

normal conversation and do not hesitate to shout, interrupt, speak when others are speaking, etc. What is

less evident is that there is an order underlying these behaviors, even if they seem to introduce noise and

desorder in the normal flow of non-conflictual interactions.Furthermore, the same ordered and predictable

patterns emerge not only when conflicts are hot, but also whenthey are cold, i.e. when people express

their disagreement while still applying the norms of non-conflictual conversations.

Social psychologists have observed that, in the presence ofa conflict (hot or cold), people tend to react

to someone they disagree with rather than to someone they agree with. This means that the participant

talking at turnk is statistically dependent on the participant talking at turn k − 1 (see Figure 2c). This

information can be easily captured with a Markov chain, a probability density function defined over the
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space of state sequencesQ = {q1, . . . , qN}, where eachqi belongs to a predefined setQ of states:

p(Q) = p(q1)
N∏

k=2

p(qk|qk−1), (6)

p(q1) is the probability of starting with stateq1, p(qk|qk−1) is the probability of a transition fromqk−1 to

qk, andN is the number of states inQ.

This simple model has been applied in experiments performedover a dataset of45 political debates

(27 hours and56 minutes of material in total) built around the conflict between two fronts opposing one

another on the issue of the day. Each debate revolves around acentralyes/noquestion (e.g., “are you

favorable to new education laws?”) and involves five persons: one moderator, two participants on theyes

side and two others on theno one. The goal of the experiments is to automatically identify the moderator

and to reconstruct correctly the two fronts. The applied approach starts with an unsupervised speaker

diarization that extracts automatically the turn-taking,then uses a Markov chain to map the resulting

sequence of turns into a sequence of states corresponding tothe two fronts and to the moderator, i.e.

Q = {g1, g2,m}, like depicted in Figure 2c.

More formally, if ϕ : A → Q is a mapping that associates a participantsi ∈ A with a stateqj ∈ Q,

then the problem can be thought of as finding the mappingϕ∗ satisfying the following expression:

ϕ∗ = arg max
ϕ∈QA

p(ϕ(s1))
N∏

n=2

p(ϕ(sk)|ϕ(sk−1)). (7)

By construction, the probability on the right hand side of Equation (7) has the same value if statesg1

and g2 are switched. The reason is thatg1 and g2 are simply meant to distinguish between members of

different fronts and not to account for a specific front.

The results show that64.5% of the debates are correctly reconstructed, i.e., the moderator is correctly

identified and the two supporters of the same answer are actually assigned the same front. This figure

goes up to75% when using the groundtruth speaker segmentation (and not the speaker segmentation

automatically extracted from the data). The average performance of an algorithm assigning the states

randomly is6.5% and this means that the simple above model performs ten times better than chance.

Thus, conflicts, that seem to be a moment where any social normis broken, turn out to be a source of

order as the other social phenomena described so far.

SOCIAL COMPUTERS FOR THE SOCIAL ANIMAL

So far we have shown how several social phenomena (roles, group forming, and conflicts) leave physical,

machine detectable, traces in terms of predictable behavioral patterns. These have been detected in turn-

taking (who talks when and how much), a phenomenon shaped by social processes in the settings consid-

ered for the experiments (talk-shows, news, debates and meetings). The integration of social psychology
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into automatic approaches has been shown to be effective andto lead to a form of artificial social

intelligence. The works described in the previous section are just examples, but their core idea, to capture

order induced by social interactions through integration of human sciences findings, lies at the hart of

both Social Computing (SC) [4] and Social Signal Processing (SSP) [5][13], the main domains aimed

at bringing social intelligence in computers. The two domains are partially overlapping, but they are

complementary under two fundamental respects: the behavioral patterns they investigate, and the scale of

the interactions they consider. The rest of this section outlines the main aspects of the two domains and

delineates some future research perspectives.

Social Computing

Social Computing focuses onelectronicor computer mediatedbehaviors [4]. These include actions like

credit card payments, cellular phone calls, e-mail exchanges, use of instant messaging, posting of data to

social media like Flickr or Youtube, social networking activities through sites like Facebook or Linkedin,

e-shopping via web based services like Amazon or eBay, writing blogs, and any other action that can be

detected through a large-scale computing infrastructure [14].

