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Abstract—Person identification using audio (speech) and B, are provided. Given that exactly one out of A and B is X,
visual (facial appearance, static or dynamic) modalitieseither  the task is to decide which one it is. For all the speakers in
independently or jointly, is a thoroughly investigated prablem e matching stage, it is critical that no joint (synchremy
in pattem recognition. In this work, we explore a novel task: audio and video information be available. We term this the
person identification in a cross-modal scenario, i.e., making ) : e ! :
the Speaker in an audio recording to the same Speaker in a Aud|0'\/ideo M|Smatch criterion. Th|S causes the XAB taSk
video recording, where the two recordings have been made to be distinct from a simple audio-to-video synchronizatio
during different sessions, using speaker specific informain  task where both modalities capture the same event in time
which is common to both the audio and video modalities. Sev- [5]. To ensure this, the audio and video recordings in the
eral recent psychological studies have shown how humans can . . .
indeed perform this task with an accuracy significantly higrer matching stage should b_e temporally non_—overlapplng, I.€.
than chance. Here we propose two systems which can solve they should be made during different sessions, and speakers
this task comparably well, using purely pattern recognitian in the matching stage should be all distinct from speakers in
techniques. We hypothesize that such systems could be put to the learning stage. The converse v-a task is exactly the same
practical use in multimodal biometric and surveillance sysems. as the a-v task with the roles of the modalities reversed.

There are several studies with human observers perform-

Keywords-Multi-modal  biometrics, audio-visual speaker  jng the XAB task! Lachs et al. [2] and Kamachi et al. [1]
recognition, crossmodal matching, audio and video classil-  yonorted human observers correctly matching X to A or B
tion. : .

around65% of the times. Krauss et al. have shown similar
matching performance using static instead of dynamic Visua
information [4]. Campanella et al. [3] provide additional

We often create a mental image of a person whose voicisights on cross-modal information transfer in humans.
is familiar (from telephone conversations, for example) bu In this preliminary work, we explore a possible solution
whom we have never seen. We often also create a mentg@ the XAB task by creating modality independent speaker
“voice model” from visual information (either static or dy- models which can be used equally on both audio and video
namic) of persons we have never heard. Recent studies hadata. We study two approaches, tiemeans clustering ap-
investigated these phenomena scientifically [1] [2] [3],[4] proach and thé{-nearest neighbour approach. Our methods
asking human observers to match an audio recording of ahave shown reasonable results which compare well with that
unknown voice X to two video recordings of two unknown shown by human observers.
speakers, A and B, one of which is X, and vice versa. It was The rest of the paper is organized as follows. In Sec.ll,
found that humans performed in this task with an accuracyve describe the proposed speaker matching framework. We
significantly above chance. Let us define this crossmodajescribe our experiments in Sec.lll. In Sec.IV, we discuss
matching task, termed as the XAB task [1], as follows. the results and highlight certain aspects of our method.

The XAB task has two stages : (1) the learning stage anginally, Sec.V outlines the main conclusions of our work.

(2) the matching stage. In the learning stage, joint audi an

video information is available in the form of synchronized [I. THE PROPOSEDFRAMEWORK

audio and video (dynamic facial appearance) recordings oA Feature Extraction

persons speaking. The purpose of this stage is to extract or . . .

store knowledge required to map speaker identities between FOF the video modality, we concentrated on lip appearance
audio and video modalities. In the matching stage, therd€atures since they have been shown to be robust and
are two cases, the Audio-to-Video (a-v) matching task angfficient [6]. The video frame rate was 25fps. From each

the Video-to-Audio (v-a) matching task. In the a-v task,
( ) 9 1For humans, the learning stage comprises of all speectedelaint

an aUC_“O recordl_ng of a p(_erson X speaking, and_ two videqgio-visual stimuli received as part of normal day-to-@ayivities prior
recordings showing two different persons speaking, A ando the experiments.

I. INTRODUCTION



video frame, al6 x 16 Region-Of-Interest (ROI) around the The matricedH*’ and H"* are the outputs of the learning
lips was extracted using available annotation, followed bystage.

geometric normalization and inter-frame alignment. Next, For the matching stage, let us consider the (a-v) task. Let
2D-DCT features [6] were extracted and & 10" highest  p%,ps andpy be the probability mass functions (PMF) of
energy coefficients were retainédo form the video feature the feature vectors extracted from X, A and B, iS¢, SX
vectors. Mean normalization was performed for each videand Sy respectively, based on th€ clusters formed in the
sequence [6]. For the audio modality, the audio data samplel@arning stage. Thugp% (k) = Pr(x® € R{x® € S%),

at 8kHz was blocked into frames equal in duration to thepj (k) = Pr(x’ € R}|x" € SR) andpg(k) = Pr(x" €
video frames (corresponding 820 samples per frame) and R} |x"” € S§). These PMFs are estimated as,

