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Résumé

Dans cette thèse, nous proposons une approche hiérarchique afin d’évaluer les

probabilités conditionnelles des classes phonétiques utilisant des “Multilayer Percep-

trons (MLP)”, type de réseaux de neurones couramment utilisé. L’architecture choisie

est composé de deux classificateurs MLP en cascade. Le premier classificateur est en-

traı̂né de façon standard en utilisant des paramètres acoustiques tenant compte du

contexte temporel sur une duré d’environs 90 ms. Le deuxième classificateur MLP est

entraı̂né à partir des probabilités conditionnelles des classes phonétiques (ou paramètres

postérieurs) estimées par le premier classificateur, en tenant compte d’un contexte tem-

porel plus long cette fois-ci, avoisinant les 150-250 ms.

Le choix de l’architecture hiérarchique est motivé par la possibilité d’exploiter l’infor-

mation contextuelle présente dans la séquence des paramètres postrieurs, qui contient

l’évolution des valeurs de probabilité dans un phonème (sub-phonemic) ainsi que la tran-

sition depuis ou vers les phonèmes voisins (sub-lexical). Etant donné que les paramètres

postérieurs sont epars et simples, le deuxième classificateur est capable d’obtenir l’in-

formation contextuelle sur une durée de 250ms. Des manipulationa effectuées sur la

reconnaissance des phonèmes, de même que sur la retranscription écrite de la parole

lors de conversations, montrent que l’approche hiérarchique conduit à des performances

significativement meilleures. L’analyse du second classificateur MLP utilisant des séries

Volterra, montre que les paramètres phonétiques et temporels sont représents dans l’es-

pace des paramètres postérieurs. Ces paramètres phonétiques et temporels capturent les

erreurs de classifications des phonèmes à la sortie du premier classificateur, de même

que les phonotactics du langage observés dans l’ensemble des donnes d’entrainement.

De plus, nous montrons lors de ce travail, que le second classificateur MLP est simple

puisqu’il contient un nombre limité de paramètres dans le modèle est peut être entraı̂né

sur un ensemble plus petit de données.

L’utilité de l’approache hiérarchique proposée par ce travail, servant à modéliser

les paramètres acoustiques lors de la reconnaissance automatique de la parole, est

démontrée à travers deux applications : (a) l’adaptation de cette tâche en exploitant les

MLPs entraı̂nés sur une grande quantité de données pour d’autres nouvelles tâches et
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(b) la reconnaissance automatique de la parole utilisant un large vocabulaire d’émissions

d’information radiophoniques ou télévisées en Mandarin. La reconnaissance de mots

isolés utilisant un vocabulaire limité, ainsi que les études d’adaptation des tâches ont

été exécutées sur la base de données “Phonebook”. La reconnaissance de la parole

utilisant un vocabulaire plus dispersé a été experimentée sur la base de données de

Mandarin “DARPA GALE”.

Mots Clés : Multilayer perceptron, système hiérarchique, séries de Volterra.
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Abstract

In this thesis, we investigate a hierarchical approach for estimating the phonetic

class-conditional probabilities using a multilayer perceptron (MLP) neural network. The

architecture consists of two MLP classifiers in cascade. The first MLP is trained in the

conventional way using standard acoustic features with a temporal context of around

90 ms. The second MLP is trained on the phonetic class-conditional probabilities (or

posterior features) estimated by the first classifier, but with a relatively longer temporal

context of around 150-250 ms.

The hierarchical architecture is motivated towards exploiting the useful contextual

information in the sequence of posterior features which includes the evolution of the

probability values within a phoneme (sub-phonemic) and its transition to/from neigh-

boring phonemes (sub-lexical). As the posterior features are sparse and simple, the sec-

ond classifier is able to learn the contextual information spanning a context as long as

250 ms. Extensive experiments on the recognition of phonemes on read speech as well

as conversational speech show that the hierarchical approach yields significantly higher

recognition accuracies. Analysis of the second MLP classifier using Volterra series reveal

that it has learned the phonetic-temporal patterns in the posterior feature space which

captures the confusions in phoneme classification at the output of the first classifier as

well as the phonotactics of the language as observed in the training data. Furthermore,

we show that the second MLP can be simple in terms of the number of model parameters

and that it can be trained on lesser training data.

The usefulness of the proposed hierarchical acoustic modeling in automatic speech

recognition (ASR) is demonstrated using two applications (a) task adaptation where the

goal is to exploit MLPs trained on large amount of data and available off-the-shelf to

new tasks and (b) large vocabulary continuous ASR on broadcast news and broadcast

conversations in Mandarin. Small vocabulary isolated word recognition and task

adaptation studies are performed on the Phonebook database and the large vocabulary

speech recognition studies are performed on the DARPA GALE Mandarin database.

Keywords: Multilayer perceptron, hierarchical system, Volterra series.
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Chapter 1

Introduction

Automatic speech recognition (ASR) refers to the process of automatically transcribing a spoken ut-

terance into its corresponding text. Recognition is typically performed by integrating three sources

of information. A language model that captures the grammar or syntax of a language, a pronuncia-

tion dictionary that maps the words into its constituent phonemes, and an acoustic model that cap-

tures the acoustical (e.g., spectro-temporal) properties of speech for each of the phonemes. Acoustic

modeling is the most challenging and extensively researched component of the system. The Hidden

Markov model (HMM) has been the mainstream of acoustic modeling ever since its introduction in

the seventies.

The state emission distribution of the HMM provides the link between the acoustic observations

and the underlying linguistic units. Traditionally, Gaussian mixture models (GMM) have been

used to model this distribution. With several refinements and extensions, the HMM/GMM mod-

eling remains the predominant acoustic modeling technique in state-of-the-art ASR systems. The

last two decades has seen the emergence of artificial neural networks, particularly the multilayer

perceptron (MLP) for acoustic modeling in ASR.

The input to the MLP are standard acoustic features such as mel frequency cepstral coefficients

and its output classes represent the subword units of speech such as phonemes. A well trained

MLP classifier estimates the posterior probabilities of its output phonetic classes conditioned on

the input features. The phonetic class-conditional probabilities estimated by the discriminatively

trained MLP are typically used in HMM based ASR. In the hybrid HMM/MLP approach, the MLP

1
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is used as a scaled likelihood estimator in place of the conventional GMM. In the Tandem approach,

the output of the MLP is transformed appropriately and used as features to a standard HMM/GMM

system. As phoneme posterior probabilities can also be viewed and used as local representation of

speech in the same way as standard acoustic features, they are commonly referred to as posterior

features.

1.1 Objective

The primary objective of this thesis is to investigate the presence of useful contextual information in

the sequence of posterior features and to explore possible ways to exploit this information towards

obtaining more accurate estimates of the phonetic class-conditional probabilities. The second objec-

tive is to come up with an analysis framework that enable us to interpret the functionality of the

parameters, namely the weights and biases, of the MLP classifier trained to estimate the phonetic

class-conditional probabilities.

1.2 Motivation

In the posterior feature space, each dimension corresponds to a phoneme. The posterior feature

vector at a particular time instant is a point in the posterior feature space, representing the in-

stantaneous soft-decision on the underlying phonemes. It carries useful information such as the

probability mass assigned to the competing phonemes. The sequence of posterior feature vectors

is a trajectory in the posterior feature space, and it carries additional contextual information such

as the evolution of these probabilities within a phoneme (sub-phonemic level) and its transition to

neighboring phonemes (sub-lexical level). Since the posterior features have a sparse distribution,

we hypothesize that the contextual information spanning longer contexts can be effectively learned

in the posterior feature space by training a second classifier. Furthermore, as the posterior features

have lesser nonlinguistic variabilities such as speaker and environmental characteristics, we expect

the second classifier to be able to be trained using lesser data.

Although MLP based acoustic modeling has shown to help in the improvement of speech recog-

nition accuracies, once trained its parameters are not further analyzed. The goodness of the trained
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model is typically evaluated by first estimating the phonetic class-conditional probabilities on the

cross-validation or a test set, and then using measures such as frame-level phoneme classification

accuracy, the cross-entropy between the labels and the estimated posterior probabilities, phonetic

confusion matrices, or the final speech recognition accuracies. While these measures can indicate

how well the model is trained, it does not reveal any information about the properties of speech

such as spectro-temporal patterns that are learned by the trained parameters of the MLP for each

of the phonemes. We believe that a better understanding of the functionality of the system can

eventually lead to better feature extraction and modeling approaches.

If the MLP used in the acoustic modeling is analyzed as a standalone system, then its function-

ality will be revealed in terms of the input features (e.g., cepstral parameters) which are not directly

interpretable. On the other hand, if a part of the feature extraction is included into the analysis

framework, then the functionality of the combined system is revealed in terms of more intuitive

information such as spectro-temporal patterns.

1.3 Contribution

The contributions of this thesis are

• We propose a generic mathematical framework to represent a cascade of a linear time in-

variant system and a three-layered MLP using Volterra series. By incorporating the linear

system, we can include a part of the feature extraction process into the analysis, and thereby

interpret the model parameters in terms of spectro-temporal patterns. The major contribu-

tions of this work include: (a) development of a mathematical framework to apply Volterra

series to a nonlinear dynamic system consisting of a cascade of a finite impulse response filter

bank and a three-layered MLP classifier (b) calculation of the Volterra kernels of the above

nonlinear dynamic system in terms of the parameters of the system (c) modifications to the

Volterra kernels when the features to the MLP are normalized to zero-mean and unit-variance

(d) handling the case where a linear transformation matrix precedes the FIR filter bank, and

(e) demonstration of the applicability of the proposed framework to analyze MLP classifiers

which are trained on mel filter bank energy features, multi-resolution relative spectra fea-

tures, and the more conventional mel frequency cepstral features.
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• We propose an MLP based hierarchical approach for estimating the phonetic class-conditional

probabilities. The architecture consists of two MLP classifiers in tandem. The first classifier

is trained in the conventional way using the standard acoustic features. The contextual infor-

mation in the estimated posterior features is learned by training a second MLP classifier with

a temporal context spanning 150-250 ms.

Through extensive phoneme recognition studies and the analysis of second MLP in the hier-

archical system using Volterra series, we show that (a) the hierarchical system yields higher

phoneme recognition accuracies compared to a single MLP based system (b) the posterior fea-

tures contain useful contextual information spanning around 150-230 ms of temporal context

(c) the second MLP in the hierarchical system learns the phonetic-temporal patterns in the

posterior features, which includes the phonetic confusion patterns at the output of the first

classifier and to a certain extent the phonotactics of the language as observed in the train-

ing data, and (d) the classifier at the second stage of the hierarchy requires fewer number of

parameters and lesser amount of training data.

• We investigate the application of the hierarchical system for task adaptation, where an MLP

trained on a large amount of out-of-domain data is used at the first stage of the hierarchical

system. The MLP at the second stage of the system is trained on the in-domain or adaptation

data. Task adaptation is demonstrated by using an MLP trained on 232 hours of conversa-

tional telephone speech for recognition of isolated words on the Phonebook database. The

hierarchical adaptation yields lower error rates even when compared to the matched condi-

tions. In addition, we show that the second MLP can be simpler in terms of the number of

parameters and lesser amount of adaptation data is sufficient.

• The effectiveness of the hierarchical approach in estimating phonetic class-conditional proba-

bilities is investigated in Tandem based large vocabulary continuous speech recognition. On

the challenging DARPA GALE Mandarin task, we show that the hierarchical Tandem system

yields lower error rates when compared to the conventional single MLP based system on both

broadcast conversations and broadcast news.



1.4. ORGANIZATION 5

1.4 Organization

This thesis is organized as follows:

• Chapter 2 is an overview of automatic speech recognition in the context of the research carried

out in this thesis. We introduce multilayer perceptron based acoustic modeling and discuss its

advantages and application in hidden Markov model based ASR.

• In Chapter 3, we propose a generic mathematical framework to represent a cascade of a linear

time invariant system and a three-layer MLP using Volterra series. We discuss the application

of the proposed framework in interpreting the functionality of the MLP classifiers trained to

estimate the phonetic class-conditional probabilities.

• In Chapter 4, we propose an MLP based hierarchical approach for estimating the phonetic

class-conditional probabilities. The usefulness of the proposed approach is demonstrated in

the recognition of phonemes. Furthermore, we investigate the reasons for the effectiveness

of the hierarchical system and analyze the functionality of the second stage in hierarchical

system using Volterra analysis discussed in Chapter 3.

• In Chapter 5, the hierarchical system is investigated in task adaptation, where the goal is to

exploit MLP classifiers trained on a large amount of data and available off-the-shelf to new

tasks or application scenarios.

• Chapter 6 discusses the application of the hierarchical system in large vocabulary speech

recognition in Mandarin.

• Chapter 7 provides a short summary of the thesis and discusses future directions.
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Chapter 2

Speech Recognition: An Overview

2.1 Introduction

Speech is the most natural and convenient mode of communication among humans. Figure 2.1

shows a block schematic of speech communication between two humans. The talker’s brain gener-

encoded
linguistic 
message

decoded
lingusitic
message

Talker’s
Brain Articulators

Talker’s Listners
BrainOuter

Listener’s

Ear

speech
(coder) (modulator) (decoder)(demodulator)

Figure 2.1. Block schematic of human speech communication.

ates the linguistic message that appropriately moves the articulators (vocal tract, lips, tongue etc)

to generate the desired speech. The listeners outer ear acts as a frequency analyzer and converts

the acoustic pressure wave to an intermediate representation, which is processed by the listener’s

brain to decode the intended linguistic message. This formulation can be viewed as a communi-

cation problem consisting of a coder and modulator on the talker’s side and a demodulator and

decoder on the listener’s side.

The objective of automatic speech recognition (ASR) is to automatically transcribe speech (in-

tended to another person or directed to a computer) into its corresponding text. In other words, the

7
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goal is to partially1 emulate the functionality of the listener in Figure 2.1. However, unlike electri-

cal communication systems where the demodulator-decoder is essentially the reverse process of the

coder-modulator, we do not have such an advantage in designing an ASR system. As Jelinek puts

it in his book (Jelinek, 2001), “We must make do with the coder-modulator that evolution has be-

queathed to us: human language and speech.” Hence, from a communication theoretic point of view,

automatic speech recognition can be viewed as designing the decoder for the speech signal with-

out precise knowledge of the coder-modulator. Because of this constraint, ASR has been typically

approached as a statistical pattern recognition problem as shown in the following block schematic.

Feature

Acoustic

Decoder
Extraction

Speech

Θ

Words (Ŵ )

Features (X)

Models

Figure 2.2. Block schematic of an automatic speech recognition system.

Speech propagates through the air as acoustic pressure waves. The transducers (e.g., a mi-

crophone) converts the changes in the acoustic pressure into electrical signals. On a computer,

the speech signal is first discretized by sampling in time typically at a frequency of 8000 Hz or

16000 Hz. It is then quantized and stored as a digital signal. Apart from the linguistic message,

the speech signal also carries information which is irrelevant to automatic recognition of speech

such as characteristics of speakers, channel, and the environment. The objective of feature extrac-

tion is to extract the useful acoustic correlates of the underlying linguistic message from the signal,

while suppressing undesirable nonlinguistic information.

Given a sequence of acoustic feature vectors X and a trained ASR model Θ, the decoder at-

tempts to find the sequence of words Ŵ which maximizes the a posteriori probability P (W |X,Θ).

Mathematically, this can be written as

Ŵ = arg max
W

P (W |X,Θ)

1Understanding the linguistic message is beyond the scope of present day ASR systems.
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By using Bayes’ rule, the above expression can be written as

Ŵ = arg max
W

[p (X|W,Θ) P (W |Θ)] (2.1)

where, p(X|W,Θ) denotes the likelihood of the sequence of feature vectors conditioned on the se-

quence of words, and P (W |Θ) denotes the prior probability of the word sequence. The ASR model

Θ is made up of two components - the acoustic model Θa and the language model Θl, which are

estimated independently. With this assumption, (2.1) can be written as 2

Ŵ = arg max
W

[p (X|W,Θa) P (W |Θl)] (2.2)

The acoustic model Θa is estimated on a training data set consisting of the spoken utterances and

its corresponding transcription. The language model Θl helps in restricting the search space to

grammatically well-formed and meaningful sentences. The language model is estimated from a

large text corpus which is related to the task at hand. In the following subsections, we discuss

feature extraction, language modeling, and acoustic modeling in detail.

2.2 Feature Extraction

Figure 2.3 shows the source-filter model (Fant, 1960) of human speech production followed by a lin-

ear model for transmission. According to the source-filter model, the production apparatus consists

of an excitation source e(n) which generates an impulse train or white noise depending on whether

the underlying sound is voiced or not. The time varying filter g(n) represents the vocal tract, and

depending on the shape of the vocal tract, the speech signal s(n) corresponding to different sounds

is produced.

Figure 2.3 also shows a simplified model for the transmission of the speech from the talker’s

mouth to the computer for recognition. The channel effects, modeled by h(n) include the room

acoustics such as reverberation or the frequency response of the transmission line in the case of

telephone speech. In addition, the speech could be corrupted by ambient noise which is additive in

2In practice, the total likelihood in the log domain is given by log p(X|Θa) + α log P (W |Θl) + β|W |, where α is the
language model scaling factor and β is the word insertion penalty, and |W | denotes the number of words in the sequence W .
The constants α and β are determined empirically on the development data.
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ŝ(n)

speech

acquired+

e(n)excitation speech
produced s(n)

h(n)

channel

noise w(n)

filter

g(n)

source

Transmission modelProduction model

e.g. room effectse.g. vocal folds e.g. vocal tract

Figure 2.3. Block schematic of the source-filter model of speech production followed by a model for transmission.

nature. According to the above simplistic model, the speech acquired for ASR ŝ(n) is given by

ŝ(n) = w(n) + h(n) ∗ s(n), where s(n) = g(n) ∗ e(n) (2.3)

The acquired speech signal exhibits two important attributes, namely redundancy and variabil-

ity. Redundancy in the speech signal is extremely useful in preserving the quality and naturalness

of speech when it is played back. For automatic speech recognition, however, it is sufficient to ex-

tract the important acoustic correlates of the underlying linguistic message, while suppressing the

redundant information. In this way, feature extraction can also be viewed as data compression.

The speech signal also exhibits a high degree of variability. Previous works in the literature (Zue,

1985; Klatt, 1985) provide in-depth insights on the variability in the speech signal. We review these

here in relation to the simplified model of speech production/transmission discussed in Figure 2.3.

• Environmental variability: This includes the effect of the channel h(n) and the additive noise

w(n). The environmental variability is typically compensated by post-processing the acoustic

features. A commonly used technique is cepstral mean normalization (Atal, 1974), which has

been shown to provide robustness against channel effects under certain conditions.

• Within-speaker variability: The characteristics of the same speech sound from a speaker can

vary at different times due to the physiological conditions or the emotive state of the speaker.

These conditions affect both the excitation signal e(n) as well as the vocal tract response g(n).

• Across-speaker variability: The characteristics of speech sounds from different speakers can

vary due to the differences in the size of the vocal folds, size of the vocal tracts or even the

differences in the socio-linguistic background of the speakers. These factors affect the charac-

teristics of the filter g(n) as well as the excitation source e(n). The variability in speech due to
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the size of the vocal tract is typically compensated using vocal tract length normalization (Lee

and Rose, 1996).

• Coarticulatory effects: The acoustic characteristics of phonemes is affected by the neighboring

phonetic context due to coarticulation. This variability is best handled by context dependent

modeling.

In short, the goal of feature extraction is threefold: (a) extract useful acoustic correlates which

are relevant to the identification of the underlying sound3 (b) suppress the effect of nonlinguistic

factors such as speaker and environmental variability and (c) achieve data compression.

Figure 2.4 is a contrastive block schematic of four feature extraction techniques which are com-

monly used in ASR (a) linear predictive cepstral coefficients (LPCC) (Makhoul, 1975), (b) mel fre-

quency cepstral coefficients (MFCC) (Davis and Mermelstein, 1980), (c) perceptual linear predictive

cepstral coefficients (PLP) (Hermansky, 1990) and (d) multi-resolution relative spectral (MRASTA)

features (Hermansky and Fousek, 2005).

Pre-emphasis

The speech signal has an overall spectral slope of -6dB per octave due to the combined effect of

glottal pulse roll-off (-12dB per octave) and the lip radiation (+6dB per octave). This slope can be

compensated by performing pre-emphasis on the speech signal as s′(n) = s(n) − αs(n − 1), where α

typically takes values between 0.90 and 0.98. Moreover, pre-emphasis also helps removing the dc

component in the speech signal.

Short time Fourier Analysis

Spectral analysis is the common stage in most of the state-of-the-art feature extraction techniques

in ASR. As speech is quasi-stationary, its short-time Fourier magnitude spectrum is typically es-

timated using an analysis window size of 25 ms and a frame shift of 10 ms. The power spectrum

is subsequently computed by squaring the magnitude spectrum. A plot of the power spectrum (in

decibels) of speech as a function of time is also known as a spectrogram. The acoustic features for

3Although this information is mainly captured by the filter response g(n) in Figure 2.3, studies have shown that the exci-
tation signal e(n) can contain additional complimentary information such as the pitch (Stephenson et al., 2004). Appending
pitch information to standard acoustic features has been found to be particularly useful in recognition of speech in tonal
languages such as Mandarin (Lei et al., 2006).
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Figure 2.4. Comparison of different feature extraction techniques. The figure is motivated from a similar comparative
block schematic Figure 22.4 in (Gold and Morgan, 1999).

ASR are derived from the spectrogram by processing it along both frequency and time as discussed

in the following subsections.

Processing along Frequency

In this section, we discuss the processing along frequency for different feature extraction techniques
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discussed in Figure 2.4.

• Linear predictive cepstral coefficients (LPCC):

The linear predictive analysis of speech is based on the source-filter model for human speech

production (Makhoul, 1975). The idea is to model the filter in Figure 2.3 as an all-pole model.

The linear predictive coefficients parameterize the filter which carries information on the un-

derlying speech sound, and this is the motivation for using them as features.

The linear predictive coefficients can be estimated from the auto-correlation matrix, which

can be estimated from the speech signal in the time domain. However, for comparative il-

lustration with other feature extraction techniques, the auto-correlation is computed as the

inverse Fourier transform of the power spectrum in Figure 2.4.

It is well known that the useful information about the speech sounds lie in the gross shape of

its spectrum, and not in the finer details. In this respect, the power spectrum of the filter (pa-

rameterized by the linear predictive coefficients) is a smoothed estimate of the power spectrum

of the speech. In addition, auto-regressive modeling exhibits peak-hugging property where

the peaks in the power spectrum are matched better in comparison with its valleys (Makhoul,

1975). The linear predictive cepstral coefficients are computed using the recursion formula

described in (Markel and Gray, 1976).

• Mel frequency cepstral coefficients (MFCC):

Spectral smoothing can also be achieved by integrating the power spectrum within overlap-

ping critical band filters. In MFCC feature extraction, the frequency axis is first warped to

the mel psychoacoustic scale, which is roughly linear below 1kHz and roughly logarithmic

above this point. Triangular filters which are equally spaced in the mel scale are applied on

the warped spectrum. The output of the filters are compressed using the logarithm function

and cepstral coefficients are computed by applying the discrete cosine transformation (DCT).

Further smoothing is achieved by dropping the higher order cepstral coefficients, which are

known to contain mainly speaker specific information.

• Perceptual linear predictive cepstral coefficients (PLPCC):

In the PLP feature extraction technique, the frequency axis is first warped to the Bark fre-

quency scale. Trapezoidal shaped filters (motivated by the fact that they approximate the
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power spectrum of the critical band masking curve from Fletcher (Fletcher, 1995)) equally

spaced on the Bark frequency scale are applied. In PLP, pre-emphasis is performed in the

frequency domain using a scaling function, which is based on the equal-loudness curve. The

output of the filter bank is compressed using cubic root function, which is motivated by the

power law relationship between the intensity and amplitude. The cepstral coefficients are

estimated from the modified auditory spectrum by following the same steps as in LPCC.

• Multi-resolution relative spectra features (MRASTA):

In MRASTA feature extraction, the log-energies in the Bark critical bands are used as fea-

tures, but the important aspect is the processing of the trajectories in time. This is discussed

in the following section.

Processing along Time

It is well known that important characteristics of speech sounds are also present in its dynam-

ics (Furui, 1986a). The simplest and the most common way to capture these dynamics is to append

the static cepstral features (LPCC, MFCC or PLPCC) with its first order time derivatives (delta cep-

strum) and the second order time derivative (delta-delta cepstrum) (Furui, 1986b). The first order

derivative is an estimate of the local slope, and is typically computed by applying an FIR filter with

impulse response function given in Figure 2.5 (a) on the static features. The delta-delta features

are computed using the impulse response function shown in Figure 2.5 (b).
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Figure 2.5. (a) A typical impulse response for computing delta features in hidden Markov model toolkit (HTK) (Young
et al., 2000). (b) Impulse response function for computing the delta-delta features.

Multi-resolution relative spectra feature (MRASTA) extraction technique is an extension to delta
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features and RASTA filtering (Hermansky and Fousek, 2005). Here, the temporal information

is integrated by filtering the log-energies in critical bands (auditory spectrum) using a bank of

bandpass filters with varying resolutions. In the time-domain, these filters have the functional form

of the first or second derivative of a Gaussian function as shown in Figure 2.6. In the frequency

domain, the above operation can be viewed as filtering the modulation spectrum of speech. The

bandwidth of the filters is controlled by the variance of the Gaussian function.
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Figure 2.6. (a) Impulse response of MRASTA filters with the shape of first order Gaussian derivative. (b) Impulse response
of MRASTA filters with the shape of second order Gaussian derivative. The standard deviation of the Gaussian function
are 8, 12, 18, 27, 40, 60, and 90 ms. These filters span 70 frames or 700 ms of temporal context.

Cepstral Mean/Variance Normalization

Cepstral mean and variance normalization is a commonly used post-processing technique of the

acoustic features. As shown in Figure 2.3, the channel h(n) (room acoustics or the line character-

istics in the case of telephone speech) has a convolutive effect on the speech in the time domain.

In the cepstral domain, the effect of the channel is additive. If the characteristics of the channel

varies slowly compared to that of the speech, its effect can be compensated by performing mean

normalization in the cepstral domain. In addition, cepstral variance normalization has also been

shown to provide some robustness against additive noise (Gales and Young, 2008).

In most state-of-the-art systems, cepstral mean/variance normalization is performed on per

speaker basis to achieve speaker normalization. In the case of MRASTA feature extraction, the

filters have a zero mean. Hence the features are inherently robust to linear distortion.
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2.3 Language Modeling

The language model Θl estimates the joint probability of a sequence of words denoted by WK
1 =

{W1,W2, . . . WK} as

P (WK
1 |Θl) =

K
∏

k=1

P (Wk|W
k−1
1 ,Θl) (2.4)

In ASR, an N -gram statistical language model (Bahl et al., 1983) is typically used, where it is

assumed that the present word Wk is statistically independent of the preceding words W k−N
1 . In

other words, the N -gram language model can be interpreted as a Markov model of order N -1. The

language model probability is then given by

P (WK
1 |Θl) =

K
∏

k=1

P (Wk|W
k−1
k−N+1,Θl) (2.5)

Typical values of N are 2 (bigram) and 3 (trigram). The N -gram language model probabilities are

estimated from a text corpus related to the recognition task at hand. The maximum likelihood

estimate of the trigram probability is given by

P̂ (w3|w1, w2) =
C (w1, w2, w3)

C (w1, w2)
(2.6)

where C (w1, w2, w3) and C (w1, w2) respectively denote the number of times the word sequence

{w1, w2, w3} and {w1, w2} occur in the training text corpus. A major problem with the maximum

likelihood estimation is data sparsity. Several algorithms have been proposed to assign non-zero

probability mass to unseen events. For example, in the classical Katz smoothing technique (Katz,

1987), the trigram probability is estimated as follows.

P̂ (w3|w1, w2) =































C(w1,w2,w3)
C(w1,w2)

if C (w1, w2, w3) ≥ M

dC(w1,w2,w3)
C(w1,w2)

if 1 ≤ C (w1, w2, w3) < M

β(w1, w2)P̂ (w3|w2) otherwise

(2.7)

In other words, if the count C (w1, w2, w3) is sufficiently large, then the maximum likelihood
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estimate is directly used. If the count is less than a certain constant M , then the maximum like-

lihood estimate is discounted by a factor d which is computed based on the Good-Turing theory.

The total discounted mass is assigned to unseen events using the backoff technique. For example,

the probability of the unseen trigram is estimated by backing off to the bigram estimate P̂ (w3|w2),

where β(w1, w2) is the backoff weight. Detailed description of various language model smoothing

techniques can be found in (Jelinek, 2001).

2.4 Acoustic Modeling

Hidden Markov models (HMMs) have been the mainstream of acoustic modeling in almost all prac-

tical large vocabulary ASR systems (Baker, 1975; Jelinek, 1976). In this section, we briefly discuss

the theory and application of HMM in speech recognition. A detailed treatise on the theory of

HMMs can be found in (Rabiner, 1989; Bilmes, 2006). The practical aspects or tricks of the trade of

applying HMMs in ASR are discussed in (Gales and Young, 2008).

2.4.1 Hidden Markov Model

Let the likelihood of a sequence of acoustic feature vectors XT
1 = {x1,x2, . . . ,xT } conditioned on a

word W and its model Θa be denoted by p(XT
1 |W,Θa). In HMMs we assume another discrete valued

random variable ST
1 = {s1, s2, . . . , sT }, which denotes the hidden state sequence and write the above

expression as

p(XT
1 |W,Θa) =

∑

ST

1

p(XT
1 , ST

1 |W,Θa)

=
∑

ST

1

p(XT
1 |ST

1 ,W,Θa) P (ST
1 |W,Θa) (2.8)

The computation of (2.8) can be simplified greatly by the following assumptions which form the

heart of the HMM theory.

• Markov Chain Assumption:

We assume that the underlying state sequence is a first order Markov chain. In other words,

the present state depends only on the immediately preceding state as P (st|s1, s2, . . . st−1) =
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P (st|st−1). As a result, the probability of the state sequence ST
1 in (2.8) can be written as

P (ST
1 |W,Θa) = P (s1)

T
∏

t=2

P (st|st−1) (2.9)

• Stationarity Assumption:

The hidden state sequence is also assumed to be stationary. In other words, the state transi-

tion probabilities are independent of time t as

P (st = j|st−1 = i) = ai,j ∀ t (2.10)

Suppose that the states belong to a finite alphabet of size N , then state transitions are cap-

tured by the transition probability matrix of size N ×N with elements ai,j . The term P (s1) in

(2.9) is the initial state occupancy probability and it is represented as πj = P (s1 = j).