Analysis of these behaviors involves hundreds to millions of participants (depending on the cases) that

contribute to large-scale collective behavioral patterns. Order emerges through a large number of individual

actions and interactions and leads to phenomena likeonline communitiesthat group thousands of people

around a subject or a common interest even if none of the members states it explicitly, applications

like recommendation systemsthat provide suggestions inferred from the choices of thousands of other

individuals showing similar behavioral patterns, technology approaches liketagging that learn to describe

the data content from the millions of descriptions people spontaneously share on social media, devices

like smart badges for reality miningthat constantly monitor the acivities of their holders and those of the

neighboring people to devise common behavioral and interaction patterns, etc. [4][14].

Social Signal Processing

Social Signal Processing is the new, emerging, domain aimedat automatic understanding of social

interactions through analysis of nonverbal behavioral patterns [5][15]. Several decades of research in

human sciences have shown thet people displaysocial signals, i.e. relational attitudes corresponding to their

feeling about ongoing interactions and social contexts, interms of aggregates of nonverbal behavioral cues.

Social signals include phenomena like politeness, attention, interest, disagreement, ostracism, hostility, etc.

Socially relevant nonverbal patterns include face and eyesbehavior (facial expressions, gaze exchanges,

etc.), vocal behavior (vocal outbursts, turn-taking, silences and pauses, etc.), gestures and postures (head
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movements, body orientation with respect to others, etc.),physical appearance (somatotype, clothes, etc.),

and use of space and environment (seating arrangements, interpersonal distances, etc.).

SSP considers small (2 to 4 participants) to medium (5 to 25 participants) scale interactions like

those analyzed in the examples of previous sections. The typical social phenomena investigated so far in

the SSP community include dominance, social and functionalroles, conflicts, group dynamics, interest,

engagement, agreement and disagreement, personality, etc. This has led to technologies that predict the

outcome of dyadic interactions (salary negotiations, job interviews, customer-operator transactions, etc.),

to approaches aimed at detecting symptoms of mental and psychological problems (depression, alzheimer

disease, autism, etc.), to systems that automatically extract the content of multimedia material on the basis

of the portrayed social interactions, etc. (see [5] for an extensive survey).

Furthermore, since people tend to interact with computers in the same way as they do with other

humans, SSP investigates how dynamics of human-human interaction can be applied to Human-Machine

interaction as well. This has led to synthetic voices and faces that convey relational attitudes and allow

a natural interaction with computers and robots, to data retrieval approaches adapting their results to the

attitude of users, etc. (see [2] for a monography on this aspect).

SSP is an inherently multidisciplinary domain as it requires not only a tight collaboration between

technology and human sciences, but also the integration of different technological disciplines (e.g.,

computer vision and speech processing). On one hand, the examples of the previous section clearly show

how automatic approaches would not be capable of correctly understanding social phenomena without

integrating the findings of human sciences. On the other hand, one of the clearest indications emerging from

current SSP state-of-the-art is that, in most cases, socialinteractions analysis is reliable only if several

behavioral cues are analyzed jointly (e.g. facial expressions and accompanying vocalizations) and this

typically requires multimodal approaches. The reason is that, individually, nonverbal behavioral patterns

are ambiguous and using multiple cues is the only way to improve robustness of understanding approaches.

Future perspectives

In their complementarity, SSP and SC aim at transforming computers into social actors following the

same mechanics as humans in natural and spontaneous interactions, whether these take place face-to-

face or through computing infrastructures. Both SSP and SC have shown that integration between human

sciences and technology is a key towards success and they areready to continue in this directions despite

all the difficulties in establishing a multidisciplinary field [5][14]. Furthermore, both domains have clearly

identified order and predictablity as a viable evidence for analysis, synthesis and understanding of social

interactions. It is a promising starting point towards the creation ofsocial computers for the social animal,
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the common long term goal of all the efforts described in thisarticle.
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