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ABSTRACT

We consider the problem of head tracking and pose estimation
in realtime from low resolution images. Tracking and pose
recognition are treated as two coupled problems in a proba-
bilistic framework: a template-based algorithm with multiple
pose-specific reference models is used to determine jointly the
position and the scale of the target and its head pose. Target
representation is based on Histograms of Oriented Gradients
(HOG): descriptors which are at the same time robust under
varying illumination, fast to compute and discriminative with
respect to pose. To improve pose recognition accuracy, we
define the likelihood as a parameterized function and we pro-
pose to learn it from training data with a new discriminative
approach based on the large-margin paradigm. The perfor-
mance of the learning algorithm and the tracking are evalu-
ated on public images and video databases.

Index Terms— realtime tracking, particle filter, head
pose estimation, discriminative learning.

1. INTRODUCTION

The problem of head pose estimation has attracted the atten-
tion of several researchers mainly due to the large amount of
applications such as human computer interaction or visual fo-
cus of attention recognition [1]. Using a monocular camera
to robustly track a head and estimate its orientation is a chal-
lenging task especially due to the loss of depth information.
Moreover very often only faces at low resolution are available
and 3D modeling techniques cannot be used. An additional
difficulty arises if, as required by several applications, track-
ing and head pose estimation must be performed in realtime.
Head tracking and pose estimation can be realized with
the cascade of a system which extracts the location of the
face and a classifier which determines the pose of the local-
ized face. A better alternative, proposed in [2], consists in
modeling tracking and pose recognition as two paired tasks in
a single framework. In this way the tracking robustness is im-
proved by defining a pose-specific observation model while
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the pose estimation accuracy is increased due to a better lo-
calization of the target.

Following this principle, in this paper a new algorithm for
joint head tracking and pose estimation is proposed. As in
[2], we focus our attention on the challenging task of pose
estimation for faces at low resolution but, in contrast to [2],
our system runs in realtime. We model head pose recogni-
tion as a discrete state estimation problem. We learn offline
multiple pose-specific templates and we use them in a mixed
state particle filter (MSPF) which computes the position and
the scale of the head and simultaneously determines its ori-
entation. Realtime is achieved mainly thanks to an effective
target representation based on multilevel HOG [3]: features
which allows good pose classification and are extremely fast
to compute due to integral histograms [4]. To our knowledge
this is the first time that HOGs are employed for head pose
recognition. A similar descriptor has been proposed in [5]
but in this case no multilevel representation neither integral
images are used.

A main novelty of the paper concerns the definition of the
likelihood, i.e. the function which measures the compatibility
between the current observation and the reference models of
a specific pose. We propose to express it as a function of a
set of parameters and to learn them offline in a way such that
the similarity between two images is imposed to be high if the
poses are close and large otherwise. To this aim we introduce
a new discriminative algorithm which improves significantly
pose estimation accuracy.

2. HEAD POSE REPRESENTATION

We consider the head orientation 6 as described by 3 angles,
pan and tilt (to represent out-of-plane rotations, i.e. respec-
tively the horizontal and the vertical inclination of the face)
and roll (for in-plane rotations). We discretize the space of all
possible orientations into © = 273 poses: 13 possible values
for pan, 7 for tilt and 3 for roll. Pan and tilt angles varies in
the range +90°, while roll in +15°.

For the purpose of tracking we consider multiple refer-
ence models for each pose and we denote by R’g the k-th ref-
erence of pose 6. We use 91 poses of the PRIMA-POINTING
head pose database [6] to build the set of templates corre-



Fig. 1. Original image, multilevel HOGs (cells in blue, blocks
in red) and skin mask

sponding to roll equal to 0°. By rotating them we also obtain
the reference images for roll £15°. For each pose we use
15 images of different individuals. In this way we can alle-
viate the problems due to the large variations of models cor-
responding to the same pose. These variations can be due to
image cropping or alignment or to the appearances of people.
We rescale all the images to 64 x 64 pixels and we compute
the feature vectors r’g associated to R’g. We adopt two types
of features in order to discriminate between different head ori-
entations: texture features and color features (Fig. 1).