• Output Conditional Independence Assumption:

The observation at time t depends only on the underlying state st. As a result, the probability

of the observation vector XT
1 , given the corresponding state sequence ST

1 is given by

p(XT
1 |ST

1 ,W,Θa) =

T
∏

t=1

p(xt|st) (2.11)

Furthermore, in a given state j, the features are assumed to be stationary and modeled using

identical multivariate probability density functions. That is, p(xt|st = j) = pj(xt). To summarize,

the acoustic model for the word W consists of a state transition probability matrix, an initial state

occupancy probability vector, and the parameters of the output density function in each of the

states. The likelihood of the feature vector sequence conditioned on the word and its acoustic model

is obtained by combining (2.9) and (2.11) as

p(XT
1 |W,Θa) =

∑

ST

1

P (s1)p(x1|s1)
T
∏

t=2

p(xt|st)P (st|st−1) (2.12)

The direct computation of the above equation grows exponentially with the number of frames T
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in the utterance. However, this can be efficiently computed using the forward-backward recursion

as described in (Rabiner, 1989). Alternatively, the above equation can be approximated by replacing

the summation with a max operator as (2.13). In other words, by finding the state sequence that

yields the maximum likelihood. The most likely state sequence can be efficiently computed using

the Viterbi algorithm (Viterbi, 1967)

p(XT
1 |W,Θa) ≈ max

ST

1

P (s1) p(x1|s1)

T
∏

t=2

p(xt|st)P (st|st−1) (2.13)

In large vocabulary ASR systems, it is not practical to train word based HMM models, mainly

due to the data insufficiency problem. Moreover, it does not provide the flexibility to model new

words previously unseen during the training process. To overcome this problem, a word is modeled

as a sequence of phonemes and phoneme specific HMM models are trained. The mapping from

words to the pronunciation lexicon is obtained from a pronunciation dictionary.

Pronunciation dictionaries map a given word to its corresponding sequence of phonemes. For

example, in the TIMIT dictionary, the word “dog” is transcribed as /d/ /ow/ /g/. In practice, there can

be variation in pronunciation due to the differences in the dialect or the influence of the native lan-

guage. This is mitigated to a certain extent by including different plausible pronunciation variants.

Alternatively, pronunciation dictionaries can also be obtained by using letter-to-sound rules.

Pronunciation
Dictionary

State 
Transitions

Language

Model

Emission
Scores 
GMM/MLP

Extraction
Decoder

Feature

Figure 2.7. Detailed block schematic of an ASR system.

Figure 2.7 shows the detailed block diagram of an HMM based ASR system. The language model

provides a grammar with words as units such that the search is biased towards grammatically well

formed sentences. Each word in the language model is replaced by its pronunciation lexicon to

derive a phonetic search network. Each phoneme is replaced by its corresponding HMM model
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to derive a large search network, which is commonly known as a trellis. While decoding, given a

sequence of acoustic feature vectors XT
1 = {x1, . . .xt, . . . ,xT }, the emission scores pj(xt) in each of

the HMM states j are first estimated. The Viterbi algorithm is subsequently applied on the trellis

to decode the maximum likelihood state sequence, and thereby the best word sequence.

2.4.2 State Emission Modeling

The link between the acoustic observation and the trellis (prior model) is provided by the state

emission modeling. The emission score in the state j of an HMM is denoted by pj(xt). In the

following sections, we discuss various approaches for estimating the state emission scores.

Discrete Modeling

In this case, the acoustic feature vector sequence XT
1 = {x1,x2, . . .xt, . . .xT } is first quantized to dis-

crete observation symbols OT
1 = {o1, o2, . . . ot, . . . oT }, where the symbols belong to a finite alphabet.

This discretization is performed in an unsupervised fashion using standard vector quantization

techniques such as k-means clustering. The emission probability of the observation symbol ot in

state j of the HMM is modeled as a discrete distribution Pj(ot).

Continuous Modeling

In discrete HMMs, there is a loss of information due to vector quantization. Alternatively, the

acoustic feature vector in a state can be modeled as a continuous random variable using a contin-

uous distribution function such as a Gaussian mixture model (GMM). The likelihood of the feature

vector xt in state j of the HMM is given by

pj(xt) =

M
∑

k=1

cj,k N (xt; µj,k, Σj,k) (2.14)

where cj,k denotes the weight of the mixture component k in state j, and N (xt; µj,k, Σj,k) denotes

the normal distribution with a mean vector µj,k and a covariance matrix Σj,k given by

N (x;µj,k,Σj,k) =
1

(2π)
D

2 |Σj,k|
1
2

exp

[

−
1

2
(x − µj,k)′ Σj,k

−1 (x − µj,k)

]

(2.15)
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Semicontinuous Modeling

In continuous density modeling, there is a mean vector and a covariance matrix associated with

each of the mixture component in a state. This will result in a large number of free parameters,

which can lead to data insufficiency while training. In semicontinuous density modeling, the means

and covariance matrices are shared among all the phonetic classes. This is achieved by clustering

the data into a designated number of clusters M . The state emission likelihood in state j is then

given by

pj(xt) =

M
∑

k=1

cj,k N (xt;µk,Σk) (2.16)

where N (x;µk,Σk) denotes the normal distribution representing the cluster k with a mean vector

µk and a covariance matrix of Σk. This approach can be seen as a hybrid between discrete and con-

tinuous modeling. It can seen that the acoustic features are clustered into M components (discrete

modeling), and the likelihood for a phoneme is the linear combination of the likelihoods given each

cluster (continuous modeling).

2.4.3 Training Criteria

In the discussion so far, we assumed a trained acoustic model Θa. In HMM based acoustic modeling,

the acoustic model consists of an HMM for each of the basic modeling unit, e.g., a phoneme, and its

parameter set includes a state transition probability matrix and in the case of mixture of Gaussians

emission distribution, a mean vector and a covariance matrix for each of the mixture component in

a state. The parameters of the acoustic model are estimated to optimize certain training criterion

on the training data. The most commonly used training criterion is maximum likelihood estimation

which is discussed below.

Maximum Likelihood (ML) Estimation

Suppose that the training set contains R utterances. The sequence of acoustic feature vectors for

utterance r is denoted by Xr and the corresponding sequence of words is denoted by Wr. If Θ (the

subscript in Θa is dropped for notational simplicity) denotes the acoustic model, then the maximum
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likelihood training criterion is given by

FML(Θ) =

R
∑

r=1

log p(Xr|Wr,Θ) (2.17)

The ML estimate of the acoustic model is given by ΘML = arg maxΘ FML(Θ). The training can be

efficiently performed using the Baum-Welch reestimation algorithm (Baum et al., 1970), which is

based on the principle of expectation maximization (Dempster et al., 1977).

The ML training ensures that the likelihood of the observed data conditioned on the correspond-

ing word sequence is maximized. This approach does not ensure the discrimination among the

models. To this end, discriminative training criteria such as maximum mutual information (MMI)

estimation and minimum Bayes’ risk (MBR) have been found to be useful in ASR. We discuss them

in the following subsections.

Maximum Mutual Information (MMI) Estimation

MMI estimation was one of the first discriminative training criteria to be investigated in

ASR (Nadas, 1983; Bahl et al., 1986). Here, the parameters of the acoustic model are optimized

to maximize the mutual information between the acoustic feature vectors and the recognized word

sequence. If Xr and Wr denote the sequence of feature vectors and words respectively for the utter-

ance r, then the empirical MMI training criterion (Brown, 1987) is given by

FMMI(Θ) =
1

R

R
∑

r=1

log
p(Xr,Wr|Θ)

P (Wr)p(Xr|Θ)
(2.18)

As the language model is independent of the acoustic model parameters parameters Θ, the training

criterion can be equivalently written as

FMMI(Θ) =
1

R

R
∑

r=1

log
p(Xr|Wr,Θ)P (Wr)
∑

W p(Xr|W,Θ)P (W )

=
1

R

R
∑

r=1

log P (Wr|Xr,Θ) (2.19)

The MMI training is discriminative because the model parameters are optimized such that the like-

lihood of the correct model is maximized and the likelihood of the competing models is minimized.
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It can be seen from (2.19) that the MMI training is equivalent to maximizing the posterior proba-

bility of the word sequence given the data. The training is performed using extended Baum-Welch

algorithm or gradient descent based approaches.

It has been shown that when the prior distribution (i.e., the language model) and the assumption

on the parametric form of the distribution are correct, both ML and MMI are consistent estimators

with the former yielding lower variance (Nadas, 1983). However, when the above assumptions are

not valid, MMI training has been shown to yield lower word error rates.

Minimum Bayes’ Error (MBR) Estimation

In MBR training (Kaiser et al., 2002), the parameters of the acoustic model are optimized to min-

imize the expected loss during recognition L(Wr,W ) between the recognized sequence of words W

and the reference word sequence Wr as

FMBR(Θ) =
R
∑

r=1

∑

W p(Xr|W,Θ)P (W ) L(Wr,W )
∑

W p(Xr|W,Θ)P (W )

=
R
∑

r=1

∑

W

P (W |Xr,Θ) L(Wr,W ) (2.20)

The loss function L(Wr,W ) can be the Levenshtein edit distance between the word sequences Wr

and W . Alternatively, the distance can be computed between the phonetic sequences correspond-

ing to the word sequences, which forms the basis of minimum phone error training (Povey and

Woodland, 2002).

Artificial neural networks (ANN) form a prominent class of discriminatively trained models,

which have been shown to be useful in ASR. We discuss this in the following section.

2.5 Artificial Neural Networks

An artificial neural network (ANN) is a mathematical model that attempts to emulate the struc-

ture and functionality of the biological neural network. It is a dense interconnection of simpler

computational elements known as artificial neurons. Artificial neural networks are also known as

connectionist models.
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Figure 2.8. Block schematic of an artificial neuron.

Figure 2.8 shows the block schematic of an artificial neuron. Mathematically, it can be viewed

as a multi-input single-output function. Suppose that x1, x2, . . . , xK denote the input to the neuron,

then the output of the neuron y is given by

y = φ

(

b +

K
∑

k=1

wkxk

)

(2.21)

where w1, w2, . . . wK denote the weights associated with the input x1, x2, . . . xK respectively and b

denotes the bias or the threshold value. The function φ(.) is sigmoidal or an “S” shaped nonlinear

activation function. Typical examples include sigmoid and hyperbolic tangent functions.

Neural networks can find application in function approximation (regression) as well as pattern

classification (recognition). They exhibit two important properties. Firstly, in the case of regression,

it has been shown that a feedforward neural network with at least one hidden layer can approx-

imate any continuous function to the desired level of accuracy (Hornik et al., 1989). In the case

of classification, it has been shown that the neural network classifiers with sufficient capacity and

trained on sufficient amount of data can estimate the posterior probabilities of the output classes

conditioned on the input features, provided the samples are drawn with the correct prior distri-

bution (Richard and Lippmann, 1991). This coupled with efficient training algorithms have made

artificial neural networks a popular choice in various machine learning applications.

The multilayer perceptron (MLP) represents the prominent and well researched class of artifi-

cial neural networks. It is a feedforward neural network where information flows in one direction

only. The other classes of artificial neural networks include recurrent neural networks (with feed-
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back mechanism), Kohonen self organizing maps, etc. (Haykin, 1998) provides a comprehensive

description of artificial neural networks. The tricks of the trade of using neural networks are dis-

cussed in (LeCun et al., 1998).

input
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Figure 2.9. Multilayer perceptron with one hidden layer.

Figure 2.9 is a block schematic of an MLP with one hidden layer, where W denotes the weight

matrix connecting the input layer to the hidden layer, C denotes the weight matrix connecting

the hidden layer to the output layer, bh and bo denote the bias vectors at the hidden and output

layers respectively, and Φ(.) and Ψ(.) denote the vector valued activation functions at the hidden

and output layer respectively. If x denotes the input to the MLP, then its output z is given by

z = Ψ(bo + CΦ(bh + Wx)) (2.22)

The hidden activation function is typically sigmoid or hyperbolic tangent. In the case of regres-

sion, the output nonlinearity is dropped. In classification, the output nonlinear function is typically

softmax, which can be interpreted as multi-dimensional extension of the sigmoid function (Bridle,

1990). As discussed previously, in a probabilistic interpretation, z represents a vector of the poste-

rior probabilities of the output classes (e.g., phonemes) conditioned on the input features x.
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2.5.1 MLP Based Acoustic Modeling

An area where MLPs have enjoyed considerable success is automatic speech recognition, particu-

larly in the acoustic modeling of speech (Bourlard and Morgan, 1994; Zhu et al., 2004; Morgan et al.,

2005; Stolcke et al., 2006; Fousek et al., 2008; Park et al., 2009). Here, the MLP is typically trained

using standard acoustic features such as MFCC or PLP coefficients. The output classes of the MLP

represent the subword units of speech such as phonemes. The trained MLP estimates the posterior

probabilities of the phonemes for every 10 ms of speech, which are subsequently used in ASR. In

practice it is observed that taking an explicit temporal context of around 90 ms on these features is

useful.

Training

Suppose that the MLP has K output phonetic classes. The output of the MLP is an estimate of

the posterior probability of the output classes qk, k = 1, 2, . . . K conditioned on the acoustic feature

vector x and the MLP model Θ as P̂ (qk|x,Θ). The distribution of the underlying correct phonetic

classes or the ground truth is denoted as P (qk|x) and is obtained by hand labeling or estimated by

forced alignment. The ground truth labels are typically in the hard-target or one-hot format, where

only one phonetic class is active at a given time instant. In classification problems, the MLP is

usually trained using minimum cross-entropy error criterion, which can be expressed as

F(Θ) = − EX

[

∑

k

P (qk|x) log P̂ (qk|x,Θ)

]

= −

∫

x

pX(x)

[

∑

k

P (qk|x) log P̂ (qk|x,Θ)

]

dx (2.23)

Now, suppose that the training data {x1,x2, . . . ,xN} are drawn according to the distribution pX(x),

then the empirical cross-entropy error criterion can be written as

F(Θ) ≈ −
1

N

[

∑

n

∑

k

P (qk|xn) log P̂ (qk|xn,Θ)

]

(2.24)

The model parameters are optimized to minimize the above error criterion as Θmlp = arg minΘ F(Θ).

Gradient descent approach is used for the optimization, and this can be efficiently implemented
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using the back-propagation algorithm (Bishop, 1995). In the following sections, we discuss some of

the information theoretic interpretations of minimum cross-entropy training:

• Relationship to Kullback-Leibler divergence: The cross-entropy training criterion (2.23) can

be rearranged as

F(Θ) = −

∫

x

p(x)
K
∑

k=1

P (qk|x) log P (qk|x)dx +

∫

x

p(x)
K
∑

k=1

P (qk|x) log
P (qk|x)

P̂ (qk|x)
dx

= H(Q|X) + KLX(P ||P̂ ) (2.25)

where H(Q|X) is the conditional entropy of the phonetic labels given the acoustic features

assuming the true distribution P (q|x), and KLX(P ||P̂ ) denotes the average KL divergence be-

tween the reference distribution and the estimated distribution on the entire training data set.

Hence minimizing the cross-entropy is same as minimizing the KL divergence between the ref-

erence and estimated distributions. For hard-target labeling strategy, the term H(Q|X) = 0,

and cross-entropy is same as the KL divergence.

• Relationship to mutual information: The cross-entropy training criterion (2.23) can be rear-

ranged using Bayes’ rule as

F(Θ) = −

∫

x

K
∑

k=0

p(x, qk) log
p̂(x, qk)

p̂(x)P̂ (qk)
dx −

K
∑

k

P (qk) log P̂ (qk) (2.26)

It can be seen from the above equation that minimum cross-entropy training is equivalent to

maximum mutual information training as the first term in the right hand side of the above

equation is the expression for mutual information (Bridle, 1990). However, it should be noted

that the pointwise mutual information log p̂(x,qk)

p̂(x)P̂ (qk)
between the features and the labels is

obtained from the probability distribution estimated by the MLP, but the expectation is with

respect to the true distribution p(x, q). As a consequence, maximizing above form of mutual

information is also equivalent to maximizing the classification accuracy.

• To obtain further insights, we write the expression for mutual information, where the expec-



28 CHAPTER 2. SPEECH RECOGNITION: AN OVERVIEW

tation is with respect to the joint distribution p̂(x, q) estimated by the MLP as

MI(Q,X) =

∫

x

K
∑

k=0

p̂(x, qk) log
p̂(x, qk)

p̂(x)P̂ (qk)
dx

= −
K
∑

k=0

P̂ (qk) log P̂ (qk) +

∫

x

p(x)

K
∑

k=0

P̂ (qk|x) log P̂ (qk|x)dx

= Ĥ(Q) − Ĥ(Q|X) (2.27)

The term Ĥ(Q) is the entropy of the prior distribution of the labels as estimated by the MLP,

and this can be estimated as the entropy of the average of the output of the MLP. 4 The term

Ĥ(Q|X) is the conditional entropy of the phonetic symbols after observing the features, and

this can be estimated as the average of the entropy of the output of the MLP as

Ĥ(Q|X) ≈
1

N

N
∑

n=1

H(Q|xn) xn drawn from from the distribution p(x) (2.28)

The above expression for mutual information can be misleading as a higher mutual infor-

mation does not always guarantee a higher classification accuracy. As an extreme example,

consider a badly trained MLP which always yields erroneous decisions with high confidence

(or zero entropy).

Relation to semicontinuous modeling

The architecture of a three layered MLP can be likened to semicontinuous density modeling dis-

cussed in Section 2.4.2 if the bias and activation function at the output layer is excluded. To il-

lustrate this, we consider a semicontinuous Gaussian density model with M mixtures and diagonal

covariance matrices. Let µi,k and σi,k denote the mean and standard deviation of the feature compo-

nent xk in the mixture i. If cj,i denote the weight associated with mixture component i of the output

class j, the likelihood of the feature vector x = [x1, . . . , xk, . . . xK ]′ for the class j can be written from

4The average of the posterior probabilities estimated by the MLP on the training data is an estimate of the prior. Refer
Appendix A.3 for the proof.
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(2.16) as

pj(x) =

M
∑

i=1

cj,i φ

(

bi +

K
∑

k=1

(

xk − µi,k

σi,k

)2
)

(2.29)

where bi = K log(2π) +

K
∑

k=1

2 log (σi,k) and φ(s) = exp(−s/2) (2.30)

To compare this, consider a three layer MLP with architecture K × M × N , where wi,k denotes

the weight connecting the input node k to the hidden node i and cj,i denotes the weight connecting

the hidden node i to the output node j. If µk and σk denotes the mean and standard deviation of the

input feature component xk and φ(.) denotes the sigmoid activation function at the hidden layer,

the linear activation (without bias) at the output node j is given by

yj =

M
∑

i=1

cj,i φ

(

bi +

K
∑

k=1

wi,k

xk − µk

σk

)

(2.31)

where bi denotes the bias at the hidden node i and φ(s) = 1
1+exp(−s) . It can be seen that in both the

cases, the input is first projected to a hidden representation which is shared among all phonemes.

In semicontinuous modeling, this mapping is captured by the mean and standard deviations of the

mixture components. In the MLP, this mapping is learned by the input-to-hidden wights and fea-

ture normalization is not mixture-specific in this case. The hidden-to-output weights capture the

mixture weights associated with the mixture components. The notable difference between the two

modeling techniques is in the nonlinear kernel φ(.), which is exponential in the case of semicon-

tinuous modeling and sigmoidal in the case of MLP. In addition, there can be a difference in the

training criterion. The MLP is trained using the minimum cross-entropy criterion which is equiv-

alent to maximum mutual information (MMI) training as discussed in The semicontinuous GMM

model can be trained either using maximum likelihood criterion or discriminative training methods

such MMI training.

Advantages of MLP based acoustic modeling

The MLP based acoustic modeling offers the following benefits. Some of these are also shared with

other modeling techniques such as recurrent neural networks, support vector machines, Gaussian
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mixture modeling etc.

• Provides a discriminative acoustic model.

• It can model feature vectors with a large dimensionality. As a result, temporal information in

the features can be explicitly learnt by taking a temporal context on the features.

• It obviates the need for strong assumptions on the parametric form of the probability distri-

bution function or the statistics of the input features.

• It obviates the need for statistical independence assumptions between feature streams in the

case of feature combination. Consequently, feature combination can be achieved by simple

concatenation (or early integration).5

• The output of the MLP are probabilities with useful properties such as positivity and summing

up to one. As a result, multistream combination can be effectively achieved at the output of

the MLP using late integration methods. (Kittler et al., 1998).

• If the MLP is trained with a large amount of data from a diverse population of speakers and in

different of environmental conditions, it has been shown to achieve invariance to speaker (Zhu

et al., 2004) and environmental specific information (Ikbal, 2004).

• Can be efficiently trained and is scalable with large amount of data. Using efficient toolkits

such as Quicknet, it is possible to train MLPs on at least a few thousand hours of speech.

So far we discussed that the MLP estimates the posterior probabilities of phonemes conditioned

on the acoustic features for every 10 ms of speech. In the following sections, we discuss the use of

the estimated class-conditional probabilities in ASR.

2.5.2 Hybrid System

In the hybrid HMM/MLP system (Bourlard and Morgan, 1994), the MLP is used as a (scaled) likeli-

hood estimator in place of the conventional GMM model. The state emission likelihood is obtained

from the associated output of the MLP by normalizing the posterior probability by the respective

5If x1 and x2 denotes the feature vectors, the scaled likelihoods are obtained by
p(x1,x2|qt=i,Θ)

p(x1,x2)
=

P (qt=i|x1,x2,Θ)
P (qt=i)

. In the

case of parametric density modeling, the feature streams are typically assumed to be independent as p(x1,x2|qt = i, Θ) ≈
p(x1|qt = i, Θ)p(x2|qt = i, Θ)
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prior probability. For example, if xt denotes the acoustic feature vector at time t, the state emission

score in state k is the scaled likelihood given by

p(xt|qk,Θmlp)

p(xt)
=

P (qk|xt,Θmlp)

P (qk)
(2.32)

The numerator of the right hand side term in (2.32) is obtained at the output of the MLP. The

denominator denotes the prior probabilities of phonemes and it is estimated from the relative fre-

quency of the phonemes in the label set. The output classes of the MLP could also represent the

sub-phonemic states, for example, three output classes (states) per phoneme. This finer modeling of

the output classes has been shown to yield higher accuracy in recognition of words (Fontaine et al.,

1996) as well as phonemes (Schwarz et al., 2006; Pinto et al., 2008).

A natural extension to this is context dependent modeling. In the case of conventional

HMM/GMM modeling, it is well known that context dependent modeling yields significantly better

performance as the probability density functions that are sharper and less overlapping than their

context independent counterparts. In addition context dependent modeling helps in the decoding

process by exploiting the sequence information. A major drawback of the hybrid system is that

it cannot be easily extended to context dependent modeling as the output classes of the MLP can

grow enormously. There have been attempts to indirectly estimate the posterior probabilities of

context dependent phonemes as in (Bourlard et al., 1992; Franco et al., 1994; Fritsch et al., 1997).

Alternatively, the posterior probabilities of context independent phonemes can be used as features

to a standard HMM/GMM based ASR system and this forms the basis of Tandem system, which is

discussed in the following section.

2.5.3 Tandem System

The basic idea of the Tandem approach (Hermansky et al., 2000) is to use the class-conditional prob-

abilities estimated by the MLP as features to a standard HMM system in the same way as acoustic

features such as MFCC. In this way, the application of the state-of-the-art HMM/GMM modeling

techniques such as context dependent modeling, state tying, speaker adaptation, discriminative

training, etc becomes straightforward.

The posterior probabilities of phonemes estimated by the MLP have a multinomial distribution,
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Figure 2.10. The probability density function of (a) posterior features (b) log posterior features and (c) maximum vari-
ance direction after Karhunen-Loeve transformation on the TIMIT database.

and hence they cannot be directly used as features to the HMM/GMM system. To address this

problem, posterior features are first whitened by applying the logarithm and then decorrelated by

using Karhunen-Loeve transformation (KLT).

Figure 2.10 (a) shows the distribution of the output of the MLP corresponding to the phoneme

/iy/ (e.g., feel) in two cases (i) when the underlying phoneme is /iy/ and (ii) all other phonemes in

speech, denoted by the symbol /oth/. Figure 2.10 (b) shows the corresponding distribution of the

log posterior probability values and Figure 2.10 (c) shows the distribution of the output of the KLT

transformation with the maximum variance. This transformation allows us to model the posterior

features using a GMM.

Taking a logarithm of the output of the MLP with a softmax output nonlinearity is equivalent to

taking the linear activation values, except for a constant additive factor. 6 It has been shown that

using the linear activation values and applying KLT is more effective than the standard Tandem

approach (Hermansky et al., 2000).

In the Tandem approach, the discriminatively trained MLP can be viewed as a nonlinear feature

transformation, which retains (depending on the classification accuracy) the underlying linguistic

information, while suppressing nonlinguistic variabilities such as speaker information. As a re-

sult, the posterior features are treated just like standard acoustic features, and state-of-the-art

HMM/GMM modeling can be directly applied.

In a recent work (Aradilla, 2008), the output of the MLP were used directly as features (i.e.,with-

out transformation), but the state emission distribution was appropriately assumed to be multino-

6If y = [y1, y2, . . . yi, . . . yN ] denotes the linear activation vector at the output of the MLP, and z = [z1, z2, . . . zi, . . . zN ]
denotes the output after applying the softmax activation function. The log-posteriors can be written as log(zi) = yi −

log
“

PN
j=1 exp (yj)

”

.
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mial, and its parameters were learned. The parameters of the system (state transition matrix and

the multinomial emission distribution) are estimated to minimize the Kullback-Leibler divergence

between the state distribution and the distribution estimated by the MLP.

2.5.4 Scope for Improvement and Context of this Thesis

The MLP estimates the posterior probabilities of the phonemes conditioned on the input features

x and the model Θmlp as P (q = i|x,Θmlp). There are three possible ways in which the MLP based

acoustic modeling can be improved to obtain better ASR performance.

• Richer features x : This includes designing feature extraction techniques that can better

model the spectral and temporal information in speech, and this is a dominant direction of

research in the entire ASR community. The MLP provides the advantage in this aspect as it

can effectively model features with very large dimensionality.

• Better modeling Θmlp : Better modeling can be achieved in two ways. Firstly by increasing the

size of the training data to achieve better generalization. Secondly, increasing the capacity of

the model by increasing the number of layers or the size of the hidden layer. However, this

approach is often limited by the amount of training data available.

• Finer output classes qi : The output classes of the MLP could represent finer classes such as

sub-phonemic states.

The basic premise of this research is that there exists useful contextual information in the se-

quence of posterior features estimated by the MLP, and in this sparse feature space, contextual

information spanning longer temporal contexts can be effectively modeled. To this end, we train

a second classifier on the posterior features with a longer (than 90 ms which is typically applied

on acoustic features) temporal context. With respect to the second classifier in this hierarchical

architecture, this strategy can be seen as using richer features.
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Chapter 3

Analysis of MLP Classifiers using

Volterra Series

3.1 Introduction

Multilayer perceptron (MLP) neural network is being applied in a variety of real-world applications

such as speech recognition, computer vision, bioinformatics, and computational finance, among

many other fields. One area where MLPs have enjoyed considerable success is automatic speech

recognition (ASR), particularly in acoustic modeling of speech, where it is typically used to estimate

the posterior probabilities of phonemes conditioned on the acoustic features.

MLP based acoustic modeling has been shown to improve the performance of large vocabulary

ASR systems. It has been further investigated for recognition of speech in languages such as Ara-

bic (Park et al., 2009) and Mandarin (Hwang et al., 2007). The successes in practical ASR systems

have spawned new research directions such as semi-supervised learning (Malkin et al., 2009). One

area which has received little or no attention is the analysis of the trained MLP classifiers to un-

derstand the properties of speech such as spectro-temporal patterns that are actually learned by

the trained classifier.

The goodness of the trained MLP is typically evaluated by first estimating the phonetic class-

conditional probabilities on the cross-validation or the test data set, and then using the ground

35
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truth to compute one or more of the following measures: (a) frame-level phoneme classification

error (b) cross-entropy between the estimated posterior probabilities and the phonetic labels, or

(c) the final word error rate on the task. The above measures can indicate how well the MLP is

trained in terms of the classification accuracy or its generalizing ability. In addition, the analysis of

the phonetic confusion matrix can indicate the error patterns in phoneme classification. However,

these measures do not reveal any information about the patterns in the input feature space such as

spectro-temporal patterns that are learned by the trained system for each of the phonemes.

To analyze the functionality of an MLP, one has to interpret its trained parameters namely the

weights and biases. In this chapter, we formulate a generic mathematical framework to apply the

Volterra theory of nonlinear systems (Volterra, 1930; Boyd et al., 1984) to interpret the functionality

of MLP classifiers, which are trained to estimate the phonetic class-conditional probabilities.

The specific contributions of this work include: (a) development of a mathematical framework

to apply Volterra series to a nonlinear dynamic system consisting of a cascade of a finite impulse

response (FIR) filter bank and a three-layered MLP classifier (b) calculation of the Volterra kernels

of the system in terms of the trained model parameters (c) modifications to the Volterra kernels

when the features to the MLP are normalized to zero-mean and unit-variance, (d) addressing the

scenario where a linear transformation matrix precedes the FIR filter bank, and (e) demonstration

of the applicability of the proposed framework to analyze MLP classifiers which are trained using

mel filter bank energies, mel frequency cepstral coefficients with delta and delta-delta parameters,

and multi-resolution relative spectra features. Furthermore, we also compare the Volterra kernels

obtained using an alternative analysis technique known as Weiner series.

3.2 Background

The MLP classifier can be analyzed in three broad ways by (a) deriving symbolic rules from the

trained parameters (b) representing the input-output function as a power series and analyzing

each term in the series and (c) presenting stimuli such as white noise at the input of the MLP and

studying the correlation between the stimuli and the response. We discuss each of the analysis

techniques in the following section.
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3.2.1 Rule based analysis

There have been works in the literature where artificial neural networks such as MLPs have been

analyzed by extracting symbolic representations or rules from the trained parameters (LiMin, 1994;

Setiono and Liu, 1996; Benitez et al., 1997; Setiono et al., 2002). The rules are typically of the form

“If a set of positive antecedents are true and a set of negative antecedents are false, then the conclusion

(or negated conclusion) holds.” For example, in the case of Fisher Iris data, where the features are

simple measurements such as length and width of petals and sepals, a rule derived from the MLP

could be of the form “If (petal length < 2.0 cm and petal width < 0.6 cm), then the species is Iris

setosa.” In this section, we briefly discuss some of the rule based analysis techniques.