16 Mel-Frequency Cepstral Coefficients (MFCC) [6] were 1
extracted from each block, out of whict®'io 8" were px(k) = Sal Z 1rg (x") (2)
retainec® to form the audio feature vectors. For each audio IS xa€8¢

sequence, Cepstral Mean Subtraction [6] was performed. It 1
is to be noted that only voiced frames were used, both for pa(k) = s > 1gp(xY) ©)
A

audio and video modalities. xvESY
B. Cross-modal Learning and Matchin » 1 v
) ane verening PE(k) = g > lry(x") (4)
Let R* andR" denote the audio and video feature spaces. S| XV €Sy

For the learning stage, synchronized audio and video data is ) o
available. LetS® andS? denote the sets of audio and video Where1 ka < K. Next, we use the Hebbian projection
feature vectors extracted from this data, 8&.Cc R%, S C matrix, H"* to project the two PMFs in the video space,

R". These sets, termed the audio and video learning sets, afé- P8 10 the audio space, as follows,

ordered such that theth elementx{ € S is synchronous Sa _ ppvanw

. ! . pa = H™py (5)
to thei-th elementx? € SY. For the matching stage, let
X, A and B also denote the respective recordings as well as pg = H""pg (6)

the persons X, A and B. L&*, Si*, Sg* denote the feature h hich d
vectors extracted from X, A and B, where can indicate These two PMFs (which we term as pseudo-PMFs) are

either the audio (a) or the video (v) modality depending Onused to approximate the tru_e PMFs of the unavailable a_udio
whether it is an (a-v) or (v-a) task. Lét | denote the size feature vectors corresponding to the video-only recorsling

of a countable set, antk(x), the indicator function of any A and B [8]. For t_h_e matching task, we consider these PMFs
as speaker specific models and decide,

setS, i.e.1g(x) = 1if x € S and is zero otherwise.

1) K-means Clustering (KMC) Approachn the learn- A if o say > a =a
ing stage, the learning sefs® and S” are independently =18 if PBEPZon/;; - pBEpz’I}S;’ 7
clustered intoK clusters,{S¢}X | and {S?}X | using K- PBIPX, PA) < PBIPX: PB

means algorithm [7] with squared-Euclidean distance. Letvhereps denotes the Bhattacharyya coefficient [7] between
{Ry}E, and {R}}/<, denote the corresponding Voronoi two PMFs pi,p, and is calculated aspg(pi,p2) =
cells formed by segmenting the spag®sandR® according  }~, , p1(k)2p2(k)2. For the (v-a) task, a similar procedure
to these clusters, i.65; C Ry, S C Ry for 1 <k < K.  was followed, interchanging the roles of the audio and video
Let HY* denote theK x K Hebbian projection matrix [8], modalities.
each of whose element#" (k,, k,) estimates the probabil-  2) K-Nearest Neighbours (KNN) Approacfthere is no
ity that an audio vectox® belongs to a particular ceR} ~ separate learning stage in this approach. Information in
in the audio feature space, given that its synchronous videthe audio and video learning se$§,S? (ref. Sec.lI-B) is
vectorx” belongs to the celRj in the video feature space, directly used in the matching stage. For the matching stage,
i.e. H"(ka, ky) = Pr(x® € R |x” € R} ). Itis estimated et us again consider the (a-v) task. For each audio vector
as 1 x§%; € Sy extracted from X, we form the seb y ; of the

H" (kq, ky) = S0 Z 1sq (x7) (1)  indices ofK,-nearest neighbours [7] &f} ; in S¢, the audio
IS, | xveSy ‘ learning set. Similarly, we form sets of indicesiof,-nearest
neighbours{®, ;},{¥s,;} for each vector inSy, S, the
video vectors extracted from A and B respectively, from

\g:th ¥Ir?ee(i)nxz(r:;gbli|ezg?a\|n| 1?).”;:;;;?5 :;Znel;)ef iaflglljlr:tae?jle S, the video learning set. These nearest neighbour sets are
: Proj ! independent of modalities since each elemen$inhas a

as in Eqn. 1 by interchanging the audio and video mOdaI't'eSCorresponding element i8° (ref. Sec.II-B). This forms the

2These coefficients have been selected by trial-and-erragivie best basis of the cross-modal mapping in Fhis approach. T_O match
performance. X to A or B, we use the sum of the sizes of intersectisps

wherel < k., k, < K, x% is the audio vector synchronous



. Proposed | XAB task Lex. Lex. mis-
between the nearest neighbour sets of X and those of A,B, Approach type matched | matched
as follows, M 56.6 =

. a-v F 79.4 *

.« {A if s7(X,A) >s;(X,B), @ KMC F+M | 66.4 *

= M 65.1 *

B Sy (X7 A) <sr (X7 B) v-a E 60.0 *

. F+M 64.9 *
Wheresl(X,A),sl(X B) are defined as follows, W 689 560
a-v F 64.2 57.8
X, A Uy, NP 9) KNN F+M 66.4 56.6
s1(X,A) = EAERA |SU nga vzesv ¥ l M 66.0 55.6
v-a F 61.9 60.6
F+M 63.4 56.1

sr(X,B) = IISI > Z [x,i N e, (10)

X €8¢ xy €Sy Table |
MATCH SCORES(%) FOR THEXAB TASK USING THE PROPOSED

For the (v-a) task, a similar procedure was followed, in- APPROACHES AN ASTERISK(*) DENOTES THAT A MATCH SCORE
. . . " BETTERTHANRANDOMCHANCE@O%)COULDNOTBEOBWHNED

terchanging the role of the audio and video modalities.