Texture features. We use multi level HOG descriptors as
texture features: we partition the image into 2 x 2 (first level)
and 4 x 4 (second level) non overlapping blocks of 2 x 2 cells
and compute the histograms of gradient orientation on each
cell. More specifically, we first convert the color image to
grayscale. Then the horizontal and vertical image gradient are
computed by a 1-D centered mask and used to calculate the
magnitude and the orientation of the gradient. As suggested
by [3] we employ unsigned orientation of the image gradi-
ent. For each cell we construct a 1D histogram quantizing the
gradient orientation of all the pixels into 8 bins weighting the
contribute of each pixel by the gradient magnitude. This can
be done by integral histograms. Histograms are then normal-
ized locally i.e. considering all the cells in the same block.
The final HOG descriptor is obtained by the concatenation of
the small histograms. Fig. 1 give a example of an image and
its HOG representation.

Color features. Color features are also extracted. Skin
colors are modeled in the normalized RG space and a gaus-
sian color model is learned from a training set of skin patches.
This model is employed to classify pixels of an image as
skin/not skin. The resulting binary image is divided into 8 x 8
cells non overlapped. Finally a binary mask (Fig. 1) is con-
structed: for each cell if the majority of pixels corresponds
to skin the output associated to the cell is 1, otherwise it is 0.
This computation is done efficiently with integral images.

3. TRACKING AND POSE ESTIMATION

Let us denote by s, the hidden state which represent the object
configuration and by o, the associated observation extracted

from the image at time ¢. In bayesian tracking the sequence
of hidden parameters s;.; is estimated based on the observed
data 01.;. All bayesian estimates of s; follow from the poste-
rior distribution p(s;|0;.¢). In the most common situations of
non-linearity and multimodality a practical approach is to ap-
proximate p(s;|01.¢) is by a set of samples (the particles) each
one associated with a weight which indicates its “quality”.
This approximation is recursively updated using a particle
filer algorithm e.g. CONDENSATION. In CONDENSATION
two phases can be distinguished: prediction and update. Dur-
ing the prediction each particle is modified according to a
state model adding some random noise. In the update phase,
each particles weight is updated based on the new observed
data. A resampling procedure provides the elimination of
particles with small weights and the replication of those with
larger weights. In the following, we describe the main fea-
tures of our particle filter.

State space. We choose a rectangular box as head track-
ing region described by the vector s = (t,t,, Sz, €y,0, k). In
practice we consider a MSPF [7] since s contains both contin-
uous variables (z = (tz,ty, Sz, €y) to indicate head location
and size) and discrete variables (6, k representing respectively
the pose and the k-th reference model of pose 6).

Dynamical model. We assume continues states com-
ponents independent from discrete ones. Standard autore-
gressive models are chosen to describe the dynamics of
the translation components (¢;,t,), the scale s, and ex-
centricity e,. For the discrete variables 6 and k, we define
two probability tables (p(6:]0:—1) and p(k¢|ki—1,0t,60:-1))
and we learn them from opportune training sequences:
p(0:]6¢—1) is based on the distance between adjacent poses
and p(k¢|ki—1,0:,0,—1) on the difference between images
in the training set (for the same pose images of similar ap-
pearances are preferred, for nearby poses images of the same
individual are considered).

Observation model. An observation 0 = (0%, 0°°!) is
composed by texture and skin color features computed on
each image. Under the assumption that the features being
used are independent, the overall likelihood p(o,[s;) is the
product of the likelihoods of the separate cues:

p(ose) = p™ (05" [s)p™" (0] [s¢)

tem(

The texture likelihood p'®®(0!**|s;) is obtained by:

kitex
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where At is a user define constant and the distance Dy (0, r})
is a linear function of some parameter vector 'wlg € RM e.g.
Dw(o,rk) = wlgleg (0). The vector djj(0) contains the
concatenation of elementary distances between features of an
observation o and the corresponding features in the reference
model rlg. Arbitrary distances can be used as elementary
distances: in our experiments we used o distances between
histograms of corresponding HOG cells. In the following



Section we describe the algorithm we used to learn the set
of weighted vectors wk. It is worth noting that in general a
parameterized likelihood function can be expensive to eval-
uate. However since we assume the set of all possible poses
to be known in advance, the reference models r’(j and the
weight vectors w’g are precomputed off-line. Moreover the
features vectors entirely rely on integral images. Therefore
the run-time complexity is drastically reduced.