In the knowledgetorn approach (LiMin, 1994), each node in the output or hidden layer is repre-

sented as a concept. For each concept node, a set of positive and negative attributes (different from

antecedents) are identified. A set of positive (or negative) attributes of a concept consists of nodes in

the preceding layer with positive (or negative) weights connecting the concept node. The rules for

a concept node in the output layer are identified by exploring all possible combinations of positive

and negative attributes in a tree structured fashion, starting from the concept node in the output

layer to the input layer. As exhaustive search for the combinations would grow exponentially with

the number of layers in the network, the algorithm employs a set of heuristics to reduce the search

space.

In the NeuroRule approach (Setiono and Liu, 1996), a trained three-layered neural network is

analyzed in three stages. In the first stage, the redundant connections in the network are pruned

depending on whether the absolute value of the weights is close to zero or not. After pruning, the

neural network retains only the salient connections. In the second stage, the continuous-valued

activation function in the hidden layer is quantized into a piece-wise constant function in its oper-

ating region. This is achieved by clustering the activation values on the function using the training

data. In the third stage, a set of rules are derived which represents the relationship between the

input and hidden layer, and another set of rules are derived for expressing the relationship between

the hidden and the output layer. The two sets are appropriately merged to derive the complete set

of rules. This work has been further extended in (Setiono et al., 2002), where the activation function

is approximated as a piece-wise (three-piece and five-piece) linear function.

A three-layered MLP can also be analyzed using fuzzy rules. For example, in a work by (Benitez
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et al., 1997), fuzzy rules are derived from the network by applying the principle of f -duality on the

hidden activation functions. The principle of f -duality states that if f : X 7→ Y is a one-to-one

function, and ⊕ is an operator defined in its domain X, then there exists one and only operation ⊗

in its range Y such that f(x ⊕ y) = f(x) ⊗ f(y).

For the sigmoid function f(x) = 1
1+e−x , the f -dual of addition operator (+) is given by a ⊗ b =

ab
(1−a)(1−b)+ab

. In fuzzy logic literature, the operator ⊗ is known as interactive-or (i-or), and it is a

hybrid between t-norm and the t-conorm (Benitez et al., 1997). Let x1, x2, . . . denote the activation

values at the input layer of the MLP, and w1, w2, . . . denote the weights connecting the input layer

to a particular hidden node, then the activation value at the output of the hidden node can be

decomposed using the i-or operator as

f

(

∑

i

wixi

)

=
⊗

i
f(wixi)

If the connecting weight is positive, the positive antecedent condition could be f(wixi) > 0.9 or

equivalently xi > 2.2/|wi|. If the connecting weight is negative, the negated antecedent could be

f(wixi) < 0.1 or equivalently xi < −2.2/|wi|. The individual antecedents (the above inequalities),

connected using the interactive-or operator forms the final rule. For example, a rule could be “if

sepal-length is greater than 3 cm i-or petal length is not greater than 2 cm, then the species is setosa.”

Rule based analysis is more effective when the MLP is analyzed as a standalone system, its

input features represent simple measurements such as the length or width of the petals, sepals etc,

and when the cardinality of the feature vector is small. In the following section, we discuss why

rule based analysis of an MLP may not be applicable in the case of speech processing, and motivate

the need for alternative analysis techniques.

3.2.2 Motivation

Figure 3.1 shows the block schematic of a typical usage of an MLP classifier for acoustic modeling

in ASR, showing feature extraction as well as modeling. In Chapter 2, we discussed commonly used

feature extraction techniques and their motivations. Here, we briefly revisit feature extraction and

plot the signal representation at different stages of feature extraction for motivating the analysis

framework. Figure 3.2 (a) is a spectrogram of the utterance “artificial intelligence” in the TIMIT
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database. A trained human can accurately identify the underlying sequence of phonemes by care-

fully studying the spectrogram, even without the knowledge of the language (Zue, 1985). In ASR,

however, the spectrogram is not directly used as a feature. Instead, it is processed to derive features

which are more robust and suitable for the ensuing pattern classifier. The processing is performed

along both frequency as well as time as discussed below:

Fourier 
Analysisspeech

Short−time Critical Band

Integration

Mel  / Bark
e.g DCT in MFCC Perceptron

MultilayerTemporal
Dynamics &
90 ms context

Linear Transform

Subsystem for analysis.

Figure 3.1. Block schematic of the feature extraction and the MLP classifier.

Processing along Frequency

Processing along frequency includes the application of mel or bark critical band filters on the

Fourier power spectrum, followed by a nonlinear compression function. For example, in MFCC fea-

ture extraction, the frequency is warped to the mel psychoacoustic scale, triangular filters equally

spaced in the mel scale are applied, and the output is compressed using the log function. Fig-

ure 3.2 (b) is a plot of the auditory spectrum of speech. It can be seen that it is a smoothed and

frequency warped version of the spectrogram.

The log-energies in the auditory filters can be used as acoustic features to the MLP. However,

most often cepstral features are derived from the filter bank energies as discussed in the previous

chapter. In MFCC feature extraction, cepstral coefficients are obtained by applying discrete cosine

transform (DCT) on the auditory spectrum. Figure 3.2 (c) is a plot of the static cepstral coefficients

as a function of time. It can be seen that the cepstral patterns are not as intuitive and interpretable

as the raw spectrogram or the auditory spectrogram, but they have been shown to be more robust

in ASR.

Processing along Time

The processing along time typically includes the computation of delta and delta-delta cepstral pa-

rameters. The dynamic cepstral coefficients are typically computed using FIR filters shown in

Figure 2.5. In addition, the static and dynamic features are applied at the input of the MLP with
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a temporal context of 9 frames. In the case of multi-resolution RASTA features, temporal informa-

tion is integrated by filtering the auditory spectrum trajectories using a bank of multi-resolution

bandpass filters as shown in Figure 2.6.
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Figure 3.2. Different representations of the utterance “artificial intelligence” at different stages of feature extraction.
(a) Fourier magnitude spectrum (b) mel auditory spectrum (c) mel frequency cepstral features and (d) phonetic class
conditional probabilities. The utterance is transcribed as sequence of phonemes /ao/ /r/ /dx/ /ih/ /f/ /ih/ /sh/ /l/ /ih/
/n/ /t/ /eh/ /l/ /ih/ /d/ /jh/ /ih/ /n/ /s/ in the TIMIT database.

The computation of acoustic features from the auditory spectrum can be modeled as a linear

time-invariant (LTI) system. For example, in the case of MFCC, the linear system consists of the

DCT matrix and the FIR filters required to create the dynamic coefficients and a temporal context

of 9 frames on the features. In the case of MRASTA feature extraction, the LTI system consists of a
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bank of FIR filters with different time resolutions.

For the sake of completeness, in Figure 3.2 (d), we also plot the phonetic class conditional prob-

abilities estimated by the MLP as a function of time. The plot shows the phoneme sequence /t/ /eh/

/l/, which is a part of the utterance. In the case of consonants /t/ and /l/, it can be seen that the

classification is almost perfect. In the case of the vowel /eh/, the probability mass is spread across

confusing vowels /ae/ and /aw/.

With this background, we discuss why rule based analysis of the MLP may not be applicable in

the case of MLP classifier used for estimating the posterior probabilities:

• It can be seen from Figure 3.1 that, if the MLP is analyzed as a standalone system, then its

functionality is revealed in terms of acoustic features (e.g., cepstral parameters) which are not

directly interpretable. In contrast, spectro-temporal patterns would be an ideal choice as they

are intuitive and easily interpretable. More importantly, the spectro-temporal properties of

speech sounds have been extensively researched in the context of human speech recognition.

• The features typically represent the temporal evolution of the spectral energies, and temporal

information can be difficult to interpret in terms of parsimonious rules.

• In practical systems, the input features to the MLP have a large dimensionality typically in

the range of 300-600. This will result in a large number of rules which are difficult to interpret.

• The derivation of rules often involves ad hoc heuristics, and the correctness of the derived

rules obtained cannot be easily validated.

The above drawbacks can be overcome by incorporating a part of the feature extraction into

the analysis framework as shown in Figure 3.1 and interpreting the system in terms of its input

patterns. For example, in the case of MFCC feature extraction, if the DCTmatrix and the FIR filters

used in the computation of dynamic features are incorporated into the analysis, then the system

can be interpreted in terms of auditory spectro-temporal patterns. The system under analysis is

a cascade of a linear time-invariant (LTI) system and a static nonlinear system. Traditionally,

nonlinear time-invariant systems have been analyzed using Volterra series.
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3.2.3 Volterra Series

A linear time-invariant system is completely characterized by its impulse response function. If x(t)

denotes the input to an LTI system with impulse response function h(t), then the output of the

system y(t) is given by

y(t) =

∫

τ

h(τ)x(t − τ)dτ (3.1)

If the system is nonlinear and without memory (i.e., static), then the input-output relationship

of the system can be characterized using Taylor series. For example, suppose that y(t) = f(x(t)) is

the nonlinear function, then the Taylor series expansion around a point b is given by

y(t) =

∞
∑

n=0

an [x(t) − b]
n

(3.2)

where the coefficients of the series {an} are given by an = 1
n!f

(n)(b), where f (n) denotes the nth

order partial derivative of the function. If the Taylor series approximation of the transfer function

converges for all values of the input (−∞,∞), then the coefficients of the series {an}
∞
n=1 about the

point b can completely characterize the entire function.

Most systems in nature as well as engineering are nonlinear as well as dynamic, and analysis of

such systems can be complicated. Vito Volterra (Allen, 1941) proposed an analog of the Taylor series

representation to nonlinear dynamic systems, which is now popularly known as Volterra series. It

combines the power series representation of a nonlinear system and the convolutional integral

representation of an LTI system. For example, if x(t) is the input to a nonlinear time-invariant

(NLTI) system, then its output y(t) can be expressed as an infinite series

y(t) =

∞
∑

n=0

Gn [gn, x(t)] (3.3)

where {Gn} is the set of Volterra functionals, and {gn} is the set of Volterra kernels of the nonlinear

system. For the purpose of illustration, the first three Volterra functionals are listed below.

G0 [g0, x(t)] = g0
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G1 [g1, x(t)] =

∫

τ

g1(τ)x(t − τ) dτ

G2 [g2, x(t)] =

∫

τ1

∫

τ2

g2(τ1, τ2)x(t − τ1)x(t − τ2) dτ1dτ2

It can be seen that each term in the Volterra series is a multi-dimensional1 convolution between

the input to the system and its Volterra kernels. The Volterra kernels {g0, g1, g2 . . . g∞} completely

characterize the nonlinear time-invariant system. The first order Volterra functional G1 is the

linear convolutional integral, and its corresponding kernel g1 is the most familiar time-domain

description of an LTI system, i.e., the impulse response function.

It can be seen that the nth order Volterra functional is a homogeneous of order n. Consequently,

the first order Volterra kernel represents the linear part of the nonlinear system, the second order

kernel represents the quadratic part, and so on. In the following subsections, we discuss some of the

properties of Volterra series such as its frequency domain representation and convergence. (Boyd

et al., 1984) provide an in-depth discussion on the analytical foundations of Volterra series.

Frequency Domain Representation

The input-output relationship of an LTI system in the time domain is given by (3.1). In the fre-

quency domain, the input-output relationship can be written as Y (ω) = H(ω)X(ω), where X(ω),

Y (ω), and H(ω) denote the Fourier transform of the signals x(t), y(t), and h(t) respectively. The

input-output of the NLTI system given by (3.3) can also be represented in the frequency domain.

Let Gn(ω1, ω2, . . . , ωn) denote the Fourier transform of the nth order Volterra kernel gn(τ1, τ2, . . . , τn),

given by

Gn(ω1, ω2, . . . , ωn) =

∫

τ1

. . .

∫

τn

gn(τ1, . . . , τn) exp(−jω1τ1 − jω2τ2 . . . − jωnτn) dτ1, . . . dτn

1Although the system is single-input single-output, the convolution is multi-dimensional as for example the second order
functional is a product of two terms x(t− τ1) and x(t− τ2). The third order functional is a product of three terms and so on.
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By applying Fourier transform on (3.3), the input-output relationship of the NLTI system in the

frequency domain can be represented as an infinite series as an infinite series as

Y (ω) = g0δ(ω) + G1(ω)X(ω) +

∫

ω1

G2(ω1, ω − ω1) X(ω)X(ω − ω1) dω +

∫

ω1

∫

ω2

G3(ω1, ω2, ω − ω1 − ω2) X(ω1)X(ω2)X(ω − ω1 − ω2) dω1dω2 + . . .

Convergence of Volterra Series

A power series may converge for certain values of the input and may diverge for other values.

Hence, it is important to ascertain the region of convergence of a power series. The Volterra series

can be expressed compactly as

y(t) = g0 +

∞
∑

n=0

∫

. . .

∫

gn(τ1, . . . τn) x(t − τ1) . . . x(t − τn) dτ1 . . . dτn

|y(t)| ≤ |g0| +

∞
∑

n=0

∫

. . .

∫

|gn(τ1, . . . τn) x(t − τ1) . . . x(t − τn)| dτ1 . . . dτn

≤ |g0| +

∞
∑

n=0

‖gn‖ ‖x‖n (3.4)

where, ‖gn‖ denotes the L1 norm of the nth order Volterra kernel, and ‖x‖ denotes the L∞ norm of

the input, and defined by

‖gn‖ ,

∫

. . .

∫

|gn(τ1, . . . τn)| dτ1 . . . dτn

‖x‖ , sup
t

{x(t)}

By applying the root test for convergence 2 (Rudin, 1976) on the Volterra series (3.4), it can be

seen that the series is absolutely convergent in the region ‖x‖ < ρ, where the radius of convergence

is given by

ρ =
(

lim
n→∞

sup (‖gn‖)
1
n

)−1

(3.5)

2A power series of the form
P∞

n=0 anxn is absolutely convergent in the region | x |< ρ, where the radius of convergence

ρ is given by ρ =
“

limn→∞ sup (an)
1
n

”−1
.
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Calculation of Volterra Kernels

We first discuss the calculation of Volterra kernels for a simple nonlinear time-invariant system

shown in Figure 3.3. It consists of a cascade of an LTI system with impulse response function h(t)

and a polynomial nonlinear function given by φ(u) = a0 + a1u + a2u
2.

x(t)
input LTI system

y(t)

output

h(τ) function φ()

Nonlinear

Figure 3.3. Block schematic of a simple nonlinear time invariant system.

If x(t) is the input to the system, the output of the system is given by

y(t) = a0 + a1

(
∫

τ

h(τ)x(t − τ)dτ

)

+ a2

(
∫

τ

h(τ)x(t − τ)dτ

)2

(3.6)

The Volterra series representation for a single-input single-output (3.3) can be expanded as

y(t) = g0 +

∫

τ

g1(τ)x(t − τ)dτ +

∫

τ1

∫

τ2

g(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2 + . . . (3.7)

By comparing the (3.6) to (3.7), the Volterra kernels can be identified as

g0 = a0

g1(τ) = a1 h(τ)

g2(τ1, τ2) = a2 h(τ1) h(τ2)

gn(τ1, . . . , τn) = 0 ∀ n > 2

For the above example, the calculation of the Volterra kernels is straightforward as the nonlin-

earity is already in the form of a polynomial function. However, when the nonlinear function is

more complex such as sigmoid (which is typically used as nonlinear activation function in an MLP),

then it has to be approximated as a power series. Not all functions admit a power series approxi-

mation which is convergent for all values of the input. In this case, the approximation is done with

respect to an error criterion within its operating interval. The calculation of Volterra kernels for an

MLP are discussed in Section 3.3.
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3.2.4 Wiener Series

The Volterra analysis of NLTI systems requires the knowledge about the system and its parameters

(e.g., the impulse response function h(τ) and the nonlinear function φ(.) in the example shown in

Figure 3.3). If the functionality of the system is not known, then identification of Volterra kernels

is not straightforward. It can be seen from (3.3) that the homogeneous functionals in the Volterra

series are correlated. As a result, estimation of the individual Volterra kernels can become com-

plicated as it can lead to simultaneously solving a set of integral equations. Alternatively, the

Volterra series can be orthogonalized with respect to white Gaussian noise to derive the Wiener

series (Wiener, 1958). The Wiener series for a single-input, single-output nonlinear system is given

by

y(t) =
∞
∑

n=0

Hn [hn, x(t)] (3.8)

where, x(t) is the input, y(t) is the output of the system, {hn} is the set of the Wiener kernels for the

nonlinear system, and {Hn} is the complete set of orthogonal functionals, satisfying the property

EX {Hm [hm, x(t)]Hn [hn, x(t)]} = 0 if m 6= n (3.9)

where x(t) is white Gaussian noise as a function of time. E{.} denotes the expected value with

respect to the noise. If σ2 denotes the variance of the white noise, the first four functionals in the

Wiener series are given by

H0 [h0, x(t)] = h0

H1 [h1, x(t)] =

∫

R

h1(τ)x(t − τ)dτ

H2 [h2, x(t)] =

∫

R2

h2(τ1τ2)x(t − τ1)x(t − τ2)dτ1τ2 − σ2

∫

R

h2(τ, τ)dτ

H3 [h3, x(t)] =

∫

R3

h3(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)dτ1τ2τ3 − 3σ2

∫

R2

h3(τ1, τ2, τ2)x(t − τ1)dτ1dτ2

A simple derivation of the Wiener series using Gram-Schmidt orthogonalization of the Volterra

series is described in (Ogunfunmi, 2007). Due to the orthogonal property of the functionals, the

Wiener kernels can be identified using the standard cross-correlation method (Lee and Schetzen,
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1965). For this, we present the system with white Gaussian noise of variance σ2 and find a corre-

lation between the input and the output. The nth order Wiener kernel is given by (Marmarelis and

Naka, 1974) as

hn(τ1, τ2 . . . τn) =
1

n!σ2n
EX

{[

y(t) −
n−1
∑

m=0

Hm [hm, x(t)]

]

x(t − τ1) . . . x(t − τn)

}

(3.10)

In the Wiener analysis, the system under analysis is treated as a black box. The concept of

Wiener analysis can be intuitively explained as follows. By using white noise as stimulus, the sys-

tem is almost exhaustively tested for all possible combinations of the inputs, provided sufficiently

large number of noise samples are generated. Cross-correlation can identify average patterns that

the system responds to. However, unlike in Volterra analysis, the nth order Wiener kernel does not

necessarily give the total nth order response of the system. It contains terms which represent the

lower order parts of the system.

Wiener analysis has been particularly useful in the analysis of biological systems, where an-

alytical calculation is not possible as the system cannot be represented mathematically, but the

response of the system to pre designated stimulus can be estimated (Korenberg and Hunter, 1996;

Klein et al., 2000; Marmarelis, 2004).

3.3 Volterra analysis of MLP based acoustic modeling

The Volterra theory of nonlinear dynamic systems have been previously applied in the analysis

of neural networks namely recurrent neural networks (Hakim et al., 1991) and time-delay neural

networks (Hakim et al., 1991; Wray and Green, 1994). The mathematical formulation provided

in these works for a time-delay neural network is briefly discussed below, as this chapter is an

extension to these works.

A time-delay neural network (Waibel et al., 1989) can be viewed as a cascade of a delay filter bank

and an MLP. Suppose that the time-delay neural network is trained with L delayed time instants

t1, t2, . . . tL (one present t1 = 0 and L−1 past) of a vector valued input xt = [x1(t), . . . xk(t) . . . xK(t)]′.

The concatenated input to the MLP is given by ut = [u1,1(t), . . . uk,l(t), . . . uK,L(t)]
′
, where uk,l(t) =
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xk(t − tl). The vector valued linear activation at the output of the MLP is given by

yt = bo + C Φ(bh + Wut) (3.11)

where, W and C denote the weight matrices connecting input to hidden, and hidden to output

layers of the MLP respectively, and bh and bo respectively denote the bias vectors at the hidden and

output layer of the MLP. Φ(.) denotes the vector valued nonlinear activation function at the hidden

layer of the MLP. Prior works (Hakim et al., 1991; Wray and Green, 1994) discuss the Volterra

series representation of the above multi-input multi-output nonlinear time-invariant system (xt,yt)

similar to (3.3).

The theory developed for the time delay neural network cannot be applied in the analysis of

trained MLPs used in ASR as feature extraction cannot be included in the analysis. In Section 3.2.2,

we discussed that the later stages (e.g., auditory spectrum to cepstral transformation in MFCC,

delta and delta-delta feature computation, etc) of feature extraction can be modeled as an LTI

system. If Volterra analysis can be applied to the combined system consisting of a part of feature

extraction and the MLP model, then the functionality of the system can be discovered in terms of

more interpretable information such as spectro-temporal patterns in the auditory spectrum shown

in Figure 3.2 (b).

With this motivation, we develop a generic mathematical framework to apply Volterra series to

model a nonlinear dynamic system comprising of a linear time-invariant system followed by a three

layered MLP. For mathematical convenience, the softmax nonlinear function at the output of the

MLP is excluded from the analysis. This does not affect the interpretability as the output units

are still phonemes, and the rank ordering of the estimates is not altered. The MLP is trained with

features uk,l(t) which are obtained by convolving the input xk(t) with the impulse response function

hl(t) of the linear system as uk,l(t) = xk(t) ∗ hl(t). More specifically, we consider the following three

systems as schematized in Figure 3.4.

System-1: A finite impulse response (FIR) filter bank followed by a three layered MLP as shown in

Figure 3.4 (a). The filters can have arbitrary impulse response functions hl(t), l = 1, 2, . . . L. As a

particular case, if the filters have a time-delayed impulse response functions hl(t) = δ(t − tl), then

the Volterra kernels reduce to the solutions provided in (Hakim et al., 1991; Wray and Green, 1994)
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filter bank
FIR

x y
MLPlinear

transform
mean/
variance

normalization

mean/
variance

normalizationfilter bank
FIR

y
MLP

x

y
MLP

filter bank
FIR

x

Figure 3.4. The Volterra theory of nonlinear systems is applied to the above three systems. (a) FIR filter bank followed by
a three layer MLP (b) the features to the MLP are normalized to zero mean and unit variance (c) a linear transformation
matrix preceding the FIR filter bank.

for the time delay neural network.

System-2: In practical applications, the input features to the MLP are normalized to zero mean and

unit variance as shown in Figure 3.4 (b). Feature normalization mainly helps in achieving faster

convergence of the back-propagation training (LeCun et al., 1998) as well as addressing feature

mismatch to a certain extent. In Section 3.3.2, we discuss the calculation of Volterra kernels when

features are normalized.

System-3: In feature extraction techniques such as MFCC, there is a linear transformation matrix

(discrete cosine transform) preceding the FIR filters as shown in Figure 3.4 (c). The analytical

calculation of Volterra kernels for such a system is discussed in Section 3.3.3.

3.3.1 Calculation of Volterra Kernels: Three Layered MLP

Figure 3.5 is a detailed block schematic of a cascade of an FIR filter bank and a three layered

MLP shown in Figure 3.4 (a). The vector xt = [x1(t), . . . xk(t), . . . xK(t)]
′
denotes the input to the

system under analysis at time t. An FIR filter bank with impulse response function hl(t), l = 1 . . . L

is applied on each of the K inputs. The output of the filter bank is denoted by the vector ut =

[u1,1(t), . . . uk,l(t), . . . uK,L(t)]
′
, where uk,l(t) is given by the convolution between xk(t) and hl(t) as

uk,l(t) =

∫

τ

hl(τ)xk(t − τ)dτ (3.12)

The output of the filter bank forms the input to the MLP, whose trained parameter set is denoted
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Figure 3.5. Block schematic of a cascade of an FIR filter bank and a three layered MLP.

by {W,bh,C,bo}. Here, W denotes the weight matrix connecting the input layer of size K.L to the

hidden layer of size M . An element wi
k,l in the matrix denotes the weight associated with the

output of the filter bank uk,l(t) at node i in the hidden layer. The vector bh = [b1
h, . . . , bi

h, . . . bM
h ]′

denotes the bias vector at the hidden layer of the MLP. The matrixC denotes the weights connecting

the hidden layer to the output layer of size N . An element cj
i in the matrix denotes the weight

between node i in the hidden layer and node j in the output layer of the MLP. The vector bo =

[b1
o, . . . , b

j
o, . . . b

N
o ]′ denotes the bias vector at the output layer. Furthermore, if Φ(.) denotes the vector

valued 3 sigmoidal function at the hidden layer of the MLP, then the linear activation vector at the

output of the MLP yt = [y1(t), . . . yj(t), . . . yN (t)]′ is given by (3.11).

The system schematized in Figure 3.5, and characterized by (3.12) and (3.11) can be viewed as a

multi-input (xt), multi-output (yt), nonlinear time-invariant system. The FIR filter bank introduces

memory in the system and the activation functions in the hidden layer introduces nonlinearity.

Without loss of generality, the above system can be treated as N parallel, multi-input, single-output

3Φ(.) denotes the vector valued activation function given by Φ(.) = [φ(.), φ(.), . . . , φ(.)]′, where φ(.) denotes the scalar
valued activation function.
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subsystems and analyzed independently. The linear output at node j in the output layer is given by

yj(t) = bj
o +

M
∑

i=1

cj
iφ

(

bi
h +

K
∑

k=1

L
∑

l=1

wi
k,luk,l(t)

)

, j = 1, . . . N (3.13)

The system characterized by (3.12) and (3.13) is difficult to analyze in its present paramet-

ric form due to the presence of the nonlinear activation function φ(.). However, if the activation

function can be approximated as a power series, then the same system can be alternatively charac-

terized using Volterra series as

yj (t) = gj
0 +

K
∑

k1=1

∫

τ1

gj
k1

(τ1) xk1
(t − τ1) dτ1 +

K
∑

k1=1

K
∑

k2=1

∫

τ1

∫

τ2

gj
k1k2

(τ1, τ2) xk1
(t − τ1) xk2

(t − τ2) dτ1dτ2 + . . . , j = 1, . . . N (3.14)

In this way, a set of Volterra kernels is identified for each of the N output classes of the MLP, given

by {gj
0, gj

k1
(τ1) , gj

k1k2
(τ1, τ2) , . . .}N

j=1. For the output class j, gj
0 is the zeroth order Volterra kernel,

and it reveals the constant part of the nonlinear system. The first order Volterra kernels gj
k1

(τ1)

reveal the linear part of the nonlinear system. Similarly, gj
k1k2

(τ1, τ2) is the second order Volterra

kernel of the system, and reveals the quadratic part of the system. The variables τ1, τ2 . . . denote

time, and k1, k2 . . . denote the indices of the input. The Volterra kernels can be identified in terms

of the parameters of the MLP and the impulse response function of the filter bank. To identify the

Volterra kernels, (3.13) is rewritten as

yj (t) = bj
o +

M
∑

i=1

cj
i φ
(

bi
h + si (t)

)

(3.15)

where, si (t) denotes the activation value to the nonlinear function at the hidden node i, given by

si (t) =

K
∑

k=1

L
∑

l=1

wi
k,luk,l (t) (3.16)

Suppose that the nonlinear function φ(.) at the hidden layer is approximated as a power series

φ
(

bi
h + si (t)

)

=

∞
∑

n=0

an,i [si (t)]
n

(3.17)
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where a0,i, a1,i . . . are the scalar coefficients of the series. By substituting (3.17) in (3.15), we obtain

yj (t) = bj
o +

M
∑

i=1

cj
i

∞
∑

n=0

an,i [si (t)]
n

(3.18)

By substituting (3.12) and (3.16) in (3.18), rearranging the terms, and comparing the resulting

equation to the Volterra series equation (3.14), the first three Volterra kernels are identified as

gj
0 = bj

o +

M
∑

i=1

cj
i a0,i (3.19)

gj
k1

(τ1) =

M
∑

i=1

cj
i a1,i

L
∑

l1=1

wi
k1l1

hl1 (τ1) (3.20)

gj
k1k2

(τ1, τ2) =

M
∑

i=1

cj
ia2,i

L
∑

l1=1

L
∑

l2=1

wi
k1l1

wi
k2l2

hl1 (τ1) hl2 (τ2) (3.21)

The intermediate steps involved in the calculation of Volterra kernels are given in Appendix A.1 at

the end of this thesis. The power series expansion of the nonlinear activation function at the hidden

layer of the MLP is discussed in detail in Section 3.3.4.

3.3.2 Calculation of Volterra Kernels: Feature Normalization

In practical applications, the features to the MLP are normalized to zero mean and unit variance

as shown in Figure 3.4 (b). In this section, we discuss the calculation of Volterra kernels when the

features are normalized to zero mean and unit variance. Note that as the MLP is also trained using

normalized features, the parameter set of the MLP {W,bh,C,bo} is different from the one dis-

cussed above. Addressing variance normalization alone is straightforward as the feature variances

just scale the weights connecting the input and the hidden layer. On the other hand, address-

ing mean normalization needs careful consideration as it is not a linear operation from a system

theoretic point of view. 4

Suppose that the feature vector component uk,l(t) has a mean µk,l and a standard deviation σk,l.

The input to the MLP is given by (uk,l (t) − µk,l) /σk,l. By substituting the normalized features in

4It is important to distinguish the difference between a linear classifier, linear function, and a linear system. We illustrate
this with single layer perceptron with weight matrix W and bias vector b as an example. If x denotes the input, the output
y of the perceptron is given by y = Ψ(b + Wx), where Ψ(.) denotes the softmax function. It is a linear classifier as the
decision boundary is a hyperplane. However, it is not a linear function and system. If the softmax function is dropped, then
it becomes a linear function, but still not a linear system because of the bias. If b = 0, then it is a linear system as well.
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(3.16), we obtain

si (t) =

K
∑

k=1

L
∑

l=1

wi
k,l

uk,l (t) − µk,l

σk,l

= ŝi(t) − ∆i (3.22)

where,

ŝi(t) =

K
∑

k=1

L
∑

l=1

ŵi
k,l uk,l(t) (3.23)

ŵi
k,l =

wi
k,l

σk,l

(3.24)

∆i =

K
∑

k=1

L
∑

l=1

wi
k,l

µk,l

σk,l

(3.25)

If a0,i, a1,i, a2,i, . . . denote the coefficients of the power series approximation (3.17) of the sig-

moidal function at ith node of the hidden layer, then the linear output at jth node of the output

layer can be written from (3.18) as

yj (t) = bj
o +

M
∑

i=1

cj
i

∞
∑

n=0

an,i (ŝi(t) − ∆i)
n

= bj
o +

∞
∑

n=0

M
∑

i=1

cj
i an,i

n
∑

r=0

(

n

r

)

(ŝi(t))
r

(−∆i)
n−r

The above equation can be expressed as an infinite series of functionals as

yj (t) =

∞
∑

n=0

Gj
n

[

gj
n(τ1, . . . τn), x1, x2, . . . xK

]

(3.26)
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where the nth order functional is given by

Gj
n

[

gj
n(τ1, . . . τn), x1, . . . xK

]

=
n
∑

r=0

K
∑

k1=1

. . .
K
∑

kr=1

∫

τ1

. . .