It can be shown that the sums(X,A),s;(X,B) can be

equivalently expressed as approximations to Hfeinner XAB task | Lex. | Lex. mis-
product of the PMFs corresponding to the audio and video type matched | matched
data. However, compared to Sec.ll-B1, the feature space is Kamachi et al. a-v 69.0 59.0
now subdivided much more minutely, each vector in the (1 va 66.0 60.0

. . . . Lachs et al. a-v 60.7 n.a.
learning setsS*, S¥ forming its own cell. This amounts to 2] v-a 65.1 n.a.
exploiting maximally the information available for cross-
modal matching. Our proposed matching criterion based on Table I

MATCH SCORES(%) FOR THEXAB TASK PERFORMED BY HUMAN

comparing thes; values is motivated by the use of tiié
OBSERVERS

inner product kernel in state-of-the-art speaker verificat
systems [9].

_ Il EXPERIMENTS ~ task (a-v and v-a each) was independently evaluated is 2208
All experiments were performed on the M2VTS audio- for the M case, 360 for the F case and 4488 for the F+M

visual database [10] with 24 male and 10 female speakcase. The match score for each experiment is calculated as,
ers. Synchronized audio and video data was recorded in
No. of succesful matches

a controlled environment across multiple sessions sep- Match score= X 100% (11)
arated by one week intervals. Lip annotations were Total no. of XAB tasks "

obtained from http://www.ee.surrey.ac.uk/Projects/M®Y  Since each task has two alternatives only one out of which
experiments/liptracking/. We tested our approach on two is correct, the expected score for a random classifier would
conditions : (1) lexically matched and (2) lexically mis- be 50%. Each experiment was repeated for different values
matched. For condition (1), speech content in X, A and Bof K, the number of clusters, and,, K,, the number
were lexically matched. Recordings from the database weref nearest neighbours, for the KMC and KNN approaches
used as it is : in each recording, the speaker counted from ‘0’espectively. Optimal value ok was 64, while fork,, K,

to ‘9’ in their native language. For the second (more difficul it varied from 2 to 256 according to the conditions tested.
condition, the recordings were rearranged so that segmenfgble 1 gives the results of our experiments in terms of the
used for X were lexically mismatched with A and B : if X match scores obtained, using the optimal parameter values.
contained ‘0’ to ‘4’, A and B contained ‘5’ to ‘9’ and vice-
versa. Ofcourse, the Audio-Video Mismatch criterion (ref.
Sec.l) was always maintained in both conditions. X, A and For the lexically matched case, both the KMC and KNN
B consisted of around.5 seconds of data each. Separateapproaches give match scores arowiids. This is sta-
experiments were performed on only male (M), only femaletistically significant, given the total number of times the
(F) and both male and female (F+M) speakers. For eacXAB task was evaluated (ref. Sec.lll). For the lexically
XAB task, two speakers were separated from the completenismatched case, the performance of KNN dropslb¥

set, these two were used in the matching stage, while abut is still significant; KMC is unable to perform at more
the remaining speakers were used in the learning stage. Fidran chance level. This shows the relative robustness of
one complete experiment, the XAB task was repeated for athe KNN approach. Our method compares well with results
possible pairs of speakers in the matching stage. Consgleri reported by studies using human observers on the XAB task
all possible combinations, the total number of times the XAB[1] [2] as shown in Table 2, although it is to be noted that

IV. DISCUSSIONS



these studies used different databases. It is to be notéd thg4] R. Krauss, R. Freyberg, and E. Morsella, “Inferring dpra’

human performance fell drastically for time-reversed atim
[1] [2]; our method is unaffected by this, being based on

static feature vectors only. Furthermore, human observersts]

had information from the entire face available to them, ehil
our method uses information exclusively from the lip region
In future, we aim to develop our method further, using this

preliminary study as a basis, and improve the match scoredf!

so that it can be used in practical applications, such as (1)
a cross-modal surveillance scenario where prior speech dat
(but no visual data, for example via telephone converssaion

about a person X has been collected and presently it is[7]

required to identify this person out of a group which is

under video surveillance (but no audio data is currently 8

available, for example due to distance from group or noisy
environment), and (2) a multimodal biometric system which
uses cross-modalities (a-v, v-a) to augment the normabaudi
and video modalities and make it more reliable.

V. CONCLUSION

In this work, we explored a novel pattern recognition task:[10]

crossmodal person identification, where the identity of a
speaker X in an audio recording is matched with one of
two speakers A and B in two video recordings, and vice-
versa. The recordings are temporally non-overlapping. The
basis of our idea is to form modality independent speaker
models which can be used on either audio or video data
independently. We have proposed two approaches jithe
nearest neighbour approach and themeans clustering
approach, both of which have shown performance better than
chance.
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