The color likelihood p© (0§°!|s;) is obtained by comput-
ing the L; distance between the features associated to the k;

reference model of pose 6, (rzz C"l) and the features computed

on the current particle (0%, i.e.:
col (. col _ XD, (0% rpte?h)
P (0" |st) = e 1 e

where \¢ is an appropriate constant. Note that also for color
we could have employed a weighted distance function. How-
ever the purpose of learning the weights is to increase pose
recognition accuracy and pose information is mainly provided
by texture features. On the other hand color features only
contain a rough information about pose but are very useful to
improve tracking localization.

Filter output. The estimate of the variables of interest (in
this case the mean of the distribution) is obtained by averag-
ing over the set of particles. Note that for poses (which are
represented by discrete variables) this is still possible since in
practice they correspond to real-value angles.

4. LEARNING THE LIKELIHOOD

In this Section we denote by o; the set of texture features as-
sociate to an image and by y; a label that indicates the head
orientation. We assume that we have a training set 7 =
{(01,91), (02,92), ..., (0g,y¢)} of pairs of images o; with as-
sociated poses y;. We select a set of training points as refer-
ence models (i.e. r’; = 0;). This set can correspond to the
entire training set or be a subset of representative datapoints
selected by a-priori knowledge or by clustering techniques as
K-means. We propose to learn the distance functions Dy, in
order to impose that exemplars o; associated to pose y; should
be closer to all reference models of the same pose r’;i and sep-

arated at least by a margin of 1 from reference models r’g,/ of
different pose (0’ # y;). In formulas:

yr;lelpk’ w’g:leg, (0;) — max wl;del;i (0;) > 1 Vo,

In other words we impose that for each image o; the dif-
ference between the minimal distance from references of
different poses and the maximal distance from references
of the same pose should be larger than one. We define
W = [wi.. wi . wh... w5e]”, and §(0;,0,k) =
[0 ...d5(0;) ...0]T i.e. all the entries are 0 except the part
corresponding to pose  and reference k where they are set to

Table 1. Average error in degrees with CLEARO6 setup.
Numbers in parenthesis correspond to all weights set to 1.

THISPAPER  BA  VoIiT Tu  GOURIER
PAN 9.1 (13.7) 11 12.3  14.1 10.3
TILT 10.5(14.2) 11.5 12,7 14.9 15.9

dh(0;). It is easy to verify that all the constraints above can
be rewritten in the form:

min VVT(S(Oi7 (9/, k'/) — max WT(S(OZ‘, Yis /{2) >1 VOZ‘
yiF#0' k! k

The task we are interested in is to find the weight vector W

such that all constraints are satisfied. A simple approach is

to employ the large margin principle as in Support Vector

method [8] and to choose the vector W with minimum norm.

The resulting optimization problem is:

. L
minw o060 3|[WIP+CX5 &

st. min W78(0;,0 k) —max W §(0;, 9, k) > 1—¢;
yi#a,ak, k

where we have introduced slack variables &; to allow the
problem to be solved in non-separable cases. The parameter
C control the trade-off between regularization and violation
of the margin. Note that the constraint W > 0 has been in-
troduced to impose that the learned distance function should
be valid i.e. always positive. We solve this problem by an
efficient iterative algorithm based on stochastic gradient de-
scent which is a variation of the optimization strategy recently
proposed in [9] and we do not describe here for lack of space.