∫

τr

gj,n,r(τ1, . . . τr) x1(t−τ1) . . . xr(t−τr)dτ1 . . . dτr

(3.27)

and the corresponding kernels are given by

gj,n,r(τ1, . . . τr) =

M
∑

i=1

cj
i ân,r,i

L
∑

l1=0

. . .

L
∑

lr=0

ŵi
k1,l1

. . . ŵi
kr,lr

hl1(τ1) . . . hlr (τr) (3.28)

where ân,r,i =
(

n
r

)

(−∆i)
n−r

. Strictly speaking, the above formulation is not Volterra series as the

functionals are not homogeneous in terms of the input. It can be seen from (3.27) that the nth

order functional contains terms of order r ≤ n. In other words, the nth order functional will include

information about the linear, quadratic, and all higher order components of the nonlinear system

up to the order n. Nonetheless, the kernels gj,n,n(τ1, . . . τr) given by (3.28) can still approximately

reveal the nth order component of the nonlinear system.

The above problem can also be effectively circumvented by redefining the input representation

xk(t) in the Volterra synthesis equation (3.14) as a zero mean signal, i.e., xk(t) , xk(t) − mk, where

mk denotes the mean of xk(t). In this way, mean normalization of the features can be achieved

without affecting the functionality of the system. The variance normalization is incorporated into

the weight matrix connecting the input layer of the MLP to the hidden layer as (3.24). In the

matrix notation, this is equivalent to modifying the weight matrix Ŵ = WΣ− 1
2 , where Σ denotes

the diagonal covariance matrix of the features. The Volterra kernels can be subsequently estimated

using (3.19)-(3.21).

The Volterra kernels derived correspond to an input xk(t) which is normalized to zero mean.

Furthermore, the interpretation could be in terms of the inputs which are normalized to zero mean

and unit variance. In this case, the first order Volterra kernel is given by σkgk(τ), the second order

Volterra kernel is given by σk1
σk2

gk1k2
(τ1, τ2), and so on.
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3.3.3 Calculation of Volterra Kernels : Linear Transformation

Suppose that the input to the system xt = [x1(t), . . . xk(t), . . . xK(t)]′ is transformed into an in-

termediate representation x̂t = [x̂1(t), . . . x̂f (t), . . . x̂F (t)]′ using a linear transformation matrix

D = [df,k]F×K as

x̂f (t) =

K
∑

k=1

df,k xk(t) f = 1, 2, . . . F, where F ≤ K

or, more compactly, x̂t = Dxt. The MLP is trained using features ût = [û1,1(t), . . . ûk,l(t), . . . ûK,L(t)]
′

which are obtained by applying an FIR filter bank of L filters on the intermediate representation

x̂t. In this section, we discuss the calculation of Volterra kernels for the system (xt,yt) shown in

Figure 3.4 (c), where yt denotes the linear activation vector at the output of the MLP. An example of

this scenario is MFCC feature extraction, where cepstral features x̂t are obtained by applying DCT

matrix D on the log-spectral energies xt in the mel filter banks. The static and dynamic cepstral

features ût are obtained by applying FIR filters on x̂t.

Then, the output of the filter bank can be expressed using (3.12) as

ûf,l =

∫

τ

hl(τ)

K
∑

k=1

df,k xk(t − τ) dτ

=

K
∑

k=1

df,k uk,l (3.29)

where uk,l =

∫

τ

hl(τ) xk(t − τ) dτ

It can be seen from (3.29) that the transformation matrix D can be incorporated at the output of

the FIR filter bank as ût = D̂ ut, where ut = [u1,1(t), . . . uk,l(t), . . . uK,L(t)]
′
. The new transformation

matrix D̂ of size F.L × K.L can be obtained from the original transformation matrix D.5

If µu denotes the mean of the feature vector, Σu denotes the diagonal covariance matrix, and

W denotes the weight matrix connecting the input and hidden layer of the MLP, then the linear

5The new transformation matrix D̂ = DBP, where DB is the block diagonal matrix cre-
ated by repeating matrix D for L times along the diagonal and P denotes the permutation ma-
trix required to rearrange the vector [û1,1(t), . . . û1,L(t), . . . ûf,1(t) . . . ûf,l(t) . . . ûf,L(t) . . . ûF,L(t)]′ as
[û1,1(t), . . . ûF,1(t), . . . û1,l(t) . . . ûf,l(t) . . . ûF,l(t) . . . ûF,L(t)]′.
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activation vector (without bias) at the hidden layer of the MLP is given by

st = WΣ
− 1

2
u (D̂ut − µu)

As discussed in the previous section, the mean normalization of the features can also be incorpo-

rated at the input level without loss of functionality. In this case, the linear transformation matrix

D̂ can be incorporated into the weight matrix connecting the input to the hidden layer as

W′ = WΣ
− 1

2
u D̂ (3.30)

3.3.4 Polynomial Expansion of the Activation Function

The most important aspect in the derivation of the Volterra kernels is the approximation of the

nonlinear activation function at the hidden layer as a power series in the form (3.17). In practice,

the power series is fixed to finite order P , and this decides the order of the Volterra series expansion.

In the following discussion, we drop the subscript for time and the index of the hidden node for

clarity, and rewrite (3.17) as

φ(b + s) ≈
P
∑

n=0

ansn (3.31)

The objective here is to estimate the coefficients a0, a1, a2, . . . aP to satisfy the above approximation.

This is discussed in the following sections.

Taylor series

Taylor series expansion is a natural choice for approximating nonlinear functions as a power series

as discussed in (Wray and Green, 1994). As a consequence of feature normalization, the linear

activation value at the hidden node s has a mean equal to zero. The Taylor series expansion for the

function φ(b + s) around the point s = 0 is given by

φ(s + b) ≈
P
∑

n=0

φ(n)(b)

n!
sn
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Sigmoidal functions 6 do not admit a convergent Taylor series for all values of the input. For

example, the Taylor series expansion of the hyperbolic tangent function tanh(s) around the point

s = 0 is convergent in the region s ∈ [−π
2 , π

2 ]. In the case of the MLP, it cannot be guaranteed

that the input to the sigmoidal function is within the region of convergence. Hence, convergence

of Volterra series in the operating region of the MLP cannot be guaranteed. Taylor series can only

ensure that the first P derivatives of the power series around the point s = 0 are same as that of

the actual function.

Mean square estimation

According to the Weierstrass approximation theorem, any continuous function defined on a finite

interval can be uniformly approximated to the desired level of accuracy by a polynomial function.

This theorem has also been extended to neural networks (Hecht-Nielsen, 1987; Cotter, 1990). As a

result, it is sufficient to approximate the nonlinear activation function as a polynomial function in

its region of operation using the mean square error criterion (Hakim et al., 1991).

Suppose that the input features to the MLP u have mean vector of µu and a full covariance

matrix Σuu, the input to the activation function at the hidden layer can be represented in the

vectorial notation as

s = WΣ
− 1

2
u (u − µu)

where, Σu denotes the diagonal matrix containing the feature variances. The covariance matrix of

the activation values at the hidden layer is given by

Σss = WΣ
− 1

2
u ΣuuΣ

− 1
2

u WT (3.32)

As a consequence of feature normalization, the linear activation s (without bias) at the hidden

layer have a mean equal to zero. We model the activation values at each hidden node as a unimodal

Gaussian random variable with zero mean and the standard deviation obtained from the covariance

matrix Σss.

6A generic definition of sigmoidal function is given in (Cybenko, 1989) as a continuous monotonic function φ(s), such that
lims→−∞ φ(s) = c1and lims→∞ φ(s) = c2, where c1 and c2 are scalar constants. For sigmoid, c1 = 0, c2 = 1 and hyperbolic
tangent c1 = −1, c2 = 1.
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The coefficients of the polynomial function are chosen to optimize the least mean square er-

ror between the sigmoidal function φ(b + s) and its polynomial approximation, assuming that s

is normally distributed with zero mean and variance obtained from (3.32). The estimation of the

polynomial coefficients is discussed in Appendix A.2.
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Figure 3.6. (a) Histogram of the linear activation to the sigmoid at an hidden node and the corresponding normal
density function with variance of 4.9. (b) The sigmoid function φ(s+b)with bias b = −3, and its polynomial approximation
for orders P=1, 3, and 5.

Figure 3.6 (a) shows the histogram of the input (excluding the bias) to the sigmoid function at a

hidden node, and is obtained on the training data. The same figure also shows the normal density

function that is used to model it. Fig 3.6 (b) shows the polynomial fit of order 1, 3, and 5 obtained

using the mean square error criterion. With increasing order, the polynomial function gets closer to

the sigmoid function. As the hidden bias is incorporated in the polynomial expansion, the estimated

coefficients are different for each hidden node.

3.3.5 The Algorithm

In derivation of the Volterra kernels, we assumed for simplicity that the input/output of the system

is continuous-time. However, in practice, the system under analysis is a discrete-time system. The

discrete-time counterpart of the Volterra synthesis equation (3.14) can be written as

yj(n) = gj
0 +

K
∑

k1=1

∑

m1

gj
k1

(m1) xk1
(n − m1) +

K
∑

k1=1

K
∑

k2=1

∑

m1

∑

m2

gj
k1k2

(m1,m2) xk1
(n − m1) xk2

(n − m2)+. . .

(3.33)
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The zeroth order discrete-time Volterra kernel is the same as its continuous-time counterpart (3.19).

The first order Volterra kernels are expressed in terms of the discrete-time form of the impulse

response function of the filter bank as

gj
k1

(m1) =

M
∑

i=1

cj
i a1,i

L
∑

l1=1

ŵi
k1l1

hl1 (m1) (3.34)

The second and higher order Volterra kernels can be expressed in the similar way replacing the

continuous time impulse response function with its discrete time version.

gj
k1k2

(m1,m2) =

M
∑

i=1

cj
ia2,i

L
∑

l1=1

L
∑

l2=1

ŵi
k1l1

ŵi
k2l2

hl1 (m1) hl2 (m2) (3.35)

The application of Volterra series in the analysis of MLP based acoustic modeling is summarized

in the following steps.

1. Identify the subsystem in the combined (feature extraction and MLP classifier) system for

analysis. This is decided by two factors (a) if the system under analysis can be rearranged to

any of the forms schematized in Figure 3.4 (a, b, c) without affecting its functionality and (b)

if the input to the subsystem is easily interpretable. In most cases, the input to the subsystem

are log energies in the auditory filter banks.

2. Fix the order of the power series approximation at the hidden layer P , and estimate its co-

efficients a0, a1, . . . aP using the full covariance matrix of the features, the weight matrix W

connecting the input to the hidden layer, and the bias vector bh at the hidden layer of the MLP

as discussed in Section 3.3.4 and Appendix A.2.

3. Replace the sigmoidal activation function with the power series approximation of different

orders and analyze the effect of the approximation on the phoneme classification accuracies.

4. Address feature variance normalization by modifying the weights connecting the input to the

hidden layer using (3.24) or (3.30), and the polynomial coefficients estimated in Step-2.

5. Compute the Volterra kernels using (3.34)-(3.35). The kernels are functions of the impulse

response function of the FIR filter bank, the statistics (mean and covariance) of the features,

and the trained parameters of the MLP.
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6. Analyze the Volterra kernels to discover the knowledge learned by the MLP. In this work, we

demonstrate this by analyzing the first order Volterra kernels (the linear part) of the system.

3.3.6 Special Cases of the Proposed Framework

Time-delay neural network

Analyzing a time-delay neural network (Waibel et al., 1989) using Volterra series as discussed

in (Hakim et al., 1991; Wray and Green, 1994) forms a special case of the framework schematized

in Figure 3.5. Suppose that d denotes the maximum delay at the input of the neural network, then

in the proposed framework, we consider the FIR filter bank with L = d + 1 filters, each having an

impulse response function given by

hl(m) = δ (m − l + 1) , with l = 1, 2, . . . L and m = 0, 1, . . . d

Temporal context on the MLP

The time-delay neural network is a causal system, where the output of the MLP depends on the

present and past inputs. However, in speech recognition the MLP is often trained with a temporal

context spanning both past and future (Bourlard and Morgan, 1994). Suppose that the MLP is

trained with a temporal context of 2d + 1 frames, then in the proposed framework, we consider the

FIR filter bank with L = 2d + 1 filters with impulse response function given by

hl(m) = δ

(

m + l −
L + 1

2

)

, with l = 1, 2 . . . L and m = −d, . . . 0, . . . d (3.36)

MLP as a standalone system

In scenarios where the MLP is to be analyzed as a standalone system without the FIR filter bank,

then L = 1 and h1(m) = δ(m). In this case, the system is a static nonlinear system i.e., without

memory.
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3.4 Application of Volterra Series

In this section, we demonstrate the Volterra series representation of the MLP trained using mel

filter bank energies (MFBE), multi-resolution relative spectra (MRASTA) features (Hermansky

and Fousek, 2005) and the standard MFCC features (Davis and Mermelstein, 1980) with dynamic

(delta and delta-delta) coefficients and a temporal context of 90 ms. We empirically demonstrate

the convergence of Volterra series for the system and provide some qualitative examples on the

spectro-temporal properties learned by the system for certain phonemes. The objective here is to

demonstrate the application of the proposed framework. The application of Volterra series for a

detailed analysis of an MLP classifier is presented in Chapter 4 in the context of the hierarchical

system.

Experiments are performed on the TIMIT database (Fisher et al., 1986). The database, which

is hand-labeled using 61 symbols is mapped to a standard set of 39 phonemes (Lee and Hon, 1989)

with an additional garbage class. The number of speakers and the size of the train, cross-validation,

and test sets and a description on the mapping of phonemes is given in Section 4.3.

The phonetic class-conditional probabilities of phonemes estimated by the MLP are evaluated

by performing speaker independent phoneme classification i.e., isolated phoneme recognition exper-

iments. Classification is performed using the hybrid HMM/MLP approach (Bourlard and Morgan,

1994). A phoneme is represented by a three-state left-to-right HMM, thereby enforcing a minimum

duration of 30 ms. The emission score in each of the three states of the phoneme is the same, and

is derived from the associated output of the MLP.

3.4.1 Volterra Analysis: MFBE-MLP System

Mel frequency band energies (MFBE) can also be used as features in MLP based acoustic model-

ing. Application of Volterra series to this system is straightforward as the system is as shown in

Figure 3.5. The input to the system under analysis is log energies in each of the K = 26 channels

obtained by mel critical band integration. The output of the system is the linear activation values

for each of the N = 40 phonemes at the output of the MLP.
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FIR filter bank

The MFBE energies are presented to the MLP, without any processing, but with a temporal context

of around 170 ms.7 The creation of the temporal context can be achieved using a filter bank com-

prising of L = 17 FIR filters, whose impulse response functions are time-shifted Kronecker delta

functions in the form given by (3.36)

Application of Volterra series

The architecture of the MLP under analysis is 442(K.L) × 1000(M) × 40(N). The sigmoid nonlin-

ear function at the hidden layer of the MLP is approximated as a polynomial function using the

mean square error estimation discussed in Section 3.3.4. In Figure 3.7 (a), we plot the mean square

error at the hidden layer as a function of the polynomial order. It can be seen that the error de-

creases monotonically with the polynomial order. As the approximation error at the hidden layer

decreases with the polynomial order, there is a corresponding monotonic increase in the phoneme

classification accuracy on both training as well as test sets as shown Figures 3.7 (b, c) respectively.
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Figure 3.7. (a) The average mean square error between the sigmoid function and its polynomial approximation at the
hidden layer of the MLP trained on MFBE features. (b) phoneme classification accuracy on the train set as a function
of the polynomial order used to approximate the sigmoidal nonlinear function. Horizontal lines indicate the accuracy
obtained using the sigmoidal function. (c) A similar plot on the test set.

In the calculation of Volterra kernels, the order of the polynomial approximation of the sigmoidal

function is first fixed as discussed in Section 3.3.5. Furthermore, as the system is feedforward the

Volterra series is finite and therefore necessarily converges. The above plots demonstrate the con-

7We take 170 ms to be consistent with the MFCC feature extraction, where a 90 ms context on the concatenated cepstral
coefficients (static + dynamic) is equivalent to 170 ms context on the mel filter bank energies.
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vergence of the Volterra series to the standard MLP representation as the order of the polynomial

that approximates the sigmoidal function tends to infinity.

In the Volterra analysis of a three layered MLP, the only nonlinear function is at the hidden

layer, which is typically a sigmoid or hyperbolic tangent. If the power series approximation of the

nonlinear function is convergent, then the Volterra series is also convergent (the other conditions

being that the filter coefficients and weights of the MLP are bounded, which is always the case). As

the power series approximation is done in the operating region of the hidden nonlinearity as shown

in Figure 3.6 (a), the Weierstrass theorem ensures the convergence of the series. This is reflected in

the minimization of the mean square error as shown in Figure 3.7 (a). The convergence of Volterra

series can be seen in the monotonic increase in the phoneme classification accuracy in the same

figure. In practice, the accuracy on the test set can diverge if the statistics of the features differ

drastically from those of the train set.

Interpretation of Volterra kernels

It can be seen from (3.33) that the first order Volterra kernel gk(m) is a two-dimensional linear

impulse response function. It is a function of both time m and frequency m. It is evident from (3.34)

that the time support of the Volterra kernel is same as that of the FIR filters. The frequency axis

corresponds to the component of the input representation to the filter bank. Figure 3.8 shows the

first order Volterra kernel for phonemes /iy/ (e.g., feel) and /eh/ (e.g., fell). In this particular case, the

frequency axis corresponds to the center frequency of the 26 mel auditory filters, and the temporal

support of the kernels is 170 ms, which is same as the temporal context applied on the mel filter

bank energy features.

It can be seen from the plots that for the vowel /iy/, the system has learned to emphasize a lower

frequency region when compared to the vowel /eh/. Interpreting this two dimensional kernel on

paper can be difficult. To get a clearer picture of the frequency regions learned by the system, in

Figure 3.9 we plot the contribution of each critical band in the Volterra kernel for both these vowels

by summing up the kernels along the time as gj
k =

∑

m gj
k(m).

It can be seen from Figure 3.9 that in the case of phoneme /iy/, the system has learned to empha-

size 187-374 Hz frequency band which corresponds to its first formant. On the other hand, for the

vowel of /eh/, the system has learned to emphasize slightly higher frequency region of 374-685 Hz,
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Figure 3.8. (a) Linear Volterra kernel of the trained system for phonemes /iy/ (e.g. feel). The x-axis corresponds to the
time (170 ms) and the y-axis corresponds to the center frequency of the 26 mel filter banks. (b) A similar plot for the
phoneme /eh/ (e.g. fell).
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Figure 3.9. Important frequency regions for the vowels /iy/ (e.g., feel) and /eh/ (e.g., fell) obtained from the linear Volterra
kernels for TIMIT.

which contains its first formant. It can also be seen that the difference between first and second

formant for the front vowel /iy/ is higher compared to the mid-vowel /eh/. This is consistent with

previous studies in acoustic phonetics.

3.4.2 Volterra Analysis : MRASTA-MLP System

MRASTA features (Hermansky and Fousek, 2005) are obtained by filtering the Bark auditory spec-

trum (log-energies in the Bark critical bands) along the time axis using a bank of multi-resolution

band-pass filters. For wideband speech such as TIMIT, K = 19 critical bands are typically used.

The output of the system under analysis are the linear activation values corresponding to N = 40

output phonetic classes.
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FIR filter bank

Our implementation of the MRASTA filter bank consists of L = 14 FIR filters divided into two sets:

(a) seven filters with an impulse response function of the shape of the first order derivative of a

Gaussian function, and (b) seven filters with impulse response function of the shape of the second

order derivative of a Gaussian function. The impulse response functions are given by

h2l−1(m) = f1d(t = 10m, σl)

h2l(m) = f2d(t = 10m, σl), with l = 1, 2, . . . 7 and m = −35, . . . 35 (3.37)

where f1d(t, σl) and f2d(t, σl) denote the first and second order derivatives of a Gaussian function

with a standard deviation σl.
8 The standard deviation of the Gaussian function is varied between 8

ms and 90 ms, and it controls the time-resolution of the filters. The functions are sampled in steps

of 10 ms, and span a duration of 700 ms. Figure 2.6 (a and b) show the impulse response functions

in the continuous-time domain (before sampling).

Application of Volterra Series

The architecture of the MLP under analysis is 266(K.L) × 1000(M) × 40(N). The sigmoid nonlin-

earity at the hidden layer is approximated as a power series using the mean-square error criterion.

Figure 3.10 (a) is a plot of the average mean square error at the hidden layer as a function of the

order of the polynomial approximation. Figure 3.10 (b and c) show the monotonic increase in the

phoneme classification accuracies with the increase in the order of the polynomial on the train and

test sets respectively.

Interpretation of Linear Kernels

The first order Volterra kernel for each of the phonemes j = 1, 2, . . . N is denoted by gj
k(m), and is

a function of both time m and the auditory filter bank index k. As the input xk(m) in the Volterra

synthesis equation (3.33) is output of the auditory filter bank, k corresponds to a frequency range.

For example, k = 2 on the Bark frequency scale corresponds to a frequency of 99-200 Hz. It can

8To be precise, f(t, σ) = exp(−t2/2σ2) is the Gaussian function, and if f (1)(t, σ) and f (2)(t, σ) respectively denote its

first and second order derivatives with respect to t, then f1d(t, σ) =
f(1)(t,σ)

maxt |f(1)(t,σ)|
and f2d(t, σ) =

f(2)(t,σ)

maxt |f(2)(t,σ)|



66 CHAPTER 3. ANALYSIS OF MLP CLASSIFIERS USING VOLTERRA SERIES

1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

polynomial order

m
s
e

1 2 3 4 5 6 7

30

40

50

60

70

polynomial order

a
c
c
u

ra
c
y
 (

%
)

polynomial
sigmoid

1 2 3 4 5 6 7

30

40

50

60

70

polynomial order

a
c
c
u

ra
c
y
 (

%
)

polynomial
sigmoid

(a) (b) (c)

Figure 3.10. (a) The average mean square error between the sigmoid function and its polynomial approximation at the
hidden layer of the MLP trained on MRASTA features. (b) phoneme classification accuracy on the train set as a function
of the polynomial order used to approximate the sigmoidal nonlinear function. Horizontal lines indicate the accuracy
obtained using the sigmoidal function. (c) A similar plot on the test set.

be seen from (3.34) that the first order Volterra kernels are linear combinations of the impulse

response functions of the FIR filters. As a consequence, the temporal support of the linear Volterra

kernels is same as that of the FIR filters. In this case, the temporal support spans 700 ms.
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Figure 3.11. (a) Linear Volterra kernel for the phoneme /iy/ (e.g., deed) on TIMIT database. (b) A similar plot for the
phoneme /ao/ (e.g., dog).

Figure 3.11 (a) is a plot of the first order Volterra kernel for the phoneme /iy/ (e.g., deed). The

kernel corresponds to the spectro-temporal pattern learned by the MLP for the phoneme /iy/ to

be discriminated from other phonemes. Figure 3.11 (b) is the first order Volterra kernel for the

phoneme /ao/ (dog). The kernels are plotted for a temporal context of 200 ms around the center for

clarity as most of the activity is concentrated in that region.

To see the differences between the kernels for the vowels more clearly, in Figure 3.12, we show
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the contribution of each critical band in the Volterra kernel by summing up the kernels along the

time. It can be seen that for the phoneme /iy/, there is a concentration of energy in the 200-500 Hz

range, followed by another in 2111-3500 Hz range. It can be recalled that these are, in fact, the first

and second formants for the phoneme /iy/. Moreover, due to the discriminative training, the system

has also learned to give negative emphasis in the 692-2111 Hz frequency region. In contrast, for

the phoneme /ao/, the system has learned to emphasize the 692-1492 Hz frequency region. Previous

studies in acoustic phonetics indicate that for the rounded vowel /ao/, the mean of the first formant

is around 600 Hz and the second formant, it is around 900 Hz (Xuedong et al., 2001). It can be seen

that the system is not able to differentiate between the two formants and we see an emphasize in

the frequency region between 692-1492 Hz.
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Figure 3.12. Important frequency regions for the /iy/ (e.g., deed) and /ow/ (e.g., dog) obtained from the linear Volterra
kernels for TIMIT.

3.4.3 Volterra Analysis: MFCC-MLP System

In this section, we demonstrate the application of Volterra series to analyze an MLP, which is

trained on the standard MFCC features (Davis and Mermelstein, 1980). The input to the system

under analysis are the log energies from each of the K = 26 mel auditory filter banks, and the

output of the system is the linear activation values of the N = 40 output phonetic classes. This

system is in the form shown in Figure 3.4 (c). The system for Volterra analysis includes the discrete

cosine transformation matrix, followed by the FIR filter bank required to compute the dynamic

cepstral coefficients and a temporal context of 90 ms.
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FIR filter bank

Figure 2.5 (b and c) are the FIR filters that are typically used in HTK toolkit for computing the

delta and delta-delta cepstral parameters. The static cepstral coefficients can be viewed as the

output of an FIR filter with a Kronecker delta δ(m) impulse response function. In other words,

a 39 dimensional concatenated feature vector is obtained by filtering the 13 dimensional static

cepstral feature vector using 3 FIR filters. The creation of a temporal context of 90 ms can also be

achieved using 9 filters with impulse response functions given by (3.36). Both these operations can

be implemented using a single filter bank comprising of 27 filters.9
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Figure 3.13. (a) The average mean square error between the sigmoid function and its polynomial approximation at the
hidden layer of the MLP trained on MFCC features. (b) phoneme classification accuracy on the train set as a function
of the polynomial order used to approximate the sigmoidal nonlinear function. Horizontal lines indicate the accuracy
obtained using the sigmoidal function. (c) A similar plot on the test set.

The variance normalization and the DCT transformation matrix is incorporated into the weight

matrix of the MLP connecting the input layer to the hidden layer as given by (3.30). Figure 3.13

shows the monotonic decrease in the error of polynomial approximation of the sigmoidal function

and the monotonic increase in the phoneme classification accuracies with increase in the order of

the polynomial. The Volterra kernels are derived in the same way as discussed in previous sections.

Interpretation of Volterra kernels

In Figure 3.14, we plot the first order Volterra kernels for the affricate phonemes /ch/ (e.g. church)

and /jh/ (e.g. judge). The affricate /ch/ is a combination of two phonemes - the unvoiced stop con-

9The impulse response of a cascade of two LTI systems with impulse responses ha(t) and hb(t) is given by the convolution
hab(t) = ha(t) ∗ hb(t).
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sonant /t/ and the unvoiced fricative /sh/. On the other hand, the affricate /jh/ is a combination of

voiced stop consonant /d/ and the voiced fricative /zh/ (Xuedong et al., 2001). It can be seen from

the plot that for both these phonemes, there is an area of frication between 2000-3500 Hz. This

information is important to distinguish these affricates from other phonemes such as vowels. The

two affricates are discriminated from each other depending on their low frequency characteristics.

It can be seen that for the voiced /jh/, there is a concentration of energy in the low frequency re-

gion 125-280 Hz, whereas for the unvoiced affricate /ch/, the emphasis is in the relatively higher

frequency region of 778-1089 Hz.
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Figure 3.14. A comparison of emphasis/deemphasis of different frequency regions for affricates /ch/ (e.g., church) and
/jh/ (e.g., judge).

3.5 Wiener Analysis of MRASTA-MLP System

In this section, we discuss the application of Wiener series in the analysis of MLP classifier trained

to estimate the phonetic class-conditional probabilities. The objective of this study is twofold.

Firstly, it is to re-validate the shape of the kernels obtained in the previous section using Volterra

analysis. Secondly, although we showed the calculation of Volterra kernels for a three layered MLP,

this method could be useful when analytical calculation of Volterra kernels becomes complicated

due to, for example, the presence of more than one hidden layer.

In Section 3.2.4, we showed the Wiener series representation for a single-input single-output

system. The Wiener kernels are estimated by presenting white Gaussian noise as stimulus to the

system under analysis and then cross-correlating its response to the stimulus as given by (3.10).

The extension of Wiener theory to multi-input, multi-output systems is straightforward as dis-
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cussed in (Marmarelis and Naka, 1974).

We now discuss the Wiener analysis of the MRASTA-MLP system. As in Section 3.4.2, the input

to the system under analysis represent the log energies in the 19 critical bands. The output of the

system represent the linear activation values before the softmax activation function. Let xk(n), k =

1, 2, . . . K;n = 1, 2, . . . N denote the white Gaussian noise generated, where K is the number of

critical bands (here 19), and N the number of samples generated. White noise is presented at the

input of the MLP as if it were a single utterance obtained from real speech. Let yj(n) denote the

linear output of the MLP corresponding to the phoneme j for the time instant n. The zeroth and

first order Wiener kernels are obtained by cross-correlating the stimulus and response as

hj
0 =

1

N

N
∑

n=1

yj(n) (3.38)

hj
k(m) =

1

Nσ2
k

N
∑

n=1

(

yj(n) − hj
0

)

xk(n − m) (3.39)

where σ2
k is the variance of the noise corresponding to the critical band k. In our experiments, the

noise is generated with zero mean and variance corresponding to the log energies in the critical

bands for real speech, and this is estimated on the training data.

The basic idea in correlation based kernel estimation is to present all possible input combi-

nations as the stimulus to the system, and to measure the response of the system. The first order

kernel for a phoneme j can be interpreted as the average time-reversed pattern in the input domain

that activates the particular output unit.

In Figure 3.15 (a), we compare a time-slice in the first order Volterra and Wiener kernels of the

phoneme /iy/ corresponding to the critical band 4 (307-423 Hz) for the MRASTA-MLP system. We

chose this particular critical band because from the Volterra analysis (Figures 3.11 (a) and 3.12) it

is clear that for the phoneme /iy/, the system has learned to emphasize this frequency region. It can

be seen from the figure that the Volterra and Wiener kernels are similar in shape with a correlation

coefficient of 0.96. Figure 3.15 (b) is a plot of the kernels for the phoneme /ao/ in the same frequency

region.

For further illustration, in Figure 3.16, we plot the time-slice in the first order Volterra and

Wiener kernels for the phonemes /iy/ and /ao/ for a frequency region 1035-1247. This is the fre-
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Figure 3.15. (a) Comparison of a time slice of Volterra and Wiener kernels of the phoneme /iy/ corresponding to the
critical band 4 with a frequency range of 307-423 Hz. The correlation coefficient between the kernels is 0.96. (b) A
similar plot for the phoneme /ao/, where the correlation coefficient between the kernels is 0.95.
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Figure 3.16. (a) Comparison of a time slice of Volterra and Wiener kernels of the phoneme /iy/ corresponding to the
critical band 8 with a frequency range of 1035-1247 Hz. The correlation coefficient between the kernels is 0.81. (b) A
similar plot for the phoneme /ao/, where the correlation coefficient between the kernels is 0.98.

quency region that the system has learned to emphasize in order to classify the phoneme /ao/ as

shown in Figure 3.11 (b) and Figure 3.12.