To our knowledge, in the context of head pose recognition
we are the first to suggest to learn distance functions and to
employ them in the likelihood of a MSPF. Among previous
works on distance learning the most similar to our algorithm
is the one proposed in [10] to improve nearest neighbor (NN)
classification accuracy in the context of object classification.
However the method in [10] employs a constraint for each
possible triplet (x;, r’;i, r’g,/) and it is solved by a dual opti-
mization method. Therefore in large multiclass problems its
computational cost becomes prohibitive (e.g. in our experi-
ments we would have about 20 million constraints). On the
contrary using our approach the number of constraints is lin-
ear in the size of the training set £ and a primal solver is used,
therefore it scales much better.

5. RESULTS AND DISCUSSION

We first show that with our distance learning algorithm head
pose estimation is greatly improved. We consider static im-
ages of 93 poses in the PRIMA-POINTING database. The
experimental setup is the same one as for the CLEAR evalu-
ation workshop 2006 (http://isl.ira.uka.de/clear06/). Images
are split in two sets: the first series is used as training set,
the second as test set. Faces in the images are cropped au-
tomatically by a skin color model and rescaled into 64 x 64



Table 2. Pose estimation errors (degrees) for person left (L)
and right (R) in the IDIAP Head pose database.

1L 1R 2L 2R 3L 3R mean
pan 169 112 166 121 113 72 12.5(15.8)
tilt 8.4 5.7 7.1 131 115 51  85(11.3)
roll 6.9 96 11.7 84 9.8 5.1 8.5(9.6)

pixels. Histogram equalization is performed to reduce the ef-
fect of lighting condition. In the distance learning algorithm
we use K = 15 reference models per pose. Once the training
is terminated, classification is performed with 1-NN classi-
fier. As shown in Table 1 our method achieves better accu-
racy than state-of-the approaches (the numbers in the table
are taken from Table II in[1] and correspond to all the meth-
ods evaluated with the same protocol). Between parenthesis
the errors of a NN classifier without previous distance learn-
ing (all weights set to 1) are indicated. This demonstrates
that multilevel HOGs are effective descriptors: data are clus-
tered with respect to pose and classification performance are
already good. Moreover with distance learning the accuracy
is significantly improved.

Finally we show the validity of our approach for joint
tracking and pose estimation. A qualitative analysis of sev-
eral videos demonstrate that the system provides satisfactory
results both in terms of head localization and pose estimation.
Some examples of videos can be found at www.idiap.ch/ ~
odobez [icip2009.html.

To quantify the performance of the tracker in terms of
head pose estimation accuracy we use the IDIAP Head pose
database (www.idiap.ch/HeadPoseDatabase). The same pro-
tocol and the same performance measures described in [11]
are adopted for conducting experiments. Fig.2 illustrates
tracking results on a typical sequence. The first row shows
two cases where both tracking and pose estimation are ac-
curate, while in the second row two examples of failure due
to occlusion are depicted. Note that in this case the head
orientation is wrongly estimated but the face is still local-
ized correctly despite the cluttered background. The pose
estimation errors corresponding to K = 5 reference models
per pose are shown in Table 2. It is evident that using our
large margin learning approach the estimation accuracy sig-
nificantly improves with respect to the baseline (no distance
learning) reported between parenthesis. This is somehow
expected because the algorithm favors better discrimination
between different poses. Moreover with our approach we
learn several distances solving a single optimization prob-
lem, therefore the distances (and then the likelihoods) are
comparable i.e. interpretable on an absolute scale. On the
other hand in previous template-based approaches (e.g.[2])
multiple reference models are learned independently. This
introduces normalization problems since different likelihoods
can be not comparable.

Comparing our results with those reported in [1] and in
particular with the best method [11] we see that we achieve
higher performance in term of tilt and roll estimation while

Fig. 2. Head tracking and pose estimation results

the pan recognition is less accurate. Moreover our tracker
runs close to realtime (at about 20fps) while the system in
[11] is very slow (about 2fps) due to the likelihood compu-
tation (which heavily relies on particles resizing, histogram
equalization and Gabor filters) and to Rao-Blackwellization.
From the analysis of the output videos we observe that the
major cause of pose estimation errors is probably the fact that
we do not model large in-plane rotations since in these cases
it is difficult to compute features with integral images. We
leave this as topic of further research.
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