It can be recalled that the Volterra kernel represents the total linear part of the nonlinear time-

invariant system as the functionals are homogeneous. On the other hand, every Wiener functional

of order greater than one consists of a varying number of lower order Volterra functionals (3.10),

which are called derived Wiener kernels (Franz and Scholkopf, 2003). Hence, the first order Wiener

kernel can only approximately reveal the linear part of the nonlinear system. Nevertheless, from

Figures 3.15 and 3.16, it can be seen that the kernel shapes are similar.

To obtain further insights, we obtain an objective measure on the similarity between the first
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order Volterra kernels, which are identified analytically and the first order Wiener kernels, which

are estimated using cross-correlation based methods. In Figure 3.17 (a), we plot the histogram of

the correlation coefficient between the Volterra and Wiener kernels. For the MRASTA system, the

number of first order kernels is 40, corresponding to the number of output phonetic classes. Each

kernel is a function of time (71 samples) and frequency corresponding to the 19 critical bands. We

compute the correlation coefficient between the 19.40 = 760 one-dimensional Volterra and Wiener

kernels. In Figure 3.17 (a), we plot the histogram of the correlation coefficients. It can be seen that

the majority of the kernels have a correlation coefficient greater than 0.95. However, there are a

significant number of kernels with lower correlation coefficient.
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Figure 3.17. (a) The normalized histogram of the correlation coefficient between the Volterra kernel and Weiner kernel.
(b) the scatter plot of the correlation coefficient as a function of the energy in the Volterra kernel.

To get a clearer picture of the kernels with low correlation coefficient, in Figure 3.17 (b), we show

the scatter plot of the correlation coefficient between Volterra and Wiener kernels and the energy

in Volterra kernel. It can be seen that the kernels which have a low correlation coefficient are the

ones with lower energies, and low energy kernels are those which do not contribute significantly

to the output activation values. In other words, Wiener analysis can be applied to understand

the functionality of the system as the kernels that actually contribute to the output are reliably

estimated.

It can be seen from (3.38) and (3.39) that Wiener kernels are actually average or mean patterns.

To empirically demonstrate convergence, it is sufficient to show that the variance of the estimate

decreases with the number of samples used for its estimation. In Figure 3.18, we plot the variance

of the Wiener kernels shown in Figure 3.15 for the time instant t = 0. It can be seen that the
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variance reduces steadily with the number of samples, but it is well known in the literature that

the rate of convergence can be very slow.
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Figure 3.18. Variance of the estimates of the Wiener kernels shown as a function of the number of noise samples
generated.

First order Volterra kernels

The first order Volterra kernels reveal the linear part of the nonlinear dynamic system under anal-

ysis. When analyzing MLPs trained on acoustic features, these kernels represent the average

spectro-temporal patterns learned for each of the phonemes. The expression for the first order

kernel (3.34) can be rewritten as

gj
k (m) =

M
∑

i=1

cj
i g′(i,k)(m), where (3.40)

g′(i,k) (m) = â1,i

L
∑

l=1

ŵi
k,lhl (m) (3.41)

It can be seen that the MLP learns a spectro-temporal pattern g′(i,k) (m) at each hidden node i, which

is shared across all phonemes. Here, m and k denotes the time and frequency axis respectively. The

first order Volterra kernel for a particular phoneme is a linear combination of spectro-temporal pat-

terns at the hidden layer as given by (3.40). Depending on the phoneme, spectro-temporal patterns

at the hidden layer are weighted according to the weight matrix connecting the hidden and output

layers of the MLP to obtain the final kernel. This clearly brings out the similarity of the MLP with

semicontinuous density modeling discussed in Section 2.4.2.
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Best practices in calculation of Volterra Kernels

When identifying the Volterra kernels using data, it is a good practice (for mathematical simplicity

as well as reasons of stability) to first identify the constant term in the system response and then

model the remaining part of the response as increments with respect to this constant. In this way,

the Volterra series starts with order 1 and not 0 (Hasler, 2010). In this chapter, the Volterra kernels

are calculated analytically and hence this problem does not arise. However, in the Wiener series

formulation, the above approach is followed as the kernels are identified incrementally as given

by (3.10). It is also a good practice to consider the input signal as zero mean as this can greatly

simplify the calculation of Volterra kernels in certain cases. For example, in the calculation of

Volterra kernels where the input features to the MLP are normalized as discussed in Section 3.3.2.

3.6 Summary and Conclusion

The main objective of this work was to provide a framework to apply Volterra series to analyze MLP

based phoneme posterior probability estimation. We include a part of the feature extraction (LTI

system following the auditory analysis) in the analysis framework so that the Volterra kernels can

be interpreted as spectro-temporal patterns. We showed the calculation of the Volterra kernels for

the following three systems (a) an FIR filter bank followed by a three layered MLP (b) the features

to the MLP are normalized to zero mean and unit variance, and (c) a linear transformation matrix

precedes the FIR filter bank. Furthermore, we discussed the approximation of the sigmoidal func-

tion at the hidden layer of the MLP as a power series and empirically demonstrated the convergence

of Volterra series.

In this chapter, we demonstrated the application of the proposed framework in the analysis

of the MLPs trained on mel filter bank energies, MRASTA features and MFCC features. It has

been observed (for example, from Figure 3.13) that as the order of the polynomial approximation

is increased, the recognition accuracies obtained using truncated Volterra series approaches to the

recognition accuracy obtained by the direct evaluation of the MLP. The first three Volterra kernels

(constant, linear and quadratic) can reveal most of the information learned by the system. In this

respect, we believe the proposed analysis framework can be useful towards better understanding of

the trained systems. The detailed analysis of an MLP trained using posterior features is presented

in the following chapter.



Chapter 4

MLP Based Hierarchical System

4.1 Introduction

So far we have discussed MLP based acoustic modeling and its application in speech recognition.

We briefly summarize the main points here. A well trained MLP classifier estimates the posterior

probabilities of phonemes conditioned on the input acoustic features. The estimated phonetic class-

conditional probabilities are typically used as local state emission scores or as features in HMM

based speech recognition. As phoneme posterior probabilities are also used as local representation

of speech in the same way as standard acoustic features, they are commonly referred to as posterior

features.

In the posterior feature space, each dimension corresponds to a phoneme. The posterior fea-

ture vector at a particular time instant is a point in the posterior feature space, representing the

instantaneous soft-decision on the underlying phoneme. It carries useful information such as the

probability mass assigned to competing phonemes. The sequence of posterior feature vectors is a

trajectory in the posterior feature space, and it can provide additional contextual information such

as the evolution of the posterior features within a phoneme (sub-phonemic transition) as well as in

its transition to and from neighboring (sub-lexical transition) phonemes.

This research presented in this chapter is based on the premise that the sub-phonemic and

sub-lexical contextual information can be exploited in the estimation of more accurate phonetic

class-conditional probabilities. To this end, we investigate a hierarchical system, where a second

75
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MLP classifier is trained on the posterior features with a temporal context spanning about 150-230

ms, which corresponds to roughly three phonemes.

The rest of the chapter is organized as follows: In Section 4.2, we describe the MLP based

hierarchical system and discuss its similarities/differences with previous works in the literature.

In Section 4.3, we describe the experimental setup and the results. In Section 4.4, we discuss the

application of Volterra series in the analysis of the second stage of the hierarchical and interpret

its linear Volterra kernels in terms of phonetic-temporal patterns. In Section 4.5, we analyze some

of the favorable properties of the posterior features, which makes the hierarchical system effective.

In Section 4.6, we discuss some of the less explored facets of the hierarchical approach.

4.2 Hierarchical Posterior Estimation

Figure 4.1 is a block schematic of the proposed hierarchical architecture for estimating the phonetic

class-conditional probabilities. The first MLP is trained in the conventional way using standard

acoustic features. The second MLP is trained using posterior features estimated by the first MLP

classifier, taken with a temporal context of around 150-230 ms. The phonetic class-conditional

probabilities estimated by the second MLP are used in the same way as those estimated by the

conventional single MLP based approach.

MLP−1
temporal 

90 ms
context

phoneme
posterior
probabilites

MLP−2

phoneme
posterior
probabilites

features
acoustic

PLP, MFCC

temporal 
context

150−230 ms

Figure 4.1. Estimation of posterior probabilities of phonemes using a hierarchy of two MLPs. The second MLP is trained
using the posterior probabilities of phonemes estimated by the first MLP with a longer temporal context.

In Section 2.5.4, we discussed that the performance of ASR systems using MLP based acoustic

modeling can be improved using three broad strategies, namely (a) better features (b) better mod-

eling and (c) finer output classes. With respect to the second classifier in the hierarchical system,

the proposed approach can be viewed as using better features.
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4.2.1 Motivation

An MLP trained on acoustic features gives a frame-level phoneme classification accuracy of around

60-70%. The errors in classification can be mainly attributed to the limitations in feature extraction

and in the modeling. Analysis of the associated phonetic confusion matrices have shown that there

exists a definite pattern in classification. For example, if the phoneme /iy/ (e.g., beat) is misclassi-

fied, then it is more likely that vowels such as /ih/ (e.g., bit) or /eh/ (e.g., bet) are assigned a higher

probability mass. This information in the distribution of the probability values could be exploited

to correct the output of the MLP classifier.
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Figure 4.2. (a) A 210 ms trajectory of the posterior features showing the underlying phoneme sequence is /t/ /eh/ /l/,
which is a part of the utterance “artificial intelligence”. (b) A 90 ms trajectory around the vowel /eh/. (c) Enhanced
posterior probability estimate at the center of the vowel /eh/.

In Figure 3.2 (d), we plotted the posterior probabilities of phonemes estimated by the MLP as a

function of time for the utterance “artificial intelligence” in the TIMIT database. The intensity of

the color is proportional to the estimated probabilities. To get a clearer picture, in Figure 4.2 (a), we

plot the posterior features in the time interval between 640 ms and 840 ms, where the underlying

correct phoneme sequence is /t/ /eh/ /l/. The axes of the three dimensional plot correspond to the

phonemes /t/, /eh/ and /l/. The remaining dimensions are not plotted for the sake of clarity. The

trajectory starts roughly at the center of the phoneme /t/ and then transits to /eh/, followed by a

transition to /l/ and ends at its center.

At the center of phonemes /t/ and /l/, the MLP has assigned a probability mass which is close to

one, which indicates a perfect classification. However, in the case of the vowel /eh/, the probability

mass assigned is about 0.5, and the remaining mass is assigned to confusing vowels such as /ae/
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and /aw/. This can be seen in Figure 4.2 (b), where a 90 ms trajectory around the center of the

vowel /eh/ is plotted for the dimensions /eh/, /ae/, and /aw/. This figure clearly shows the sub-

phonemic transitions in the vowel /eh/ in a 90 ms interval, while Figure 4.2 (a) shows the sub-lexical

transitions in a 210 ms interval.

The posterior features have a simple (or sparse) representation in their feature space as the

trajectory will mostly be along the surface of the N dimensional hypercube, where N denotes its

dimensionality. Furthermore, it has been shown that the posterior features have lesser nonlinguis-

tic variabilities such as speaker and environmental characteristics (Zhu et al., 2004; Ikbal, 2004).

Consequently, contextual information spanning time spans as long as 250 ms can be effectively

modeled in the posterior feature space. Figure 4.2 (c) shows the posterior probability estimated by

the second MLP at the center of the vowel /eh/, conditioned on the trajectory of posterior features.

It can be seen that the enhanced estimate yields a perfect classification.

As the second MLP is trained using posterior features estimated by the first classifier with a

certain temporal context, we can expect it to learn the phonetic-temporal patterns, mainly captur-

ing the phonetic confusions at the output of the first classifier. However, as the MLP is a complex

classifier with nonlinear activation functions, discovering the phonetic-temporal patterns learnt

by the system for each phoneme is not straightforward. Moreover, as the MLP is trained using a

discriminative criterion, these patterns cannot be simply derived from the confusion matrix of the

first MLP classifier. In addition, confusion matrices do not capture any temporal information. To

understand this information, one has to interpret the trained parameters (weights and biases) of

the second MLP classifier. In this chapter, we address this issue by representing the second stage of

the hierarchical system using Volterra series, thereby decomposing the trained nonlinear dynamic

system into its linear, quadratic, and higher order parts. Furthermore, we analyze the linear part

of the second MLP and interpret the phonetic-temporal patterns that are learned.

4.2.2 Notations and Formalism

The following notations are used throughout this chapter. ft denotes the acoustic feature vector 1

at time t. A temporal context of 2d1 + 1 frames on the feature vector ft is denoted by ft−d1:t+d1
=

[f ′t−d1
, . . . f ′t , . . . f

′
t+d1

]′. The first MLP classifier, denoted by Θmlp1, estimates the posterior probability

1All vectors are column vectors by default. Transpose is denoted by ′
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of each of the K phonetic classes qt = k, k = 1, 2, . . . K, conditioned on the acoustic features spanning

d1 ≈ 4 frames around ft as

xk(t) = P (qt = k | ft−d1:t+d1
, Θmlp1) , k = 1, 2, . . . K (4.1)

The estimated posterior probabilities at time t are represented in a vectorial form as xt =

[x1(t), x2(t), . . . xk(t), . . . xK(t)]′, and a temporal context of 2d2 + 1 frames on the posterior feature

vector is denoted by xt−d2:t+d2
. The second MLP, denoted by Θmlp2, estimates the posterior proba-

bilities of phonemes conditioned on a temporal context d2 ≈ 11 on the posterior features estimated

by the first MLP as

zk(t) = P (qt = k | xt−d2:t+d2
, Θmlp2) , k = 1, 2, . . . K (4.2)

The output of the second MLP at time t is represented as zt = [z1(t), z2(t), . . . zk(t), . . . zK(t)]′. In

later parts of this section, f1:T and x1:T denotes the entire sequence of acoustic and posterior feature

vectors respectively, where T denotes the total number of frames in the utterance.

In practice, the input features to the MLP are normalized to zero mean and unit variance.

Feature normalization ensures that the operating region on the hidden activation function is in the

linear region, leading to a faster convergence of the back propagation training algorithm (LeCun

et al., 1998). In the case of the second MLP, as the features are posterior probabilities, mean and

variance normalization is equivalent to taking scaled likelihoods as features (refer to Appendix A.3

for the proof). Hence, normalization of posterior features removes the effect of unigram phonetic

class priors learned by the first MLP classifier. The priors are, however, again learned by the second

MLP classifier.

4.2.3 Background

In this section, we review different approaches in MLP based acoustic modeling, that use hierarchi-

cal architectures to better model the temporal information, and contrast them with the hierarchical

approach investigated in this chapter. In all the discussed works, the first stage of the hierarchy is

an MLP. The second stage of the hierarchy includes classifiers such as MLP, HMM, recurrent neu-
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ral network (RNN), or conditional random field (CRF). The reviewed works are categorized into the

following groups (G1 to G6), mainly based on the application of temporal context on the posterior

features and the type of classifier at the second stage of the hierarchy.

G1: Classifier Combination

Hierarchical architecture of MLPs have been previously studied in the TRAPS (Hermansky and

Sharma, 1999) and HATS (Chen et al., 2001) systems. At the first stage of the hierarchical system,

separate MLP classifiers are trained for each of the critical bands. Temporal information in the

acoustic features is exploited by using the log critical band energies spanning over a period of about

one second as input feature. At the second stage, an MLP is used to merge the outputs from the

classifiers at the first stage of the hierarchy. In other words, the input to the second MLP classifier

are the activations at the output (hidden in case of HATS) layer of the critical band specific MLPs,

but without any temporal context. Independent processing of speech in subbands was originally

inspired by Allen’s interpretation (Allen, 1994) of Fletcher’s work (Fletcher, 1995), indicating a

similar mechanism in the human auditory system. Similar hierarchical architectures have also

been studied in multiband ASR (Bourlard and Dupont, 1996; Tibrewala and Hermansky, 1997).

G2: Feature Combination

Multi-resolution relative spectra (Hermansky and Fousek, 2005) features are obtained by filtering

the log critical band energies using a bank of multi-resolution bandpass filters. These features are

typically used in Tandem based ASR systems. In more recent studies (Valente and Hermansky,

2008a,b), the multi-resolution filter bank is split into two groups - fast modulation filters (narrow

bandwidth) and slow modulation filters (wider bandwidth) - and combined in a hierarchical fashion.

At the first stage of the hierarchy, an MLP is trained with features obtained using fast modulation

filters. The estimates of posterior probabilities from the first MLP (log + KLT), with a temporal

context of 90 ms are appended to the features obtained using slow modulation filters, and used to

train the second MLP classifier. ASR studies using this hierarchical system have shown to yield

higher recognition accuracies. In this approach, the second MLP acts like a feature combiner.
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G3: Hierarchy using HMM

Hierarchical structures have also been investigated in an attempt to integrate additional knowledge

such as minimum duration of phonemes and transition probabilities between phonemes (Ketabdar

et al., 2006). This knowledge is incorporated into an HMMmodel Θhmm. The posterior probabilities

of phonemes estimated by the MLP model Θmlp1 are used as emission scores in the HMM states.

The new estimates of posterior probabilities are derived from the state occupancy probabilities

P (qt = k|f1:T ,Θmlp1,Θhmm) estimated using the forward-backward algorithm. The new estimates of

the posterior probabilities are conditioned on the entire acoustic observation sequence f1:T .

G4: Hierarchy using RNN

Recurrent neural networks (RNN) can also estimate the phonetic class conditional probabili-

ties (Robinson, 1994). In a prior work (Khan et al., 2000), the hierarchical estimation of the pho-

neme posterior probabilities using RNN was investigated. The first stage of the hierarchical system

consists of an MLP trained using the power spectrum of the speech. Its output units represent the

articulatory features corresponding to the phonemes. In the second stage, an RNN model Θrnn is

trained on the articulatory features estimated by the MLP. In this case, at time t, the RNN esti-

mates the posterior probabilities of the phonemes P (qt = k|x1:t,Θrnn), conditioned on the present

and all the previously observed articulatory feature vectors x1:t.

G5: Hierarchy using CRF

There is a growing interest in CRF based models, especially linear chains (with first order Marko-

vian assumption) for reasons such as discriminative training, relaxed conditional independence as-

sumption, and ability to jointly model features streams with different distributions (Abdel-Haleem,

2006). In more recent works, CRFs have been investigated for hierarchical estimation of phoneme

posterior probabilities (Morris and Fosler-Lussier, 2008; Fosler-Lussier and Morris, 2008). At the

first stage of the hierarchical system, an MLP estimates the posterior probabilities of phonemes

using (4.1). In the second stage, the estimates of the posterior probabilities from the MLP x1:T

are used as features to the CRF model Θcrf . The new estimates of the posterior probabilities of

phonemes P (qt = k|x1:T ,Θcrf ) are obtained using a framework similar to HMM based forward-
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backward algorithm.

The main difference between the CRF based hierarchical system and HMM based hierarchical

system, discussed in G3, is in the way the estimates of posterior probabilities from the MLP are

used. In the HMM based system, the posterior probabilities of phonemes are used as local acoustic

scores in the HMM states, whereas in the CRF based system, they are used as features.

G6: Hierarchy using MLP

In the proposed approach, the MLP at the second stage of the hierarchy yields a new estimate

of posterior probabilities, conditioned on a window of the posterior features estimated by the first

MLP, and the model Θmlp2 representing the second MLP as P (qt = k|xt−d2:t+d2
,Θmlp2).

This approach is similar in principle to the RNN based hierarchical approach G4 and the CRF

based hierarchical approach G5. The classifiers in the second stage of these systems are trained

discriminatively using either posterior features or articulatory features. Apart from the modeling

abilities of these classifiers, the main difference between these hierarchical systems is the tempo-

ral context on the posterior features. In the RNN based system, the new estimates of posterior

probabilities are conditioned on all previously observed posterior feature vectors. In the CRF based

approach, it is conditioned on the entire sequence of posterior features. Whereas in our approach,

the temporal context on the posterior features is explicitly limited to be around 150-230 ms.

The works described inG1-G3 are primarily motivated towards exploiting the temporal informa-

tion in the acoustic features. Whereas in our work as well as G4 and G5, the hierarchical system is

motivated towards exploiting temporal information in the posterior features. In this work, the first

MLP is trained using standard PLP features. However, it can be trained with any acoustic features,

or the first stage can be entirely replaced with more sophisticated MLP based systems described in

G1-G2. Table 4.1 gives a summary of the discussed approaches highlighting the differences in the

temporal context and the nature of the second classifier in the hierarchy.

The proposed hierarchical framework can also be related to the following prior works in the

literature
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system name temporal context C2 C2

C1 (acoustic) C2 (posterior) features type

G1 (Hermansky and Sharma, 1999; Chen et al., 2001) long (1s) nil P MLP

G2 (Valente and Hermansky, 2008a,b) long (1s) 90 ms A+Ptr MLP

G3 (Ketabdar et al., 2006) T nil - HMM

G4 (Khan et al., 2000) any 1:t P RNN

G5 (Morris and Fosler-Lussier, 2008) any T P CRF

G6 (Pinto et al., 2008; Ketabdar and Bourlard, 2008) any 230 ms P MLP

Table 4.1. Summary of the hierarchical systems exploiting temporal information. Notations include: classifier-1 (C1),
classifier-2 (C2), acoustic features (A), posterior features (P), posterior features transformed using log and KLT (Ptr),
length of the utterance (T).

G7: Bottleneck Features

In bottleneck feature extraction (Grezl et al., 2007), a five layer MLP with a bottleneck constriction

at the middle (or compression) layer, is trained to classify phonemes. The linear activation values at

the bottleneck layer are used as features in Tandem based speech recognition. The processing from

the input to the compression layer can be likened to the first MLP in the hierarchical system, and

the processing from the compression layer to the output layer can be likened to the second MLP.

Even though the architectures of both these systems seem to be similar, the motivation for these

works and their application in speech recognition are different. In the bottleneck feature extraction,

the objective is to obtain lower dimensional features (independent of the phonetic classes), which

are more suitable to the ensuing HMM/GMM system. In the proposed hierarchical system, the first

MLP transforms the acoustic features to posterior features with lesser undesirable variabilities

such as speaker and environment characteristics. Consequently, the second MLP can exploit the

temporal information in the posterior features spanning temporal contexts as long as 250 ms. The

second MLP gives new estimates of phonetic class conditional probabilities.

G8:Frame-based MPE

The hierarchical system discussed in this work can be related to the frame based minimum phone

error (fMPE) system (Povey et al., 2005). In fMPE, a very high dimensional vector of posterior prob-

abilities is obtained from Gaussian mixture models with a temporal context. The high dimensional

posterior vector is projected to a lower dimensional feature space, and used as a correction to the

input features such as PLP cepstral coefficients. The linear transformation matrix and the acoustic

models are jointly trained using the minimum phone error criterion (Povey and Woodland, 2002).
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In the MLP based hierarchical system, the high dimensional vector of posterior probabilities

is obtained by applying a long temporal context on the posterior features estimated by the MLP.

The second MLP acts as a nonlinear transform, and it is trained using a minimum cross-entropy

error criterion, which also achieves minimum phone error rate in the asymptotic sense assuming

model correctness. Apart from the nonlinear transformation, the major difference between the two

is that in fMPE, the transformed posterior vectors are used as a correction to the input features.

Whereas, in the hierarchical system, they are used as new features in ASR. Interestingly, fMPE

has been shown to be a special case of semi-parametric trajectory modeling and that it captures the

trajectories of the acoustic features (Sim and Gales, 2007). In our case, the second MLP learns the

trajectories of the posterior features. This is discussed in Section 4.4.

4.3 Experiments and Results

4.3.1 Experimental Setup

The efficacy of the hierarchical system in estimating phoneme posterior probabilities is evaluated

by performing speaker independent phoneme recognition experiments on TIMIT as well as CTS

databases. We preferred phoneme recognition as it facilitates a detailed analysis of the results.

Improvements in word recognition using the hierarchical approach have been previously discussed

in (Ketabdar and Bourlard, 2008; Pinto et al., 2009b). In this thesis, ASR experiments are discussed

in Chapter 5 and Chapter 6.

The TIMIT database consists of 4.3 hours (including 1.1 hours of NIST complete test set) of read

speech, recorded in clean conditions. The ‘sa’ dialect sentences in the database are not included in

the experiments. The database is hand-labeled using 61 phonetic symbols, which include the clo-

sures as well as the allophonic variations of certain phonemes. In our experiments, these phonetic

symbols are mapped to the standard set of 39 phonemes (Lee and Hon, 1989) with an additional

garbage class.2

The CTS setup used in the experiments consists of 277.7 hours speech defined as ctstrain04,

which is a subset of the h5train03 data set defined at the Cambridge University for training the

2Unlike in (Lee and Hon, 1989), the closures are merged with their corresponding bursts (e.g., /bcl/,/b/→/b/). The garbage
class handles frames with no labels, and the glottal stop /q/ and its closure /qcl/. The garbage and silence classes are excluded
while evaluating the recognition accuracies.
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CU-HTK system for RT03 evaluation (Evermann et al., 2004; Woodland et al., 2003). 3 The phonetic

transcription of the speech - required for training the MLP as well as computing the accuracy

of phoneme recognition - is obtained by Viterbi forced alignment. For this, we used off-the-shelf

HMM/GMM acoustic models developed in (Hain et al., 2005) in conjunction with the UNISYN (Fitt,

2000) pronunciation dictionary containing 45 phonemes.

In all the experiments, the acoustic features are the first 13 PLP cepstral coefficients. These

coefficients, after speaker specific mean and variance normalization, are appended to their delta

and delta-delta derivatives, to obtain a 39 dimensional feature vector for every 10 ms. A three lay-

ered MLP with sigmoid nonlinearity at the hidden layer, and softmax nonlinearity at the output

layer is used in all the experiments. The parameters of the MLP are optimized using the min-

imum cross-entropy error criterion. Phoneme recognition is performed using hybrid HMM/MLP

approach (Bourlard and Morgan, 1994). The sequence of phonemes is decoded by applying Viterbi

algorithm, where each phoneme is represented by a strictly left-to-right, three-state HMM, thereby

enforcing a minimum duration of 30 ms. The emission likelihood in each of the three states is the

same, and is derived from the associated output of the MLP.

TIMIT CTS

train CV test train CV test

speech (hours) 2.6 0.6 1.1 232.0 36.3 9.4

speakers 375 87 168 4538 726 182

Table 4.2. The number of speakers and the amount of data in the train, cross-validation (CV) and test sets of TIMIT and
CTS.

Table 4.2 shows the number of speakers and the amount of data in the training, cross-validation,

and test sets of the two databases. On TIMIT, the train and test sets are according to the standard

protocol. On CTS, the total data is split into train, CV, and test sets as shown in the table. The

parameters of the MLP and the phoneme n-gram models are trained on the train set. The cross-

validation set is used to control the learning rate of the MLP. In addition, while decoding, the

optimal phoneme insertion penalty (and language model scaling factor, if phoneme n-gram models

are used) is optimized on the cross-validation data. All the results reported in this work are on the

test set, which is not seen in the entire training process.

3The h5train03 setup consists of around 296 hours of speech from Switchboard-I (Godfrey et al., 1992), Switchboard
Cellular, and Callhome English speech corpora, distributed by the Linguistic Data Consortium. For training the AMI RT05
system (Hain et al., 2005), the sentences containing words which do not occur in the dictionary were removed, resulting in
277.7 hours of ctstrain04 data set.
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On the CTS task, training an MLP with 232 hours of speech is computationally expensive.4 In

order to speed up the experiments to obtain various plots, the training data set is split randomly

into two equal parts. The first MLP is trained with one half of the training data, and the second

MLP is trained with the remaining half. The single MLP based system is, however, trained on the

complete training data. On TIMIT, as the amount of training data is small, both the MLPs in the

hierarchical system are trained on the same data.

The MLPs are trained using the Quicknet package (Johnson et al., 2000). The phoneme n-gram

models are trained using the SRILM toolkit (Stolcke, 2002) and phoneme recognition is performed

using the weighted finite state transducer based Juicer decoder (Moore et al., 2006).

4.3.2 Experimental Results

Table 4.3 shows the phoneme recognition accuracies obtained by hierarchical modeling (system

S2) in comparison with the standard single MLP modeling (system S1). The single MLP system

is trained using PLP features with a 90 ms context. The second MLP in the hierarchical system

is trained using the output of the single MLP based system S1, with a temporal context of 230

ms. It can be seen that, by hierarchical modeling we obtain an absolute improvement of 3.5%

in recognition accuracy on TIMIT, and 9.3% on CTS. To study the effect of increase in the model

capacity on the recognition accuracies, we also compare these results to those obtained by a single

MLP based system with the same number of parameters as in the hierarchical system (system S3).

In this case, the improvement in the recognition accuracies is 2.5% and 8.3% respectively.

single MLP hierarchical single MLP

baseline (S1) two MLPs (S2) same capacity (S3)

TIMIT 68.1 71.6 69.1

CTS 54.3 63.6 55.3

Table 4.3. Phoneme recognition accuracies obtained by using hierarchical posterior estimation as compared to the
standard single MLP on TIMIT and CTS databases.

We also perform model selection on the TIMIT database to select the optimal size of the hidden

layer of the first MLP. After model selection, the single MLP based system yields a recognition

accuracy of 69.2%, which is marginally higher than the one obtained by parameter equalization

4Using multi-threaded version of Quicknet (Johnson et al., 2000) (with eight threads and bunch size of 2048), training an
MLP of size 351×5000×45 on 232 hours of speech takes roughly 72 hours to complete 8 epochs on a 2.4 GHz, AMD Opteron
processor, with eight cores.
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technique. By training a second MLP classifier on the posterior features estimated after model

selection, we obtain a recognition accuracy of 72.7%, which corresponds to an absolute improvement

of 3.5%. This further demonstrates that the improvement in recognition accuracy is not due to the

increase in the modeling complexity.

In Figure 4.3, we compare the phoneme recognition accuracies obtained using the hierarchical

approach to those obtained using the single MLP approach for different values of the temporal con-

text. In the case of hierarchical system, the first MLP is always trained using a temporal context of

90 ms on the acoustic features. As the temporal context on the posterior features at the second MLP

is increased, the total number of parameters in the MLP is kept constant by appropriately reducing

the size of the hidden layer of the second MLP classifier.5 In the case of single MLP estimator, as

the temporal context on the acoustic features is increased, the total number of parameters is kept

constant, and equal to those in the hierarchical system (sum of the parameters in both the MLPs).
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Figure 4.3. (a) Phoneme recognition accuracy on TIMIT using a hierarchical setup as well as single MLP with the same
number of parameters. In hierarchical system, the size of the first MLP is 351× 1000× 40, and the size of the second MLP
for 23 frame context is 920× 1083× 40. (b) A similar plot on the CTS, where the size of the first MLP is 351× 5000× 45, and
the size of the second MLP for 23 frame context is 1035 × 1334 × 45. Any two points in the plot correspond to systems
with the same number of parameters, and can be calculated using footnote 5.

It can be seen from the figure that:

1. The hierarchical posterior estimator consistently outperforms the single based MLP posterior

estimator with the same number of parameters for all values of context. As the context at

the second MLP is increased, even though the number of hidden nodes is decreased, there is

a steady increase in the recognition accuracies. Thus it can be concluded that improvement

5If F denotes the dimensionality of the features, C denotes the temporal context, and H (and O) denote the size of the
hidden (and output) layers, the number of parameters in the MLP is given by C ∗ F ∗ H + H + H ∗ O + O.
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is due to the topology of two MLPs in tandem, and not merely due to the increase in overall

model capacity.

2. In case of CTS, the recognition accuracies begin to saturate at around 230 ms of temporal

context at the input of the second MLP. In case of TIMIT, the accuracies begin to saturate

after 150 ms, but this could be due to the lack of sufficient training data. In both cases, the

effective temporal context of 150-230 ms extends well beyond the typical duration of phonemes

(50-70 ms), which suggests that the second MLP is integrating temporal information in the

posteriors features corresponding to the neighboring phonemes as well.

3. A long temporal context is more effective when applied on the posterior features rather than

on the standard acoustic features. On increasing the temporal context on the acoustic features

at the input of the single MLP system, recognition accuracies peak for a context of around 90-

110 ms, but are significantly lower compared to the hierarchical system.

From the above discussion it is clear that the hierarchical system is useful as a phoneme poste-

rior estimator, and that a long temporal context is more effective on the posterior features rather

than on the acoustic features. Since the second MLP is trained using posterior features, which

represents the underlying sequence of phonemes, it is clear that the second MLP is learning the

phonetic-temporal patterns.

The following questions, however, remain unanswered: (a) what are the phonetic-temporal pat-

terns learned for each phoneme ? (b) due to the long temporal context extending beyond the typical

duration of a phoneme, has the MLP also learned the phonotactics of the language ? and (c) why

is the temporal context more effective on the posterior features ? The first two questions can be

answered by analyzing the input-output relationship learned by the second MLP classifier using

Volterra series. This is discussed in Section 4.4. The effectiveness of temporal context on the poste-

rior features is discussed in Section 4.5.

4.3.3 Second MLP as a Function

The second MLP can be viewed as a vector valued function fmlp2(.), which takes the estimates of

posterior probabilities of phonemes from the first MLP denoted by xt−d2:t+d2
as its arguments, and
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gives a new estimate of the posterior probabilities of phonemes zt as

zt = fmlp2(xt−d2:t+d2
) (4.3)

In the second MLP classifier, let W denote the weight matrix connecting the input layer to the

hidden layer, C denote the weight matrix connecting the hidden layer to the output, bh and bo

denote the bias vectors at the hidden and output layers respectively, and fsoft(.) and fsigm(.) denote

the vector valued softmax and sigmoid functions at the output and the hidden layers of the MLP

respectively. Then, equation (4.3) can be expressed as

zt = fsoft (yt) (4.4)

where the vector yt = [y1(t), . . . yj(t), . . . yN (t)]′ denotes the linear activation vector before the soft-

max nonlinearity at the output layer of the MLP, and is given by

yt = bo + Cfsigm (bh + Wxt−d2:t+d2
) (4.5)

It is difficult to analyze or interpret the input-output relationship (xt, zt) of the MLP, given by (4.4)

and (4.5), due to the presence of nonlinear functions fsigm(.) and fsoft(.). The output nonlinearity

can be conveniently dropped from the analysis as parameters of the discriminatively trained MLP

{W,bh,C,bo} can still be interpreted from the input-output relationship (xt,yt). This does not

affect the interpretability as the output units are still phonemes, and the rank ordering of the

estimates are not altered. However, the nonlinearity at the hidden layer can still make the analysis

of (4.5) difficult.

In our previous work (Pinto et al., 2008), this problem was circumvented, but not solved, by

using a single layer perceptron (SLP) in place of the second MLP in the hierarchical system. The

SLP retained the same input-output architecture, training data, and optimization criterion as that

of the MLP. The weights of the trained perceptron revealed the linear fit to the observed training

data. However, the MLP classifier which was actually used in ASR was not analyzed. In this

chapter, we follow a more principled approach and represent the second stage of the hierarchical

system (creation of temporal context and the MLP classifier) using Volterra series. For this, we
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treat the multi-input xt, multi-output yt system characterized by (4.5) as a nonlinear time-invariant

system.

4.4 Application of Volterra Series

In Chapter 3, we discussed the application of Volterra series to cascade of an FIR filter bank and

a three-layered MLP. In this section, we compute the Volterra kernels for multi-input xt, multi-

output yt = [y1(t), . . . yj(t), . . . yN (t)]′ system characterized by (4.5). This system can be viewed as

N parallel, multi-input, single-output, nonlinear, time-invariant systems, and represented by

yj
t = bj

o + Cjfsigm (bh + Wxt−d2:t+d2
) , j = 1 . . . N, (4.6)

where, Cj denotes the weight row vector connecting the hidden layer to the output node j, and bj
o

the bias at the output node j. The system represented by (4.6) can be realized using the framework

shown in Figure 3.5, where the temporal context of 2d2+1 frames on the posterior features, denoted

by xt−d2:t+d2
, can be created by filtering xt using a bank of L = 2d2 + 1 FIR filters. The impulse

response of the 2d2 + 1 tap FIR filter is given by

hl(n) = δ

(

n + l −
L + 1

2

)

, with l = 1, 2 . . . L and n = −d2, . . . 0, . . . d2

The Volterra kernels are computed in terms of the above impulse response functions and the

weights of the trained MLP using (3.34)-(3.35). In practice, due to feature normalization, xt repre-

sents posterior features which are normalized to zero mean and unit variance.

In the remaining part of this section, we analyze trained second MLPs in the hierarchical sys-

tem (see Table 4.3 for results) - one trained on TIMIT (K = 40, L = 23,M = 1083, N = 40), and the

other trained on CTS (K = 45, L = 23,M = 1334, N = 45). Before analyzing the Volterra kernels,

the accuracy of first and second order truncated Volterra series is evaluated. For this, we substi-

tute the identified kernels in the synthesis equation (3.33) to obtain the linear activation values

of phonemes. Approximate estimates of phoneme posterior probabilities are obtained by applying

softmax nonlinearity, and subsequently used in phoneme recognition.

Table 4.4 shows the phoneme recognition accuracies obtained by the first and second order
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model series phoneme accuracy

order TIMIT (%) CTS (%)

linear 1 68.7 50.1

quadratic 2 70.1 54.9

MLP ∞ 71.6 63.6

Table 4.4. Phoneme recognition accuracy obtained by linear and quadratic approximation of the MLP using Volterra
series.

Volterra series approximation of the second MLP classifier. It can be seen that on TIMIT, the pho-

neme recognition accuracy obtained by the first order Volterra approximation is only three percent

lower compared to direct evaluation of the MLP function. In other words, the second (quadratic),

third (cubic), and higher order parts contribute very little to nonlinear modeling ability of the sec-

ond MLP. Hence, in this case, the linear Volterra kernels reveal most of the information learned by

the nonlinear classifier.

In the case of a more complex CTS task, the second and higher order Volterra kernels contribute

significantly (around 13.5%) to the modeling ability of the second nonlinear classifier. Hence, in

this case, the linear Volterra kernels can only partially explain the second MLP. The remaining

information is complemented by the higher order Volterra kernels. In this work, we restrict the

analysis to linear Volterra kernels.

4.4.1 Interpretation of the First Order Volterra Kernels

It is clear from (3.33) that the first order Volterra kernels reveal the linear part of the nonlinear

system under analysis. Suppose that the second MLP is trained using a temporal context of 230

ms, then the Volterra kernel for phoneme j = 1, 2 . . . N at the output of the second MLP is given

by gj
k(m), and reveals the contribution of each of the phonemes k = 1, 2 . . . K at the input of the

MLP, in a window of m ∈ [−11, . . . 0, . . . 11], which amounts to 230 ms of context. As the input to the

second MLP is in terms of phonemes, the first order Volterra kernels can be interpreted as phonetic-

temporal patterns. In our experiments, N = K as both the MLPs in the hierarchical system are

trained on the same phoneme set.

The phonetic-temporal patterns observed in the first order Volterra kernels can reveal two im-

portant aspects learned by the second MLP classifier: 1) the acoustic confusion among phonemes

at the output of the first MLP classifier, and 2) the phonotactics of the language as observed in the
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training data. In the remaining part of this section, we discuss these aspects in detail.

Volterra kernels revealing acoustic confusion patterns among phonemes
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Figure 4.4. (a) First order Volterra kernel of the phoneme /iy/ (e.g., beat) obtained on TIMIT. (b) A similar plot on CTS
database.

Figure 4.4 (a) and (b) are the plots of the first order Volterra kernel of the second MLP classifier

for the vowel /iy/ (e.g., beat) on TIMIT and CTS respectively. The figure shows the impulse response

functions corresponding to the top four contributing phonemes at the input of the MLP. The impulse

response function corresponding to other phonemes are not plotted in the figure for clarity. The top

contributing phonemes are selected based on the energy in their impulse response functions. It is

not surprising that the maximum contribution is from the same phoneme /iy/ at the input. There

are, however, positive contributions from other confusing vowels such as /ih/, /ey/, and /eh/.
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Figure 4.5. First order Volterra kernel of the phoneme /g/ (e.g., goat) obtained on TIMIT. (b) A similar plot on CTS
database.



4.4. APPLICATION OF VOLTERRA SERIES 93

Figure 4.5 (a) and (b) are plots of first order Volterra kernel of the phoneme /g/ (e.g., goat) ob-

tained on TIMIT and CTS databases respectively. It can be seen that the kernels show positive

contributions from other confusing consonants such as /k/, /t/, /d/, and /dx/. Moreover, the MLP

has also learned to give negative weights to certain vowels such as /ih/ and /ah/. This is due to

the discriminative training of the MLP classifier and this information is otherwise not intuitive. It

suggests that the consonant /g/ is not likely to be confused with the vowels such as /ih/ or /ah/.

phonemes confusions confusion phonemes confusions confusion

TIMIT Volterra matrix CTS Volterra matrix

iy ih, ey, eh ih iy ih, eh, ey ih, ey

ih iy, eh, ae ah ih iy, sil, eh ax, iy

ey ih, iy, ae ih, iy ey ih, ay, eh iy, ih

eh ih, ae, ah ih, ae, ah eh ah, ih, ey ae, ih, ax, ah

aa ah, ay, ow ah, ay, ao

ah ih, ao, eh ih, ao, ow ah ay, eh, l ax, ow

ax axr, ah, m ih, ah

axr r, ax, ih r, ax

uw ih, iy, w ih, iy uw iy, ih, ow iy, ax

uh ih, ah, eh ih, ah, ow, l, uw uh ih, s, ey ax, ih

ae ao, ah, aw eh ae eh, ah, ay eh

ao ae, ay, ah ao aa, l, w aa, ow

aw ao, ah, ae ao, ae aw ah, ay, eh ae, ow, ah, aa, eh, ay

ay ao, ah, ey ao ay ah, eh, aa ah

ow ah, ao, l l, ah, ao ow ah, l, ao ah, l

oy ao, ih, ay ao, ey oy r, w, ay w, l, ao, ow

y iy, ih, oy iy, uw, ih y iy, ae, ch iy, sil

w l, uh, oy l w l, r, ao

l ao, ah, ow ow, ao l ah, el, w ow

el l, ow, ao l, ow, ax

r er, ae, ao er r axr, iy, w axr

er r, ih, ah r er r, axr, ih r, axr

hh sil, k, p sil hh s, ae, dh sil

m n, p, b n m n, ng, w n, sil

em n, ah, m, en m, ah, sil, n, ax

n m, dx, dh m n m, ng, en d

en n, m, ng n, ax, d, m

ng n, m, uw n ng n, m, iy n

p t, b, k p k, t, f t, sil

t d, p, k d, k t d, k, m sil

k sil, t, p t k sil, p, t sil, t

b p, d, m p b p, dh, w dh

d t, dx, k t d t, sil, s t, n, sil

g k, d, t k, d g k, d, dh k

dx d, n, dh d

f p, s, sil f s, sil, k s, sil

th s, t, f f, t th s, sil, f s, t, sil

s z, sh, f z s f, sh, z sil, z

sh s, z, jh s sh s, f, ch s, ch

v f, b, m v sil, f, z ax

dh t, th, d sil dh y, b, g t, d

z s, sh, th s z s, sil, f s, sil

zh iy, ih, z z, sh, uw

ch s, jh, sh sh, t, jh, s ch t, s, k t, s, sh

jh s, z, sh ch, sh jh ch, d, y t, d, ch

Table 4.5. Confusing phonemes at the center of the Volterra kernels (top three) as compared to the phonetic confusion
matrix (value > 0.06).
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Since both the input and output representations at the second MLP are in terms of phonemes,

the first order Volterra kernel can be interpreted as phonetic-temporal confusion patterns. How-

ever, unlike the standard phonetic confusion matrix, the first order Volterra kernels reveal the

contribution of the input phonemes in a window of certain duration depending on the temporal con-

text used. In Table 4.5, we show the top three contributing phonemes at the center (m = 0) of the

Volterra kernels for both TIMIT as well as CTS databases. These confusion patterns are compared

to the standard confusion matrix, obtained by performing frame-level phoneme classification at the

output of the first MLP. Only entries in the confusion matrix with values greater than 0.06 are

shown in the table.

It can be seen from the table that the confusions at the center of the Volterra kernels match

to a certain extent with standard phonetic confusion matrix derived from the posterior features.

However, these confusion entries need not be the same because the Volterra kernels represent the

discriminatively trained second MLP classifier, whereas the phonetic confusion matrix is a measure

of the phonetic confusion in the posterior features, which are used to train the second MLP.

It is interesting to note that the ability of the second classifier in the hierarchical setup to learn

the acoustic confusion among phonemes at the output of the first MLP has also been observed in

the CRF based hierarchical system (Fosler-Lussier and Morris, 2008), which is discussed in Sec-

tion 4.2.3. In this work, we explicitly show using Volterra analysis the phonetic-temporal patterns

that are learned.

Volterra kernels revealing the phonotactics of the language

A closer look at the first order Volterra kernels reveals that the MLP has also learned the phonotac-

tics in the training data. In the ensuing discussions, the following notations are used. P (p1+|p2) =

P (pn+1 = p1|pn = p2) denotes the probability that phoneme /p1/ follows /p2/, and is typically used

using n-gram statistical language modeling. In contrast, P (p1−|p2) = P (pn−1 = p1|pn = p2) denotes

the probability that phoneme /p1/ precedes /p2/. To estimate this language model, the sequence of

phonemes in the training data are reversed, and bigram statistics are estimated.

Figure 4.6 (a) is a plot of the first order Volterra kernel of the phoneme /y/ on TIMIT, showing

the contributions of two phonemes /uw/ and /er/ that are most likely to follow /y/. It can be seen

that the corresponding kernels have higher value to the left of the origin as compared to the right.
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This is because P (uw+|y) = 0.52 ≫ P (uw−|y) = 0.04. As Volterra kernels are impulse response

functions, the corresponding matched filters are obtained by time-reversing the kernels about their

origin t = 0.
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Figure 4.6. (a) Volterra kernel of phoneme /y/ on TIMIT. P (uw+|y) = 0.52, P (uw−|y) = 0.04, P (er+|y) = 0.16, and
P (er−|y) = 0.03. (b) Volterra kernel of phoneme /y/ on CTS. P (uw+|y) = 0.54, P (uw−|y) = 0.04, P (eh+|y) = 0.30, and
P (eh−|y) = 0.001.

Figure 4.6 (b) is a plot of the Volterra kernel of phoneme /y/ on CTS, showing the impulse re-

sponse functions of phonemes /uw/ and /eh/, that are most likely to follow /y/. It can be seen that

the kernel for /uw/ is consistent with the bigram language model probabilities, but in case of /eh/,

there is no such agreement as the kernel is close to zero for all values of the context.
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Figure 4.7. (a) Volterra kernel of phoneme /dh/ on TIMIT. P (ih+|dh) = 0.34, P (ih−|dh) = 0.04, P (ah+|dh) = 0.29, and
P (ah−|dh) = 0.11 (b) Volterra kernel of phoneme /f/ on CTS. P (ih+|f) = 0.07, P (ih−|f) = 0.17, P (ax+|f) = 0.05, and
P (ax−|f) = 0.10.

Figure 4.7 (a) is the plot of the impulse response functions of phonemes /dh/, /ah/, and /ih/ in

the first order Volterra kernel of phoneme /dh/ (e.g., this) on TIMIT. It can be seen that the impulse
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response functions of phonemes /ih/ and /ah/ have higher weight to the left of origin as compared to

the right. This is because the pairs of phonemes /dh//ah/ and /dh//ih/ occur more frequently in the

training data than the pairs of phonemes /ah//dh/ and /ih//dh/.

In Figure 4.7 (b), we plot the impulse response functions of phonemes /f/, /ih/, and /ax/ in the

first order Volterra kernel of phoneme /f/ (e.g., far) on CTS. Phonemes /ih/, and /ax/ are the two

most likely phonemes to precede /f/ and as a consequence, their impulse response functions have

higher values to the right of the origin. Moreover, it can also be seen that at the origin, the impulse

response functions of /ih/ and /ah/ have negative weights, which suggests that these vowels are not

confusable with consonant /f/. It should be noted that the Volterra kernels reveal the properties

of the discriminatively trained MLP. Hence, they need not always be consistent with the bigram

probabilities between phonemes (derived from simple counts) in all cases.

The interpretations that can be drawn by analyzing the linear Volterra kernels are summarized

below. Let g1
1(τ) and g1

2(τ) are the impulse response functions (indicating the contributions) of

phonemes /p1/ and /p2/ respectively in the Volterra kernel of the phoneme /p1/. The function g1
1(τ)

will always have a positive peak at the origin τ = 0. Depending on the shape of the function

g1
2(τ), the interpretations could be as follows: (a) a positive peak at the origin indicates the acoustic

confusion between the phonemes, (b) a negative valley at the origin indicates the anti-confusion

due to the discriminative training of the MLP, and (c) a peak which is shifted away from the origin

reveals the phonotactics implicitly learned by the MLP. Moreover, the Volterra kernels can also

reveal the effective temporal duration on the posterior features.

4.4.2 Decoding with Language Models

First order Volterra analysis of the hierarchical system reveals that, apart from the acoustic con-

fusions, the second MLP has also implicitly captured the phonotactics of the language. However,

it is not clear if the implicitly learned phonotactics has indeed contributed towards the increase

in the recognition accuracies in the hierarchical system. To ascertain this, we performed phoneme

recognition by explicitly using phoneme n-gram models.

Figure 4.8 (a) and (b) are plots of the phoneme recognition accuracies on TIMIT and CTS respec-

tively, obtained by decoding with zerogram (loop of phonemes with equal transition probabilities),

bigram and trigram phoneme language models. The accuracies are shown for temporal context at



4.4. APPLICATION OF VOLTERRA SERIES 97

the second MLP ranging from 10ms to 250ms. As the input context is increased, the total number

of parameters of the second MLP is kept constant by appropriately modifying the size of the hid-

den layer. The horizontal dotted lines in the plot indicate the recognition accuracies obtained by

a single MLP based system using different language models. It can be seen from the figure that

recognition accuracies increase by explicitly using bigram and trigram models. This improvement

is observed for all values of the temporal context on the posterior features, but the gain in the

accuracies decreases with the increase in context.

0 50 100 150 200 250

66

68

70

72

74

mlp2 context (ms)

a
c
c
u

ra
c
y
 (

%
)

0gram 2gram 3gram

0 50 100 150 200 250

54

56

58

60

62

64

66

mlp2 context (ms)

a
c
c
u

ra
c
y
 (

%
)

0gram 2gram 3gram

(a) (b)

Figure 4.8. (a) Phoneme recognition accuracies on TIMIT using zerogram, bigram, and trigram phoneme language
models. The horizontal lines show the accuracy of the first MLP using language models. (b) A similar plot on CTS
database.

To illustrate this, in Figure 4.9 we plot the relative gain in the recognition accuracies obtained on

CTS by decoding with bigram and trigram language models over no language model, as a function

of the temporal context at the input of the second MLP classifier. It can be seen that the gain in

accuracy obtained by explicitly using a phoneme n-gram model decreases with the increase in the

temporal context. This is because with increase in the temporal context, the second MLP is able

to learn the phonotactics more effectively, and gain in accuracy by introducing explicit language

models reduces. This further supports the observations from the linear Volterra kernels. However,

even with 230 ms context, the MLP has only partially learned the phonotactics and we still obtain

1-2% improvement in accuracies by using language models in decoding.

To summarize briefly, we showed in this section that the second MLP classifier in the hierar-

chical system learns the phonetic-temporal patterns (acoustic confusions among phonemes and the

phonotactics of the language) in the posterior features spanning a temporal context of 150-230 ms.
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Figure 4.9. Relative gain in recognition accuracy on CTS database obtained by decoding with bigram and trigram
language model as compared to no language model for different values of the temporal context at the input of the
second MLP.

In the following section, we discuss the important properties of the posterior features that enabled

the second MLP to effectively learn these patterns.

4.5 Modeling flexibility of posterior features

In this section, we discuss the useful properties of posterior features such as (a) lesser nonlinguistic

variabilities when compared to the acoustic features, (b) sparse distribution, and (c) linear sepa-

rability in the posterior feature space. We also discuss the consequence of these properties on the

complexity of the second MLP classifier and the amount of training data.

4.5.1 Characteristics of Posterior Features

Variability in posterior features

The acoustic features are known to exhibit a high degree of nonlinguistic variabilities such as

speaker and environmental (e.g., noise, channel) characteristics. The first MLP classifier can be

interpreted as a discriminatively trained nonlinear transformation from the acoustic feature space

to the posterior feature space. It has been shown that a well trained (large population of speak-

ers, and different conditions) MLP classifier can achieve invariance to speaker (Zhu et al., 2004)

as well as environmental (Ikbal, 2004) characteristics. Moreover, it has also been shown that the

effect of coarticulation is less severe on the posterior features when compared to the acoustic fea-

tures (Ellis et al., 2001; Sivadas and Hermansky, 2002). In other words, the posterior features are



4.5. MODELING FLEXIBILITY OF POSTERIOR FEATURES 99

soft-decisions on the underlying sequence of phonemes (i.e., the linguistic message), and have much

lesser nonlinguistic variabilities when compared to acoustic features.

Sparseness in the posterior features

The posterior features represent the probabilities of the phonetic classes conditioned on the acoustic

features, and hence sum up to one at any given time instant. In addition, they are also sparsely

distributed in the posterior feature space as shown in Figure 4.2. To illustrate this objectively, in

Table 4.6, we show the average number of components (or phonemes) in the posterior feature vector

that capture 90, 95, and 99% of the probability mass value. It can be seen that on TIMIT, on average

3.6 phonemes capture 95% of the probability mass value. The other phonemes share the remaining

5% of the probability mass. On CTS, on average 6.2 phonemes capture 95% of the probability mass

value, indicating the more complex nature of the task.

probability mass value

>90% >95% >99%

TIMIT (max 40) 2.7 3.6 6.6

CTS (max 45) 4.4 6.2 11.3

Table 4.6. Average number of components (phonemes) in the posterior feature vector that capture 90, 95, and 99% of
the probability mass in the posterior probabilities of phonemes estimated by the first MLP.

The sparse distribution of the posterior features has been previously studied in (Zhu et al.,

2004), where the authors termed the posterior features as more regular compared to the standard

acoustic features. It was argued that sparse distribution was one of the favorable properties of

posterior features.

Linear separability

The model parameters of the first MLP are optimized to minimize the cross entropy between the

estimated posterior probability vectors and the output target vectors, which are typically in the

hard-target format. In other words, if K denotes the number of phonemes, the hard target vector

lpi
∈ R

K for the phoneme pi, i = 1, 2 . . . K is given by lpi
(k) = δ(k − i). The target vectors are,

therefore, at the simplex of the K dimensional space, which makes them linearly separable. Hence,

a well trained model attempts to achieve linear separability in the estimated posterior features.

The degree to which separability is achieved depends on the complexity of the task.
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The properties of posterior features discussed in this section can influence the choice of the

second MLP classifier in the following ways:

1. Since the posterior features are trained to be linearly separable and have a sparse distribu-

tion, a simpler classifier (in terms of model capacity) may be sufficient at the second stage of

the hierarchy. We validate this hypothesis in Section 4.5.2.

2. Since the posterior features have lesser variability, the second MLP could be trained with

lesser amount of training data. We test this hypothesis in Section 4.5.3.

4.5.2 Complexity of the Second MLP

In this section, we study the effect of the model capacity (in terms of the number of parameters) of

the second MLP in the hierarchical system on the phoneme recognition accuracies. Figure 4.10 is a

plot the phoneme recognition accuracies obtained by using the hierarchical approach, as a function

of the number of parameters in the second MLP classifier (relative to the number of parameters

in the first MLP). The number of parameters is controlled by reducing the size of the hidden layer

until it equals the size of the input layer. On both TIMIT as well as CTS, the second MLP is trained

using a temporal context of 230 ms. The horizontal dotted lines in the plot indicate the recognition

accuracies obtained by using the output of the first MLP classifier.
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Figure 4.10. Phoneme recognition accuracies as a function of the number of parameters in the second MLP classifier
(relative to the number of parameters in the first MLP classifier, which has a size of 351× 1000× 40 on TIMIT, and a size of
351× 5000× 45 on CTS). In both cases, a temporal context of 230 ms is applied at the input of the second MLP, and the
horizontal lines indicate the recognition accuracies obtained by using a single MLP system.

It can be seen from the figure that on both TIMIT as well as CTS, the recognition accuracies

drop with the reduction in the number of parameters, and the drop in accuracy is more significant
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in the case of CTS. Nonetheless, the hierarchical system still outperforms the single MLP based

system on both the tasks. It can be seen from the figure that the second MLP with just 20% of

the parameters in the first MLP can still yield significantly higher recognition accuracies over the

single MLP based system. As an extreme case, a single layer perceptron (SLP) is used as a second

classifier in the hierarchical system. It can be seen from Table 4.7 that even a linear classifier in the

second stage of the hierarchy can yield higher recognition accuracies (2.3% and 1.1% respectively

on TIMIT and CTS respectively) when compared to the baseline system.

experiment no MLP SLP

hierarchy(%) hierarchy(%) hierarchy (%)

TIMIT 68.1 71.6 70.4

CTS 54.3 63.6 55.4

Table 4.7. Phoneme recognition accuracies obtained by hierarchical posterior estimation using a multilayer and single
layer perceptron (SLP) classifiers.

It can be recalled from Table 4.4 that, on TIMIT, the phoneme recognition accuracy obtained by

first order Volterra series approximation (linear model) was only three percent lower compared to

the accuracy obtained by directly evaluating the MLP, indicating the linear separable nature of the

posterior features. Therefore, at the second stage of the hierarchy, an MLP classifier with fewer

number of parameters (mildly nonlinear) is sufficient. On CTS, however, it can be seen that there

is a 13.5% drop in recognition accuracy by approximating the MLP using first order Volterra series,

which indicates that on CTS, the posterior features from the first MLP are not as linearly separable

as those in TIMIT. This explains the higher drop in recognition accuracies with the reduction in the

number of parameters on CTS task.

4.5.3 Size of Training Data

In this section, we study the effect of the amount of data required to train the second MLP in the

hierarchical system on the phoneme recognition accuracies. In Figure 4.11, we plot the phoneme

recognition accuracies obtained by using the hierarchical approach as a function of the amount of

training data used to train the second MLP classifier (relative to the amount of training data used

to train the first MLP classifier). The amount of training data is controlled by randomly dropping

the sentences in the training set. It can be seen that even with 80% reduction in the training data,
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the hierarchical system yields higher recognition accuracies when compared to the baseline system.

In this work, in order to speed up the training time on the CTS task, the training data was

split into two halves, and the two MLPs in the hierarchical system were trained on the disjoint

data sets. By training the hierarchical system using the above strategy, where the MLPs have sizes

351 × 5000 × 45 and 1035 × 1334 × 45, we obtained a recognition accuracy of 63.6%. However, only

a slight improvement in recognition accuracy, about 0.7%, is obtained by training both the MLPs

in the hierarchical system on the full 232 hours of data. Moreover, the training strategy for the

hierarchical system - same training set or disjoint sets - did not affect the recognition accuracies.
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Figure 4.11. Phoneme recognition accuracies as a function of the data used to train the second MLP. 100% data
corresponds to 153 minutes on TIMIT, and 116 hours on CTS. An MLP with fewer parameters (200 hidden nodes on TIMIT
and 400 on CTS) is used. In both cases, a temporal context of 230 ms is applied at the input of the second MLP. The
horizontal lines indicate the accuracies obtained by using a single MLP estimator.

4.6 Discussion

In this section, we discuss some of the interesting aspects of MLP based hierarchical systems.

4.6.1 Choice of Subword Units

In the case of conventional single MLP based system, it has been shown that a more detailed mod-

eling can be achieved by taking the sub-phonemic states, typically three states per phoneme, as

the output classes of the MLP. Consequently, higher accuracies in the recognition of phonemes

have been observed. A similar trend is also observed in the hierarchical approach, where posterior

features representing the sub-phonemic states have been shown to yield higher recognition accura-

cies. In the case of TIMIT, by using sub-phonemic posterior features, the hierarchical system yields
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a phoneme recognition accuracy of 73.4% in comparison with 71.6% obtained using the baseline

single MLP based approach (Pinto et al., 2008).

4.6.2 Choice of the First Classifier

In the discussion so far, the second MLP classifier in the hierarchical system is trained using pos-

terior probabilities of phonemes conditioned on acoustic features, which are estimated by an MLP.

In general, however, these phonetic class conditional probabilities could be estimated using other

statistical models as well. For example, in an earlier work (Pinto and Hermansky, 2008), the poste-

rior probabilities of phonemes or posterior features are estimated using a Gaussian mixture model

(GMM). As shown in Table 4.8, the hierarchical system using GMM posterior (and log-likelihood)

features with a temporal context of 230 ms yield higher recognition accuracies when compared to

the standard HMM/GMM system. Here, single state posterior probabilities are derived by summing

up the state posterior probabilities.

classifier 3-state 1-state

HMM-GMM 64.1 62.1

hierarchy, GMM posteriors 68.4 67.1

hierarchy, GMM log-likelihoods 71.0 70.3

Table 4.8. Phoneme recognition accuracy using GMM posteriors and likelihoods as features compared to direct HMM-
GMM decoding. A temporal context of 230 ms is applied on the features.

The input to the second classifier could also be a combination of two or more streams of posterior

features from different classifiers. For example, in (Pinto and Hermansky, 2008), posterior features

estimated using a GMM and an MLP model were jointly used as features to the second MLP with

a temporal context of 230 ms. This early integration scheme yielded higher recognition accuracies

when compared to the best single stream decoding.

The phonetic class-conditional probabilities estimated in a hierarchical fashion using posterior

features from GMM and MLP classifiers can also be combined using late integration schemes such

as sum, product, inverse entropy or Dempster Shafer combination rules. Table 4.9 shows the results

obtained using single state and three state posterior features for various combination schemes.

It can be seen that all late integration combination rules yield significantly higher accuracies in

comparison with the single best posterior stream.
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gmm mlp sum prod I.E. D.S

1-state 70.3 71.5 73.6 74.0 73.5 73.7

3-state 71.0 73.4 74.2 74.6 74.4 74.6

Table 4.9. Phoneme recognition accuracy using late integration scheme for multi-stream combination. Results shown
for sum, product, inverse entropy (IE) and Dempster Shafer (DS) combination as well as individual GMM and MLP
streams.

4.6.3 Integrating Articulatory/Phonological Features

Hierarchical integration of articulatory/phonological features have been previously studied in the

literature (Khan et al., 2000; Morris and Fosler-Lussier, 2008). In the first stage of the above

systems, an MLP is trained to estimate articulatory/phonological features. In the second stage,

classifiers such as CRF (Morris and Fosler-Lussier, 2008) and RNN (Khan et al., 2000) are trained

to estimate the phonetic class conditional probabilities. Based on the present work, an MLP clas-

sifier could be used at the second stage of the hierarchy to estimate the phonetic class conditional

probabilities, conditioned on the articulatory/phonological features.

4.6.4 Hierarchical System for Adaptation

A potential application of the MLP based hierarchical system is in adaptation. The first MLP could

be trained on a generic task which covers all the phonemes in the target task. The second MLP

is trained on the adaptation data corresponding to the specific task. It has already been observed

that the second MLP in the hierarchy requires fewer parameters and can be trained using lesser

amount of data, making it an ideal case for adaptation, especially in scenarios where the training

data is limited. We investigate the application of hierarchical system for task adaptation in the

following Chapter 5.

4.7 Summary and Conclusions

We investigated a simple hierarchical architecture for estimating the posterior probabilities of

phonemes. The system consisted of two MLP classifiers in tandem. The first MLP is trained on

standard PLP features, with a temporal context of 90 ms. The second MLP is trained on the pos-

terior probabilities of phonemes (posterior features) estimated by the first, but with a relatively

longer temporal context of around 150-230 ms. Phoneme recognition experiments on TIMIT as well
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as CTS databases showed that the hierarchical system is a better estimator of the phonetic class

conditional probabilities.

The posterior features are endowed with two important properties. Firstly, they are trained to be

linearly separable and have a sparse distribution. Secondly, they have lesser nonlinguistic variabil-

ities such as speaker information, noise characteristics etc in comparison with standard acoustic

features. In other words, the posterior features represent the soft-decisions on the underlying se-

quence of phonemes, and are much simpler to classify. Consequently, the second MLP classifier can

effectively learn the contextual information in the temporal trajectories of the posterior features,

spanning a temporal context as long as 230 ms.

In order to unearth the phonetic-temporal patterns learned by the second MLP classifier, we

applied Volterra series to model the second stage in the hierarchical system, and analyzed its first

order Volterra kernels (linear part of the nonlinear system). The analysis of the linear Volterra

kernels showed that the second MLP has effectively captured the acoustic confusions among the

phonemes at the output of the first classifier, as well as the phonotactics of the language, as observed

in the training data.

Furthermore, we demonstrated that a simpler MLP with fewer number of parameters is suffi-

cient at the second stage in the hierarchy, and that it can be trained using lesser amount of training

data. We attribute this to the salient properties of the posterior features such as lesser nonlinguistic

variabilities, a sparse distribution, and linear separability.
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Chapter 5

Task Adaptation

5.1 Introduction

The availability of large amounts of well transcribed (at least at the word level) speech corpora,

coupled with faster and cheaper computational infrastructure has heralded an era of complex ASR

systems. It is not uncommon these days to train MLP classifiers on thousands of hours of speech

data in order to achieve better recognition performance. However, a direct use of these well trained

MLP classifiers available off-the-shelf to new tasks or application scenarios may not always yield

better performance. This is mainly because of the mismatch between the training and test data

conditions of these classifiers. Therefore, adaptation of well trained MLP classifiers available off-

the-shelf to new application scenarios is of practical interest.

The basic goal in task adaptation is to estimate a new acoustic model for a given in-domain task

using (a) an off-the-shelf MLP classifier, which is well trained on a large amount of out-of-domain

data and (b) a limited amount of data available for the in-domain task. Adaptation can be achieved

by either modifying the trained parameters of the MLP or augmenting additional structures to

it. When a new model is estimated using the limited amount of in-domain data, then its model

parameters can have a high variance (or overfitting) if a complex model is used or a high bias if

an over simplistic model is used (Li and Bilmes, 2006). On the other hand, if a well trained MLP

available off-the-shelf is directly used, it can lead to suboptimal performance due to mismatched

conditions. Hence, an ideal solution is to adapt the well trained model using the adaptation data.

107
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An MLP can be viewed as a mapping from the acoustic feature space to the phonetic label space.

The decoder maps the phonetic label space to the sequence of words using, among other sources

of information, a pronunciation dictionary. Therefore, the mismatch between the training and test

conditions of an MLP classifier can arise at two levels.

• Feature mismatch: The acoustic characteristics of the in-domain speech can differ from the

out-of-domain data used to train the MLP classifier in several respects. These include the

speaking style (conversations versus read speech), the channel characteristics (telephone ver-

sus microphone speech), the accents (American versus British English), dialects, etc. For

example, consider the case where an MLP trained on conversational telephone speech is used

to recognize read speech. Spontaneous speech is significantly different from read speech in

both acoustic and linguistic characteristics (Furui, 2003; Nakamura et al., 2007), and this can

be a source of mismatch between the training and test conditions.

• Label mismatch: The phoneme set representing the output classes of the MLP may not be

consistent with the dictionary available for the new task. Even if the same phoneme set is

used, the dictionary used to force align the training transcription to obtain the phonetic labels

may not be consistent with the pronunciation dictionary available for the new task.

We investigate the use of an MLP based hierarchical system for task adaptation. A well trained

MLP classifier is assumed to be available off-the-shelf, and it is used at the first stage of the hier-

archical system. The second MLP is trained on a long temporal context of posterior features using

a small amount of adaptation data specific to the target task. We believe the mismatch between

the training and test conditions of the first MLP manifests in the form of systematic perturbations

in the estimated posterior features, and we expect the second MLP to learn this information on

the adaptation data. This study is also motivated by the findings in Chapter 4, were we observed

that at the second stage of the hierarchical system, the classifier can be simpler in terms of model

parameters and that it can be trained using lesser training data.

In this chapter, we exploit an MLP trained on 232 hours of conversational telephone speech

(CTS) data for isolated word recognition on the Phonebook database (Pitrelli et al., 1995), where

only 6.7 hours of training data is available. We also study the performance of the hierarchical

adaptation system with respect to (a) the temporal context on the posterior features at the input of
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the second MLP (b) the complexity of the second MLP in terms of the number of parameters, and (c)

the amount of data used for adaptation, to ascertain if the trends are consistent with the findings

in the previous chapter, where both the MLPs in the hierarchical system were trained on the same

task.

We use the following terminology in the rest of this chapter. Matched condition refers to using

only the Phonebook training set in the development of the entire system. Mismatched condition

refers to using the phonetic class-conditional probabilities estimated by the CTS MLP directly in

decoding. In other words, Phonebook training is not used at all. Adaptation involves either modify-

ing the parameters of the CTS MLP or training an additional structure using the Phonebook data.

In all these three cases, the task is to recognize isolated words in the Phonebook test set.

5.2 Background

The techniques developed for speaker adaptation have been shown to be useful in task adaptation as

well (Gales et al., 2003; Bocchieri et al., 2004) in the context of HMM/GMM based acoustic modeling.

Hence, in this section, we first discuss some of the commonly used speaker and task adaptation

techniques in HMM/MLP based acoustic modeling.

Mean and Variance Normalization

In practical applications, the input features to the MLP are normalized to zero mean and unit vari-

ance to achieve faster convergence of the back propagation training algorithm (LeCun et al., 1998).

Feature normalization can be mathematically expressed as x̂ = Σ− 1

2 (x − µ), where x denotes the

acoustic features, x̂ denotes the input to the MLP, µ denotes the mean of the feature vector, and Σ

denotes the diagonal covariance matrix. When testing in matched conditions, the feature mean and

variances estimated during the training phase are directly used. In mismatched conditions, how-

ever, these statistics are reestimated on the adaptation data, and hence feature normalization can

also be viewed as a simple task adaptation technique. This can help in addressing the mismatch in

the acoustic feature space up to a constant shift and constant scaling. If the features are cepstral

parameters, this is equivalent to global cepstral mean and variance normalization.
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Linear Input Networks

Linear input networks have been previously applied for speaker adaptation in MLP based acoustic

modeling (Neto et al., 1995; Abrash et al., 1995). In this adaptation scheme, the input ˆ̂x to the MLP

is obtained by transforming the mean/variance normalized features x̂ as ˆ̂x = Ax̂ + b, where A is

a full transformation matrix and b denotes a constant shift or bias. The parameters {A,b} are

optimized on the adaptation data using the same optimization criterion as the one that was used

to train the MLP. In this process, the parameters of the trained MLP classifier are not updated. In

addition to shift and scaling, the linear input network adaption can help in addressing mismatch

due to rotation in the cepstral feature space.

This approach can be considered as the HMM/MLP analog of the constrained maximum likeli-

hood linear regression (CMLLR) adaptation technique for HMM/GMM systems. In CMLLR adap-

tation, linear transformation in the feature space is equivalent to a linear transformation in the

model space (Woodland, 1999). That is, a transformation of mean vectors and covariance matrices.

In this approach, feature transformation can be viewed as augmenting an additional layer with

linear activation function at the front end of the MLP.1

Full-Retraining Adaptation

In full-retraining adaptation method, the well trained MLP classifier is treated as initial seed

model, and all its parameters are reestimated using the adaptation data. This approach has been

successfully applied for speaker adaptation (Neto et al., 1995), where it is commonly referred to as

retrained speaker independent adaptation. Retraining all the parameters using a limited amount

of adaptation can lead to overfitting problems. This problem is typically handled using an early

stopping criterion.

Full retrained adaptation has also been applied for task adaptation. For instance, in the de-

velopment of the ICSI-SRI system for the transcription of meetings (Stolcke et al., 2005), the MLP

trained on 1800 hours of CTS data was adapted for the meeting task. The problem of overtrain-

ing was avoided by performing only three additional iterations at a low learning rate. ASR ex-

periments were performed by using the Tandem and hidden activation temporal pattern features

1If a temporal context of 9 frames is applied, then the input weight matrix of the MLP is a block diagonal, and is obtained
by repeating A for 9 times along the diagonal. The parameters for all the time context values are tied and updated jointly.
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extracted from the adapted MLP. This adaptation scheme was shown to help in achieving better

performance.

Semi-Retraining Adaptation

In semi-retraining adaptation method, the weights connecting the input to the hidden layer are

kept intact, but the weight matrix connecting the hidden layer to the output layer is retrained

using the adaptation data. This approach was proposed recently (Li et al., 2005), where the MLP

trained for speaker independent phoneme classification was adapted for the speaker dependent

classification using maximum margin criterion. In other words, the hidden-output weights were

retrained in the maximum margin separation sense.

In light of the strong relationship established between MLPs and support vector machines (Col-

lobert and Bengio, 2004), retaining the input-to-hidden weights can be interpreted as fixing the

kernel and retraining the hidden-to-output weights can be compared to learning the support vec-

tors. This approach is less susceptible to overfitting when compared to full-retraining method, as

only a small percentage of the weights are retrained.2 In a more recent extension to this work, the

problem of overfitting is explicitly handled by regularized adaptation, which penalizes the distance

between the unadapted and adapted models (Li and Bilmes, 2006).

Hierarchical Adaptation

In Chapter 4, we analyzed the MLP based hierarchical system where both the classifiers were

trained on the same task. The hierarchical system was shown to yield higher phoneme recognition

accuracies in comparison with the single MLP based conventional approach. The analysis showed

that the second MLP effectively learns the contextual information in the posterior feature space.

Furthermore, we also showed that a simpler classifier in terms of model complexity is sufficient at

the second stage and that it can be trained using a lesser amount of training data.

In this chapter, we investigate if the hierarchical approach can be exploited in task adaptation.

An off-the-shelf MLP classifier which is well trained on a large amount of out-of-domain data is

used at the first stage of the system. The second MLP is trained on the posterior features estimated

2If the architecture of the three layered MLP is I × H × O, and the number of hidden nodes H is sufficiently large,
the percentage of trainable parameters in the MLP is approximately given by 100 ∗ O/ (I + 1). For 9 frames PLP features,
I = 351 and a typical phoneme set O = 45, this percentage is about 13%.
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on the in-domain (or adaptation) data. If the mismatch in the training and test conditions of the

MLP classifier manifests in systematic and consistent perturbations in the estimated posterior

features, then the second classifier can learn the relationship on the adaptation data. In addition,

this approach can also benefit by exploiting the contextual information in the sequence of posterior

features (captured by a long temporal context). Furthermore, as the posterior features are simpler

and carry lesser nonlinguistic variability, we expect the second classifier to be simpler and to be

able to be trained using a lesser amount of data.

feature

space
normalized

feature space

transformed

feature space

hierarchical

linear input

semi mean/var

Θfull Θsemi Θmlp1 Θmlp2

Θmlp1
{A,b}{µ,Σ}

adaptation

adaptation

retraining
adaptation

normalization

posterior

retraining
adaptation adaptation

feature space

network

full

Figure 5.1. The flow diagram of all the adaptation schemes discussed in this section. Trained models (transforms or
MLPs) are represented by rectangles. If the model parameters are trained on the adaptation data (in-domain), the
rectangles are lightly shaded. If the model parameters are on out-of-domain data, the rectangles are not shaded. If
the parameters are trained on both in-domain and out-of-domain data, the rectangles are darkly shaded.

Figure 5.1 is flow diagram illustrating the various adaptation schemes discussed so far. The

statistics of the features {µ,Σ} are estimated on the adaptation data in the maximum likelihood

sense. The parameters of the linear input network {A,b} are estimated in a discriminative fashion

using the cross-entropy criterion that was used to train off-the-shelf MLP classifier Θmlp1. Both

these methods are linear transformations in the acoustic feature space. In the hierarchical adap-

tation, the second MLP classifier Θmlp2 is trained on the posterior features estimated by the first

classifier. This approach can be seen as adaptation via nonlinear transformation in the posterior

feature space. The full retrained model Θfull and semi retrained model Θsemi is adapted from the
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off-the-shelf MLP Θmlp1 using acoustic features on the in-domain adaptation data.

It can be seen that the semi-retraining adaptation as well as the hierarchical adaptation method

can handle the scenario where the phonetic transcription and pronunciation dictionary on the tar-

get task is not consistent with the phoneme set of the trained off-the-shelf MLP.

5.3 Experimental Setup

Phonebook Task

Experiments are performed on the Phonebook task, which was designed for speaker independent

isolated word recognition over the telephone channel. The test set consists of 6598 utterances

from 96 speakers. It is made up of eight subsets, each containing 75 unique words. Isolated word

recognition is performed on the test set by following the two protocols as defined in (Dupont et al.,

1997).

• 75-lexicon: Recognition is performed on each of the eight subsets separately by using dictio-

naries specific to the subset. The average perplexity of the task is 75, which is the size of the

dictionary. The word error rate (WER) reported on this protocol is the average across all the

eight subsets.

• 600-lexicon: A common pronunciation dictionary, consisting of 600 words, is used across all

the eight subsets in the test sets. This is a harder task when compared to 75-lexicon protocol,

with a perplexity of 600.

Phonebook Training Resources

The training set consists of 19421 isolated utterances from 243 speakers, which amounts to about

6.7 hours of speech3, and the cross-validation set consists of 7920 utterances from 106 speakers.

The training and cross-validation sets are as defined in (Dupont et al., 1997). There are no com-

mon words shared between the training, validation and test sets of the corpus. The database is

distributed with a pronunciation dictionary consisting of 42 phonemes. The phonetic transcription

332% of the training data is silence.
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required for training the MLP is obtained by forced alignment. For this, we use previously trained

HMM/GMM based acoustic models and the Phonebook pronunciation dictionary.

Off-the-shelf CTS MLP

For task adaptation studies, we use an off-the-shelf MLP which was trained on 232 hours of conver-

sational telephone speech. This MLP was used for phoneme recognition studies in the Chapter 4.

The acoustic features consist of the first 13 PLP cepstral coefficients. After speaker specific mean

and variance normalization, dynamic cepstral (delta and delta-delta) coefficients are appended to

the base features to obtain a 39 dimensional feature vector for every 10 ms of speech. These fea-

tures are applied at the input of the MLP with a temporal context of 90 ms. The output classes

of the MLP represent the 45 phonemes in the UNISYN pronunciation dictionary (Fitt, 2000). The

architecture of the MLP is 351 × 5000 × 45. The phonetic transcription for training the MLP was

obtained via forced alignment as discussed in Section 4.3.

Adaptation Scheme

As both Phonebook and CTS contain telephone speech, the channel mismatch can be assumed to

be minimal. Nonetheless, there can be a significant difference in the characteristics of the acoustic

features. The conversational speech is characterized by higher speaking rate, higher variance of

the cepstral parameters and the phenomenon of spectral reduction (Furui, 2003; Nakamura et al.,

2007). In addition, Phonebook is a constrained isolated word recognition task, and the prior distri-

bution of phonemes differs from the unconstrained CTS task.

Figure 5.2 (a) shows the use of the off-the-shelf MLP in mismatched conditions. The posterior

probabilities of phonemes estimated by the MLP cannot be directly used in the recognition as its

output phonetic classes are not consistent with the pronunciation dictionary available on the target

task.

Phonebook MLP
(CTS)

Phonebook MLP
(CTS)

MLP
(Phonebook)context

temporal

(a) (b)

Figure 5.2. The adaptation scheme. (a) Mismatched conditions (b) Mismatched conditions plus adaptation.
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Figure 5.2 (b) shows the hierarchical adaptation scheme. In the previous chapter, a second MLP

classifier was trained on the estimated posterior features with temporal context of 230ms. This

context was found to be optimal in the recognition of phonemes. There are two important changes in

the hierarchical system for recognition of words. It was found empirically that log-posterior features

yield lower error rates and that a temporal context of around 130-150 ms is optimal (Ketabdar and

Bourlard, 2008; Pinto et al., 2009b). We discuss the effect of temporal context on the error rates in

Section 5.4.1.

We compare the performance of the hierarchical adaptation technique to two other works in the

literature, which in this thesis are referred to as full-retraining adaptation (Stolcke et al., 2005)

and semi-retraining adaptation (Li et al., 2005). In full-retraining adaptation, the weights and

biases of the CTS MLP are taken as the initial model and additional iterations of the backpropa-

gation training is performed until convergence. The early stopping criterion is applied to prevent

overtraining.

In the semi-retraining approach, the input-to-hidden weights and the hidden bias of the CTS

MLP are kept intact, but the hidden-to-output weights and the output biases are adapted using

the minimum cross-entropy training criterion. The Quicknet software was modified to update only

the hidden-to-output parameters of the MLP. If the phonetic transcription on the adaptation data

is consistent with the output classes of the CTS MLP, its hidden-to-output weights are taken as the

initial model. If a new phonetic transcription is used, then the weights are initialized randomly.

Modeling and Decoding

A three-layered MLP with a sigmoid nonlinear activation function at the hidden layer, and a soft-

max activation function at the output layer is used throughout the studies. The parameters of

the MLP are trained using the minimum cross entropy error criterion. The input features to the

MLP are normalized to zero mean and unit variance. In matched conditions, these statistics are

estimated on the training data. However, in adaptation studies, where an MLP was trained on

conversational speech, the mean and variances are reestimated on Phonebook data.

The HMM/MLP hybrid approach is used for decoding. Each phoneme is modeled by a three-

state, strictly left-to-right HMM, thereby enforcing a minimum duration of 30 ms. The (scaled)

emission likelihood in each of the three states is the same, and is obtained by normalizing the esti-
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mated phonetic class conditional probabilities by the respective class priors. The Viterbi algorithm

is applied with a simple loop-of-words language model.

5.4 Results and Analysis

Experiments are performed by using two sets of pronunciation dictionaries: (a) Phonebook dictio-

nary, which is distributed with the Phonebook database and (b) UNISYN dictionary, which was

used in the training of the CTS MLP. The results are reported in terms of word error rate (WER).

Decoding with Phonebook dictionary

Table 5.1 shows the WER obtained by HMM/MLP hybrid decoding on the Phonebook test set with

75-lexicon and 600-lexicon decoding protocols using the Phonebook pronunciation dictionary. Due to

the differences in the phoneme sets, recognition cannot be performed in mismatched conditions, and

the full-retraining adaptation scheme cannot be applied. In the hierarchical adaptation method, we

train a second MLP classifier on the log posterior features estimated by the CTS MLP with a tempo-

ral context of 130 ms. The table also shows the error rates obtained in matched conditions. That is,

by training the system on 6.7 hours of speech from the Phonebook training set. The phonetic class-

conditional probabilities are estimated in two ways (a) the baseline single MLP based approach and

(b) using a hierarchical system, where the secondMLP is trained on log posterior features estimated

by the baseline system with a temporal context of 130 ms.

test mismatched adaptation matched conditions

protocol conditions full-retraining semi-retraining hierarchical baseline hierarchical

75-lexicon - - 1.0 0.5 1.2 0.9

600-lexicon - - 3.0 1.8 4.0 3.3

Table 5.1. Word error rates on the Phonebook test set in matched conditions and using adaptation techniques. The
Phonebook pronunciation dictionary is used in the decoding.

The following are the observations from the results

• Under matched conditions, on both 75-lexicon as well as 600-lexicon protocols, the hierarchical

system yields a lower error rate when compared to the baseline single MLP based system.

This demonstrates the effectiveness of the hierarchical approach to estimating phonetic class-

conditional probabilities in recognition of words.
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• Both adaptation schemes yield better performance when compared to matched conditions.

This is not surprising as the off-the-shelf MLP is trained on 232 hours of speech, whereas in

the matched conditions, only 6.7 hours of speech is available for training. Furthermore, in

the proposed adaptation method, there is an additional advantage in using the hierarchical

system as contextual information can be exploited (Pinto et al., 2008, 2009a). The hierarchical

adaptation approach yields the lowest error rate of 1.8%, which is, to the best of our knowl-

edge, the lowest error rates to be reported on this particular Phonebook task. These results

clearly demonstrate how well trained MLP classifiers available off-the-shelf can be exploited

for new applications where the training data is limited.

Decoding with UNISYN dictionary

A clearer understanding of the performance of the system in mismatched conditions and different

adaptation techniques can be obtained by using a pronunciation dictionary in decoding that is con-

sistent with the output classes of the CTS MLP. The UNISYN American English pronunciation

dictionary consists of over 120K entries. Despite this, about 17% (about 500) of the words present

in the entire Phonebook (train, validation, and test) corpus were not found in the dictionary. The

pronunciation lexicon for these words were hand crafted by carefully studying the main dictionary.

The phonetic transcription for training the MLP classifiers is obtained by force aligning the iso-

lated utterances to the sequence of phonemes obtained from the newly created dictionary. Forced

alignment is performed using the HMM/MLP hybrid approach, where the posterior probabilities of

phonemes estimated by the CTS MLP are used as the local acoustic scores.

test mismatched adaptation matched conditions

protocol conditions full-retraining semi-retraining hierarchical baseline hierarchical

75-lexicon 1.2 0.7 0.6 0.5 1.2 1.1

600-lexicon 3.8 2.6 2.2 2.0 4.5 3.5

Table 5.2. Word error rates on the Phonebook test set in mismatched, matched, and adaptation conditions. The UNISYN
pronunciation dictionary is used in decoding.

Table 5.2 shows the error rates in mismatched, matched, and adaptation conditions obtained us-

ing the UNISYN pronunciation dictionary. In mismatched conditions, the means and variances are

estimated on the adaptation data and hence, in a strict sense, this is an example of mean/variance

adaptation scheme. As observed previously, the hierarchical approach yields lower error rates when
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compared to the baseline system in matched conditions. The following are some of the key observa-

tions from the table.

• It is interesting to see that on the 600-lexicon protocol, the error rate obtained in mismatched

conditions is lower than in matched condition. This indicates that the mismatched condition

is compensated to a large extent by the benefits of well trained MLP. Apart from the amount

of training data, the CTS MLP is also trained on a large number of phonetic contexts as

explained below.

Although context independent phonetic models are trained, a temporal context of 90 ms en-

ables the MLP to implicitly learn the context dependent information to a certain extent.

The Phonebook test set consists of 600 words and each word, on average, consists of about

7 phonemes. There are about 1700 unique phonetic triphone contexts in the test set which are

unseen in the Phonebook training set. In contrast, the number of triphone contexts unseen in

the CTS training set is only about 300. In other words, the CTS MLP is well trained not only

because of the amount of data, but also due to the larger number of phonetic contexts.

• It can be seen that in the case of using UNISYN pronunciation dictionary, the difference

between semi-retraining method and the hierarchical adaptation is only about 0.2%. On the

other hand, in the case of Phonebook dictionary, the difference was about 1.2%. A possible

explanation is that the hidden representation is optimal for the UNISYN phoneme set, and

the hidden-to-output weights are trained with the same phoneme set.

• The error rates obtained in matched conditions are higher than the corresponding error rates

obtained using the Phonebook dictionary. This indicates that the Phonebook dictionary is

slightly better than the UNISYN dictionary in terms of modeling the pronunciations of the

spoken words.

In the following sections, we study the performance of the systemwith respect to (a) the temporal

context on the posterior features (b) goodness of the posterior features (c) complexity of the second

MLP and (d) size of the adaptation data. We report the results only for the 600-lexicon test protocol

as the trends in results are similar on the 75-lexicon protocol. We use the Phonebook pronunciation

dictionary as it yields the best results.
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5.4.1 Role of Temporal Context

In Fig. 5.3, we plot the word error rate obtained on the 600-lexicon task as a function of temporal

context applied on the log posterior features in the hierarchical adaptation technique. The posterior

features are estimated using the CTS MLP trained on 232 hours of speech and the second MLP is

trained on 6.7 hours of adaptation data. The horizontal dashed line indicates the word error rate

obtained by the baseline system in matched conditions, trained on the same amount of data.
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Figure 5.3. Word error rate on the 600-lexicon protocol as a function of the temporal context at the input of the second
MLP. The horizontal dashed line indicates the WER obtained from the baseline system in matched conditions.

It can be seen that even without any temporal context, we obtain an absolute reduction of 1% in

the error rate over the baseline system in matched conditions. In the hierarchical system without

any temporal context, the second MLP can be viewed as a local mapping between the phonemes

in the UNISYN dictionary to the Phonebook dictionary. The second MLP could be correcting any

systematic perturbations in the estimated posterior probabilities due to the mismatch in the dictio-

naries.

As the temporal context is increased, the error rate drops further and saturates by around 130-

150 ms. With increase in temporal context, the second MLP classifier is also able to capture the

contextual information in the posterior features.

5.4.2 Complexity of the second MLP

A well trained MLP classifier attempts to achieve linear separability in the estimated posterior

feature space (refer Section 4.5.1 in Chapter 4). The degree to which it actually achieves linear

separability depends on the complexity of the task. In addition, the posterior features are sparsely
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distributed. As a consequence, the second MLP classifier can be simpler in terms of the number of

parameters and this was demonstrated in phoneme recognition studies in Section 4.5.2.
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Figure 5.4. The word error rate on the 600-lexicon task as a function of the size of the hidden layer of the MLP. The
temporal context on the posterior features is fixed to 130 ms. The WER obtained by using a single layer perceptron is
plotted as the number of hidden nodes equals zero.

In Fig. 5.4, we plot the word error rate on the 600-lexicon task as a function of the size of the

hidden layer at the second stage of the hierarchical system. The size of the hidden layer controls

the amount of nonlinearity that the MLP can model. It can be seen from the plot that the fall in

the performance is minimal as the size of the hidden layer is reduced from 1000 to 200 units. As

the size is reduced further, the performance drops more sharply. However, the adaptation system

still outperforms the baseline system in matched conditions. As an extreme case, a single layer

perceptron is used at the second stage of the hierarchy, and this is plotted as the number of hidden

nodes equals zero in the figure. As seen in the figure, a simple linear classifier yields an absolute

reduction of 1.1% in the error rate over the baseline single MLP system. This observation is consis-

tent with our previous study (Pinto et al., 2009a), where lower phoneme error rates were obtained

even when an SLP was used at the second stage of the hierarchy.

5.4.3 Amount of Adaptation Data

In Chapter 4, we discussed that anMLP trained on a large amount of data from a diverse population

of speakers and different noise and channel conditions can achieve invariance to speaker as well as

environmental conditions. As a consequence of this property, we argued that the second MLP could

be trained on a limited amount of training data, and experimental results confirmed this. In this

section, we confirm that this argument holds water even in the case of the hierarchical adaptation
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scheme.
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Figure 5.5. The word error rate as a function of the amount of adaptation data (Phonebook) used. A temporal context
of 130 ms is considered in the case of the hierarchical system.

In Figure 5.5, we plot the word error rate obtained on the 600-lexicon task as a function of the

amount of Phonebook data used for training or adaptation. The hierarchical systems are trained

with a temporal context of 130 ms. The plots in the figure correspond to the following four systems.

Matched baseline: The phonetic class-conditional probabilities are estimated by using an MLP,

which is trained in matched conditions using PLP features. It can be seen that the performance of

the system falls sharply with the reduction of training data. By using only 20 minutes of training

data, we obtain a word error rate of 12%.

Matched hierarchical: A second MLP classifier is trained on the log posterior features estimated

by the baseline system with a temporal context of 130 ms. The second MLP is trained with the same

amount of Phonebook speech that was used to train the first MLP. It can be seen that the hierarchi-

cal system consistently yields lower error rates when compared to the baseline system. However,

as the training data is further reduced, the hierarchical system ceases to show improvements over

the baseline system.

Adaptation CTS-232: In this adaptation system, the posterior features on the Phonebook task are

estimated using an MLP which is trained on 232 hours of CTS data. It can be seen that this system

yields the lowest error rates. With just 30 minutes of adaptation, the hierarchical system yields an

error rate about 4%, which is same as the baseline system trained on 6.7 hours of speech in matched

conditions. If the baseline system is trained on 30 minutes, then the error rate is about 9%. This is

because of the variability in the acoustic features which need comparatively larger training data.
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Adaptation CTS-6.7: In this adaptation system, the first MLP classifier is trained using 6.7 hours

of CTS. It can be seen that in this case, 2 hours of adaptation yields the same performance as 30

minutes of adaptation on CTS-232 system. To briefly summarize, if the first MLP in the hierar-

chical system is trained using a larger amount of data, then smaller amount of adaptation data is

sufficient. Furthermore, the difference between the word error rates obtained from CTS-232 system

and CTS-6.7 system is larger when the adaptation data is limited, and this gap reduces with the

increase in the amount of adaptation data.

5.5 Summary and Conclusions

In this chapter, we discussed the MLP based hierarchical approach for task adaptation in ASR.

The second MLP classifier can be viewed as a mapping of a trajectory in the posterior feature

space corresponding to CTS phonemes to a point in the posterior feature space corresponding to the

Phonebook phonemes. The main conclusions of this chapter can be summarized as follows:

• The hierarchical approach to estimating the phonetic class-conditional probabilities is useful

in word recognition in matched conditions. The previous chapter showed its effectiveness

in recognition of phonemes. Extensive experiments on large vocabulary continuous speech

recognition in Mandarin are presented in the following chapter.

• If the off-the-shelf MLP classifier is trained on a large amount of data, then a lesser amount

of adaptation data is sufficient. This is interesting because it allows us to reuse well trained

MLP classifiers on new tasks, where the amount of training data is limited.

• The performance of the hierarchical adaptation approach increases with the temporal context

on the posterior features, and saturates at about 130 ms. In recognition of phonemes, we

observed that a context of 230 ms was optimal.

• The second classifier can be simpler in terms of both the structure and the number of param-

eters. In fact, even a single layered perceptron yielded lower error rate in comparison with

the baseline system in matched conditions. This is consistent with the observations in the

previous chapter.



Chapter 6

ASR in Mandarin

6.1 Introduction

In Chapter 4, we showed that the MLP based hierarchical acoustic modeling yields higher phoneme

recognition accuracies when compared to the conventional single MLP based approach. In Chap-

ter 5, we demonstrated the effectiveness of this approach in small vocabulary isolated word recogni-

tion. In this chapter, we investigate the hierarchical system for large vocabulary continuous speech

recognition. For this, we use the Mandarin database developed under the Global Autonomous Lan-

guage Exploitation (GALE) project.1 It consists of audio segments acquired from various television

programs broadcast in Mandarin. The broadcast segments includes two types of genres, namely

broadcast news (BN) and broadcast conversations (BC).

The primary objective of this work is to confirm the usefulness of the MLP based hierarchical

system in large vocabulary continuous speech recognition. In addition, the experimental setup also

allows us to further evaluate the hierarchical system in the following aspects.

• The hierarchical system is tested on a challenging real-world application scenario as the

broadcast programs are from a wide range of domains which include informal and colloquial

language. In addition, the experimental setup also allows us to test the hierarchical approach

for a new language.

1http://www.darpa.mil/ipto/programs/gale/gale.asp

123



124 CHAPTER 6. ASR IN MANDARIN

• In Chapter 5, we demonstrated the application of the hierarchical approach for task adapta-

tion. An MLP trained on a large amount of out-of-domain data is used at the first stage of the

hierarchical system and the second MLP is trained on the in-domain adaptation data. In this

chapter, we investigate the hierarchical system for genre adaptation. The goal is to exploit

additional data in one genre (e.g., broadcast news) in the development of the ASR system for

the other genre (e.g., broadcast conversations).

• In all the experiments so far, recognition is performed using the hybrid HMM/MLP decoding

paradigm, where the MLP is used to estimate the scaled likelihood of feature vectors in the

context independent HMM states. This approach is simple yet effective in phoneme recogni-

tion or small vocabulary isolated word recognition. For large vocabulary speech recognition, it

is advantageous to use state-of-the-art modeling techniques such as context dependent mod-

eling, state tying and speaker adaptation. To this end, the Tandem approach provides an

effective solution as the posterior features estimated by the MLP can be processed and used

as features input to the HMM/GMM system in the same way as standard acoustic features.

6.2 Hierarchical Tandem System

Log

MLP
(90 ms context)

PLP + F0
(40 dim) features

(35 dim)

tandem
Baseline

features
(35 dim)

tandem
Hierarchical

Posterior
features

(71 dim)

Posterior
features

MLP
(150 ms context)

Log + KLT

Log + KLT
(71 dim)

Figure 6.1. (a) The standard Tandem feature extraction technique (b) Hierarchical Tandem feature extraction tech-
nique with a temporal context of 150 ms on the posterior features.

Figure 6.1 shows the block schematic of the standard (or baseline) Tandem feature extraction as

well as the hierarchical Tandem feature extraction. The input features to the first MLP consists of

the first 13 PLP cepstral coefficients appended to their delta and delta-delta parameters, resulting
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in a 39 dimensional feature vector. Since Mandarin is a tonal language, appending a smoothed

estimate of the log-pitch value to the cepstral features has been found to be useful (Lei et al., 2006).

The 40 dimensional combined feature vector is applied at the input of the MLP with a temporal

context of 90 ms. The size of the output layer of the MLP is 71, corresponding to the number of

phonemes.

In the case of the baseline Tandem system, the output of the MLP is transformed using a loga-

rithm, followed by Karhunen Leove transformation (KLT) and dimensionality reduction to obtain a

35 dimensional feature vector. This dimension is chosen such that at least 95% of the variance in

the data is covered. In the hierarchical Tandem system, a second MLP classifier is trained on the

log posterior features estimated by the first MLP with a temporal context of 150 ms. This temporal

context is based on the findings from the task adaptation study reported in Chapter 5, where it

was observed that the word error rates saturate for a context of around 130 ms - 150 ms (refer

Figure 5.3). The output of the second MLP is transformed in the same way as the baseline system

to obtain the hierarchical Tandem features.

6.3 Experimental Setup

In this section, we describe the experimental setup for the Mandarin ASR system.

Training and Test Data Definition

The training corpus consists of 95 hours of speech, which includes 50 hours of BN and 45 hours

BC data. It is a subset of the training set of the 2008 SRI Mandarin speech-to-text system (Lei

et al., 2009). More specifically, it is obtained by excluding the TDT4 corpus from the GALE Year 1

training corpus. The snippet level genre classification on the training set was provided by Stanford

Research Institute (SRI) using the genre classifier developed at the University of Washington under

the GALE project (Marin et al., 2009; Wang et al., 2009). We use the GALE eval06 data as the test

set. The genre labels on the test set are provided by the Linguistic Data Consortium. The word and

phonetic transcription for the training data was obtained from SRI.
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Mandarin ASR System

We use the Mandarin ASR system developed by researchers from SRI, University of Washington,

and International Computer Science Institute (ICSI) under the GALE project using the SRI Deci-

pher system (Lei et al., 2006; Hwang et al., 2009; Lei et al., 2009).

We use the experimental setup described in a recent work (Valente et al., 2009). We briefly de-

scribe the ASR system here. Speech-silence segmentation and automatic speaker clustering is first

performed using Gaussian mixture modeling technique to derive “auto speakers”. The vocal tract

length normalization factors are estimated for each auto speaker and are used in the estimation of

MFCC features (Hwang et al., 2006).

The acoustic modeling is based on the standard HMM/GMM technique. In the training phase,

context independent models are first trained for each of the 71 phonemes. Context dependent

models are subsequently trained and clustered down to 2000 shared Markov states, which are also

known as senones. Each senone is modeled using a mixture of 32 Gaussians using phonetic decision

tree based clustering (Hwang et al., 1993). The acoustic model parameters are trained using the

simple maximum likelihood criterion. Cross-word triphone modeling and speaker adaptive training

is not performed in this study.

A trigram language model, which was estimated using an assortment of text corpora totalling

over a billion words (Hwang et al., 2006) was used for this study. The pronunciation dictionary con-

sists of 60K characters, and is transcribed using 70 phonemes. A silence class was added, resulting

in a total of 71 output classes. The decoding/testing phase involves two passes:

1. First pass search: A maximum likelihood decoding is performed using a trigram language

model and the trained acoustic model to obtain an one best hypothesis for each utterance. The

system is referred to as the speaker independent system.

2. By using one best recognition hypothesis, the silence, vowel, and consonant regions are first

identified. The constrained maximum likelihood linear regression transformation matrices

are then estimated for each auto speaker. The features are subsequently transformed using

these matrices.

3. Second pass search: A maximum likelihood decoding is again performed using the trans-

formed features and the same acoustic model that was used in the first pass decoding. As
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feature transforms are estimated on a per speaker basis, the second pass system is referred

to as the speaker adapted system.

The tunable parameters of the system, namely the language model scaling factor and the Gaus-

sian scaling factor were fixed based on previous study (Valente et al., 2009).2

Methodology

The HMM/GMM system is trained using three sets of features:

• mfcc-f0-42: The static feature vector consists of first 13 MFCC coefficients along with an es-

timate of the log pitch value (f0). The static features are appended to their first and second

order temporal derivatives to obtain a 42 dimensional feature vector.

• tandem-35: The phoneme posterior probabilities estimated by the MLP classifier are trans-

formed using logarithm and KLT, followed by dimensionality reduction to obtain a 35 dimen-

sional feature vector. The tandem features are estimated in the conventional way using a

single MLP classifier or the hierarchical approach as discussed in Figure 6.1.

• mfcc-f0-tandem-77: Motivated from previous studies (Morgan et al., 2005), we also investigate

an augmented feature vector, i.e., concatenation of mfcc-f0-42 and tandem-35 features.

In order to differentiate between Tandem features estimated by standard single MLP approach

and hierarchical approach, we refer to the features with a prefix “baseline” and “hierarchical”,

respectively. For instance, baseline tandem-35 refers to tandem feature estimated by the standard

single MLP approach. The standard acoustic features such PLPs and MFCCs were estimated with

a frame size and a frame shift of 25.6 ms and 10 ms, respectively. The PLP features were estimated

using HTK and the pitch features were obtained from ICSI.

When data from both the genres are used for training the acoustic models, there is clearly an

advantage in having a larger amount of data. However, there is also the disadvantage of having

mismatched acoustic conditions in the training corpus. To understand this aspect, we investigate

these features along the following lines.

2For systems using Tandem based features, the language scaling factor was set to 6.5 and the Gaussian scale factor was
set to 0.3, whereas for systems using MFCC and pitch features, these factors were set to 7.0 and 0.7 respectively.
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• Genre independent system: All the components of the acoustic model, i.e., the MLP classi-

fiers and the HMM/GMM models are trained using data from both BC and BN genres. The

recognition results are reported separately for the two genres.

• Genre specific system: Two separate sets of acoustic models are trained for each of the genre.

In this case, the training and test genre conditions are matched.

• Genre adaptive system: This system is motivated by our findings in Chapter 5, where the

MLP based hierarchical system was used for task adaptation. This system is applicable to

only hierarchical Tandem features. The first MLP classifier is trained using the data from

both genres. The remaining components of the acoustic model, i.e., the second MLP and the

HMM/GMM system are trained on data specific to the target genre.

The size of the hidden layers was chosen such that the total number of parameters is roughly

equal to 5% of the training samples. As a result, MLP classifiers in the genre independent system

have a higher number of parameters when compared to the genre dependent system. The MLP

classifiers were trained at Idiap Research Institute using the Quicknet toolkit. The training and

decoding of the ASR system was performed at ICSI, Berkeley using the SRI Decipher system.3

6.4 Experimental Results

In the following sections, we discuss the results obtained on the eval06 test set using genre inde-

pendent, genre specific and genre adaptive systems. The results are reported in terms of character

error rate (CER) for speaker independent (SI) and speaker adaptive (SA) systems. The lowest CER

obtained is highlighted in boldface.

Genre Independent System

Table 6.1 shows the character error rates on the eval06 dataset obtained using mfcc-f0-42 features,

baseline tandem-35 features, and hierarchical tandem-35 features for the genre independent sys-

tem. The results are reported for the individual genres as well as the entire test set.

3We gratefully acknowledge SRI for allowing to use the Decipher ASR system and ICSI for the computational infrastruc-
ture. We also thank Wen Wang from SRI and Suman Ravuri from ICSI for helping us with the experimental setup.
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Features BC genre BN genre Both genres

SI (%) SA (%) SI (%) SA (%) SI (%) SA (%)

mfcc-f0-42 33.4 31.0 20.9 19.3 27.0 25.0

baseline tandem-35 34.4 32.7 19.5 17.9 26.8 25.1

hierarchical tandem-35 31.3 29.9 18.0 16.8 24.5 23.2

Table 6.1. Character error rates obtained on the genre independent system using mfcc-f0-42, baseline tandem-35, and
hierarchical tandem-35 features.

It can be seen from the table that the hierarchical tandem-35 features yield the lowest CER

on both broadcast news as well as broadcast conversations. These results clearly demonstrate

the effectiveness of the MLP based hierarchical acoustic modeling in large vocabulary continuous

speech recognition. The other main observations from this study are the following:

• The error rates on the BC genre are significantly worse when compared the BN genre. This

has been also previously observed in the literature (Wang et al., 2009). Recognition on the

BC genre is significantly harder when compared to BN because of two main reasons. Firstly,

the conversational speech is spontaneous in nature and characterized by variable speaking

rate, spectral reduction, 4 mispronunciations, false starts, repeated words, filled pauses, hes-

itations, and disfluencies. Secondly, the BC programs span a wide range of domains, which

include political, economical, and cultural topics in China and around the world. In addition,

the language model, which is estimated from text is more closer to the broadcast news than

conversations.

• On broadcast conversations, the mfcc-f0-42 features yield a lower CER when compared to the

baseline tandem-35 features. On broadcast news, the opposite trend is observed. On the entire

test set, the mfcc-f0-42 and tandem-35 features yield more or less the same performance.

• On the BC genre, the hierarchical yields an absolute decrease of 3.1% on the speaker inde-

pendent system, whereas on the BN genre, the decrease in CER is about 1.5%. A similar

observation was also made in the recognition of phonemes in Table 4.3. On TIMIT, the hier-

archical approach resulted in an absolute increase of 3.5% in the phoneme accuracy over the

baseline single MLP based system. In the case of CTS, the improvement in the recognition

accuracy was about 9.0%.

4When compared to read speech, the mean cepstral feature vector of a phoneme in conversational speech is closer to the
global mean (Nakamura et al., 2007). In addition, the variance of the cepstral coefficients is higher in spontaneous speech.
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• The decrease in CER obtained by using the hierarchical tandem-35 features over the baseline

tandem-35 features is slightly higher in the case of speaker independent decoding when com-

pared to the speaker adaptive decoding. It can be seen that on the BC (BN) genre, the decrease

in CER is about 3.1% (1.5%) on the speaker independent system, whereas on speaker adapted

system, the decrease is about 2.8% (1.1%).

Table 6.2 shows the CER obtained for the genre independent system using the baseline mfcc-f0-

tandem-77 and hierarchical mfcc-f0-tandem-77 features.

Features BC genre BN genre Both genres

SI (%) SA (%) SI (%) SA (%) SI (%) SA (%)

baseline mfcc-f0-tandem-77 29.2 28.0 17.6 16.6 23.3 22.2

hierarchical mfcc-f0-tandem-77 28.4 27.3 17.0 16.3 22.5 21.7

Table 6.2. Character error rates obtained on the genre independent system using baseline mfcc-f0-tandem-77 and
hierarchical mfcc-f0-tandem-77 features.

The important observations from the table are as follows:

• A reduction in error rates is observed when mfcc-f0-42 features are augmented with base-

line tandem-35 features, and also when mfcc-f0-42 features are augmented with hierarchical

tandem-35 features. This shows that the hierarchical tandem-35 and mfcc-f0-42 features bear

complimentary information in the same way baseline tandem-35 and mfcc-f0-42 features.

• The improvement in performance obtained by using hierarchical Tandem features over the

baseline Tandem features is reduced when these features are augmented with mfcc-f0-42 fea-

tures. This suggests that the improvement in recognition accuracies obtained by feature con-

catenation and hierarchical processing are not exactly additive. Nonetheless, the hierarchical

mfcc-f0-tandem-77 features yield the lowest error rates in both the BC and BN genres.

Genre Specific and Genre Adaptive Systems

Table 6.3 shows the CER obtained by using mfcc-f0-42, baseline tandem-35, and hierarchical

tandem-35 features on the genre specific system and the genre adaptive system.

The important observations from the table are as follows:

• The hierarchical tandem-35 features yield the lowest error rates when compared to mfcc-f0-

42 and baseline tandem-35 features. This is consistent with the results in genre independent
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Training Features BC genre BN genre

SI (%) SA (%) SI (%) SA (%)

mfcc-f0-42 33.5 30.9 20.9 19.4

genre specific baseline tandem-35 35.2 33.3 20.3 18.7

hierarchical tandem-35 31.8 30.5 19.3 17.8

genre adapted hierarchical tandem-35 31.0 29.5 18.8 17.5

Table 6.3. Character error rates obtained for genre specific systems using mfcc-f0-42, baseline tandem-35, and hierar-
chical tandem-35 features and on genre adaptive system using hierarchical tandem-35 features.

system.

• On mfcc-f0-42 features, the CER of genre specific system (Table 6.3) is more or less same

as those obtained for the genre independent system (Table 6.1). However, for both baseline

tandem-35 and hierarchical tandem-35 features, the genre specific system yields higher error

rates when compared to the genre independent system. This could be attributed to the lesser

amount of training data for the genre specific systems.

• On broadcast conversations, the best result is obtained for the genre adaptive system. That

is, by training the first MLP with 50 hours of additional data from the BN genre, we obtain an

absolute reduction of about 1% in the CER. It can also be noted that the error rates obtained

by genre adaptive system is lower in comparison to genre independent system (Table 6.1).

Based on these observations it can be argued that on broadcast conversations, the tradeoff

between additional data and mismatched conditions is best handled by the genre adaptive

system.

• On broadcast news, the genre adaptive system yields lower error rates when compared to the

genre specific system. However, these error rates are higher in comparison with the genre

independent system. This suggests that on the BN genre it is advantageous to train all the

components of the acoustic model using the entire training set.

Table 6.4 shows the CER obtained by using baseline mfcc-f0-tandem-77 and hierarchical mfcc-

f0-tandem-77 features on genre specific and genre adapted systems. On broadcast conversations,

the genre adapted system yields the best performance, whereas on broadcast news the genre inde-

pendent system gives lower error rates.
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System Features BC genre BN genre

SI (%) SA (%) SI (%) SA (%)

mfcc-f0-42 33.5 30.9 20.9 19.4

genre specific baseline mfcc-f0-tandem-77 30.3 28.8 18.2 17.2

hierarchical mfcc-f0-tandem-77 29.2 27.7 17.8 16.7

genre adaptive hierarchical mfcc-f0-tandem-77 28.2 27.0 17.7 16.7

Table 6.4. Character error rates obtained on the genre specific systems using mfcc-f0-42, baseline mfcc-f0-tandem-
77, and hierarchical mfcc-f0-tandem-77 features and for genre adaptive system using hierarchical mfcc-f0-tandem-77
features.

6.5 Summary and Conclusions

In this chapter, we compared the Tandem features extracted by conventional single MLP based

approach and the MLP based hierarchical approach on the GALE Mandarin ASR task. Studies on

genre independent, genre specific and genre adaptive systems showed that:

• The hierarchical approach to estimate Tandem features yields a better ASR system when com-

pared to the conventional single MLP based approach for both standalone Tandem features

case as well as when augmented with MFCC features.

• In the case of broadcast conversation genre, training the first MLP classifier of the hierarchical

approach with data from both the genres, and the subsequent components of the acoustic

model with genre specific data yields a better ASR system.
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Summary and Conclusions

This thesis presented two aspects of multilayer perceptron based (MLP) based acoustic modeling:

(a) an MLP based hierarchical acoustic modeling technique and (b) a mathematical framework to

analyze the trained parameters of the MLP classifier using Volterra series. In this chapter, we

summarize the research carried out and discuss some of the promising future directions.

This thesis was based on the premise that there exists useful contextual information in the

sequence of phonetic class-conditional probabilities or posterior features estimated by an MLP clas-

sifier. This contextual information manifests in the trajectories of posterior features within a pho-

neme (sub-phonemic level) and in their transition to and from neighboring phonemes (sub-lexical

level). Posterior features carry lesser nonlinguistic information such as speaker and environmental

variabilities when compared to acoustic features and they process a sparse distribution. Because of

these properties, we hypothesized that contextual information spanning longer temporal contexts

can be effectively learned in the posterior feature space.

To this end, we investigated an MLP based hierarchical system to estimate the phonetic class-

conditional probabilities. The architecture consisted of two classifiers connected in tandem. The

first MLP was trained using standard perceptual linear predictive cepstral features with a temporal

context of around 90 ms. The second MLP classifier was trained on the posterior features estimated

by the first classier, but with a relatively longer temporal context of 150-230 ms. The posterior

probabilities of phonemes estimated by the hierarchical approach are used in the same way as the

conventional single MLP based approach.

133
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The effectiveness of the MLP based hierarchical acoustic modeling approach was demonstrated

on different ASR applications: (a) continuous phoneme recognition in read speech and conversation

telephone speech, (b) small vocabulary isolated word recognition, (c) task adaptation, and (d) large

vocabulary continuous speech recognition in Mandarin. On all these applications, the MLP based

hierarchical approach for estimating the phonetic class conditional probabilities yielded a better

ASR system when compared to the conventional single MLP based approach.

We proposed a generic mathematical framework to represent a cascade of a linear time invariant

system and three-layered MLP using Volterra series. In this way, a part of the feature extraction

(linear time-invariant system following the auditory analysis) can be included in the analysis of

the trained MLP and functionality of the combined system can be interpreted in terms of spectro-

temporal patterns. We showed the calculation of the Volterra kernels and demonstrated its applica-

bility in the analysis of MLP classifiers trained on acoustic features such as mel frequency cepstral

coefficients.

We analyzed the second MLP classifier in the hierarchical system using Volterra series. Analysis

of the linear Volterra kernels showed that it has effectively learned the phonetic temporal patterns

at the output of the first classifier as well as the phonotactics of the language as observed in the

training data. Furthermore, we showed that the second MLP in the hierarchical system can be

simpler in terms of model complexity and that it can be trained using lesser amount of data. This

can be attributed to the useful properties of posterior features such as the sparse distribution and

lesser nonlinguistic variability.

Some of the promising future directions from this thesis are as follows:

• Hierarchical approach applied to multilingual ASR: The first MLP classifier could be

trained using an assortment of data sets from various languages which bear some sort of

similarity e.g., a group of European languages. The output classes could correspond to the

union of the phonemes in these languages. At the second stage of the hierarchical system,

an MLP could be trained using the posterior features corresponding to the “global” language

with output classes representing the phonemes in the target language. This could possibly

help in building ASR systems in a new language where training data is limited or even help

in reducing the error rates in a language with sufficient resources.
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• Integrating articulatory features: The hierarchical approach can also be applied in inte-

grating articulatory features. The first MLP classifier could be trained using acoustic features

with the articulatory attributes of phoneme such as place of articulation, manner of articu-

lation etc as the output classes. At the second stage, an MLP is trained on the articulatory

features with a longer temporal context to estimate the phonetic class-conditional probabili-

ties. In this case, the second MLP learns the articulatory-temporal patterns for each of the

phonemes.

In the context of multilingual ASR discussed above, using articulatory classes at the output

of the first MLP is appealing as articulatory features are less language dependent than the

phoneme posterior features.

• Choice of the classifiers: In the hierarchical approach discussed in this thesis, the poste-

rior features were estimated by an MLP (first classier) and the contextual information in the

posterior features was also captured by an MLP. In Chapter 4, we showed that the posterior

features can also be estimated using other classifiers such as a Gaussian mixture model. Some

other works in the literature such as (Morris and Fosler-Lussier, 2008) have shown that the

second classifier could also be a conditional random field. Although we have not performed

extensive experiments, it can be said that the choice of the classifiers here is secondary. The

important aspect is transforming the acoustic features into some linguistically meaningful

features where the nonlinguistic variability is minimal, and then exploiting the contextual in-

formation in the posterior feature space. To this end, better architectures and more powerful

modeling techniques could be investigated.

• Hierarchical system for read and conversational speech: In both recognition of

phonemes (on TIMIT and CTS) as well as recognition of words in Mandarin (BN and BC),

we observed that the improvement in performance obtained by the hierarchical approach is

higher in the case of conversational speech when compared to read speech. Further investi-

gation needs to be carried in this direction to ascertain if this is indeed the case or just an

artifact observed in these datasets.

• Analysis of MLP classifiers trained on acoustic features: In this thesis, we did not

perform a detailed analysis of the MLP classifiers trained on acoustic features such as mel
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frequency cepstral features. The proposed framework can be easily applied in the analysis of

an MLP classifier trained to classify vowels. We believe that a careful analysis of the linear

and quadratic Volterra kernels along with the phonetic confusion matrix of the truncated

Volterra series can reveal significant insights into the functionality of the system.



Appendix A

Appendices

A.1 Derivation of Volterra Kernels

In this section, we show the detailed steps involved in the derivation of the Volterra kernels in

Section 3.3.1. Equation (3.18) can be expanded as

yj (t) = bj
o +

M
∑

i=1

cj
i a0,i +

M
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i=1

cj
i a1,i si (t) +

M
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i a2,i si (t)

2
+ . . . (A.1)

By substituting (3.12) in (3.16), and further substituting the resulting equation in (A.1), we obtain
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By exchanging summation and integration, and rearranging terms in the above equation, we obtain
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The Volterra synthesis equation is given by (3.14) as

yj (t) = gj
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By comparing (A.2) and (A.4), the first three Volterra kernels are identified as
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A.2 Mean Square Error Fit

In Section 3.3.4, we discussed that the sigmoidal function can be approximated as a polynomial to

the desired level of accuracy in an interval in its operating region. In this section, we show the

estimation of the coefficients of the polynomial. Suppose that the sigmoidal function φ(s + b) is

approximated using a polynomial function of order P as

φ(s + b) ≈
P
∑

n=0

ansn (A.8)

The mean square error between the sigmoidal function and its polynomial approximation is given

by

mse(a0, a1, . . . aN ) = ES

[

φ(s + b) −
P
∑

n=0

ansn

]2

Here, the activation values to the sigmoidal activation function φ(. + b) has a normal distribution

with a mean zero and variance σ2, which can be obtained from (3.32). To minimize the mean

squared error, the above equation is differentiated with respect to ai i = 1, 2, . . . P and equated to
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zero as

P
∑

n=0

anES

[

sn+i
]

= ES

[

siφ(s + b)
]

i = 0, 1, . . . P (A.9)

The expectation on the left hand side of the above equation correspond to the central moments of

the normal density function. The expectation on the right hand side does not have a closed form

solution, and is evaluated using the trapezoidal method of numerical integration. The coefficients

of the polynomial a1, a2, . . . aP can be obtained by solving the system of linear equations (A.9) using,

for example, the simple matrix inversion method.

A.3 Normalization of Posterior Features

The expression for the posterior features is given by (4.1). In the following derivation, we drop the

subscript for time t and simplify the notations by denoting the event qt = k by simply qk. The model

for the first MLP is denoted by Θ. Subsequently, (4.1) reduces to xk = P (qk | f ,Θ), where qk denotes

the phoneme, f denotes the input feature vector. The mean of the component k in the posterior

feature vector is given by

mk = Ef [xk]

= Ef [P (qk | f ,Θ)]

=

∫

p(f)P (qk | f ,Θ) df

=

∫

p(f)
p(f | qk,Θ) P (qk | Θ)

p(f | Θ)
df

= P (qk | Θ) (A.10)

Hence, the sample mean of the posterior features is an estimate of the prior probability of the

phonemes qk. In the above simplification, the property p(f | Θ) = p(f) is exploited. The mean and
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variance of the posterior features are related as

σ2
k + m2

k = Ef

[

(xk)2
]

=

∫

p(f)
p(f | qk,Θ)P (qk | Θ)

p(f | Θ)
xk df

= P (qk | Θ)

∫

p(f | qk,Θ) xk df

= P (qk | Θ) Ef |qk
[xk] (A.11)

The conditional expectation in the above expression can be estimated as the average posterior prob-

ability of a phoneme obtained using data belonging to that particular phoneme only. If x̂k denotes

the scaled likelihood of the phoneme qk, and given by

x̂k =
xk

mk

=
P (qk | f ,Θ)

P (qk | Θ)
,

(A.11) can be expressed using (A.10) as

σ2
k

m2
k

+ 1 = Ef |qk
[x̂k] (A.12)

The posterior feature vector component, normalized to zero mean and unit variance ˆ̂xk can be be

simplified using (A.12) as

ˆ̂xk =
xk − mk

σk

=
x̂k − 1

[

Ef |qk
[x̂k] − 1

]
1
2

(A.13)

From (A.13), it is clear that mean and variance normalization on the posterior features is equiva-

lent to taking scaled likelihoods as features. In other words, by taking scaled likelihoods as features

and normalizing them to zero mean and unit variance would yield the same features as in (A.13).

The only difference is that in the latter, the prior probabilities are estimated by normalizing the

relative frequency of the phonetic labels in the training data. In the above formulation, the priors

are estimated using the MLP model. In effect, by normalizing the posterior feature to zero mean

and unit variance, the effect of priors in them are removed.



Bibliography

Abdel-Haleem, Y. (2006). Conditional Random Fields for Continuous Speech Recognition. Ph.D.

thesis, University of Sheffield.

Abrash, V., Franco, H., Sankar, A., and Cohen, M. (1995). Connectionist Speaker Normalization

and Adaptation. Proc. of Eurospeech, pages 2183–2186.

Allen, E. S. (1941). The Scientific Work of Vito Volterra. The American Mathematical Monthly,

48(8), 516–519.

Allen, J. (1994). How do Humans Process and Recognize Speech? IEEE Trans. Speech. Audio.

Process., 2, 567–577.

Aradilla, G. (2008). Acoustic Models for Posterior Features in Speech Recognition. Ph.D. thesis,
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