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Abstract
Vocal tract length normalization is an important feature nor-

malization technique that can be used to perform speaker adap-
tation when very little adaptation data is available. It wasshown
earlier that VTLN can be applied to statistical speech synthesis
and was shown to give additive improvements to CMLLR. This
paper presents an EM optimization for estimating more accu-
rate warping factors. The EM formulation helps to embed the
feature normalization in the HMM training. This helps in es-
timating the warping factors more efficiently and enables the
use of multiple (appropriate) warping factors for different state
clusters of the same speaker.
Index Terms: Vocal tract length normalization, Expectation
Maximization Optimization, HMM Synthesis, Adaptation

1. Introduction
Hidden Markov model (HMM) is a popular technique used in
automatic speech recognition (ASR). Speaker independent (SI)
models are built by estimating the parameters of HMM using
data collected from a large number of speakers. Model adap-
tation techniques entail linear transformation of the means and
variances of an HMM to match the characteristics of the speech
for a given speaker. The same techniques can be used to remove
the inter-speaker variability in the training data. The resulting
speaker adaptive (SAT) models have better performance than
the SI models in ASR. Feature adaptation, on the other hand,
transforms the feature vectors rather than the model parame-
ters. The effects of model adaptation can be accomplished to
some extent using feature adaptation techniques (also widely
known as speaker normalization techniques). The main advan-
tage of speaker normalization is that the number of parameters
to be estimated from the adaptation data is generally smaller
compared to the standard model based adaptation techniques.
Hence, adaptation can be carried out with very little adaptation
data.

Recently, HMMs have been shown to be capable of per-
forming TTS too, and with care can produce synthetic speech
of a quality comparable to unit selection. This in turn brings the
possibilities of adaptation to TTS [1]. A stored average voice
can be transformed to sound like a voice represented by the
transform for a given speaker. Such transforms are typically lin-
ear transforms similar to the ones used in ASR. Speaker normal-
ization techniques can also be used in TTS to generate adapted
speech using very little adaptation data; of the order of a few
minutes.

Vocal tract length normalization (VTLN) is inspired from
the physical observation that the vocal tract length (VTL) varies
across different speakers in the range of around 18 cm in males
to around 13 cm in females. The formant frequency positions
are inversely proportional to VTL, and hence can vary around

25%. Although implementation details differ, VTLN is gener-
ally characterized by a single parameter that warps the spectrum
towards that of an average vocal tract in much the same way that
maximum likelihood linear regression (MLLR) transforms can
warp towards an average voice.

An efficient implementation of VTLN using expectation
maximization (EM) with Brent’s search optimization for syn-
thesis is presented in this paper. Optimal warping factors for
synthesis are analyzed, and techniques to estimate similarwarp-
ing factors from the model are examined. Problems with Ja-
cobian normalization for VTLN warping factor estimation are
briefly discussed along with a technique that achieves best per-
formance for synthesis. This paper also investigates the multi-
class EM-VTLN estimation in the context of statistical synthe-
sis. The features used for statistical speech synthesis have very
high dimensionality (of the order of 25 or 39) when compared to
ASR features. There are some issues with VTLN estimation for
higher order features which were presented in earlier work [2]
and further investigated here.

2. VTLN
The main components involved in VTLN are: a warping func-
tion, a warping factor and an optimization criterion. The all-
pass transform approximates most commonly used transforma-
tions in VTLN [3, 4]. The bilinear transform based warping
function has only a single variableα as the warping factor
which is representative of the ratio of the VTL of the speaker
to the average VTL. The terms warping factor and ‘α’ refer to
the same parameter and are used interchangeably throughout
this paper. A brute force way of computing the warping factor
for each speaker is the maximum likelihood (ML) based grid
search technique. ML optimization is given by [5]:

α̂s = arg max
α

p(xαs
| Θ,ws)p(α | Θ) (1)

wherexαs
represents the features warped with the warping fac-

tor αs, which is the warping factor for speakers. Θ represents
the model andws represents the transcription corresponding to
the data from which the features are extracted for speakers. α̂s

represents the best warping factor for the same speaker.p(α|Θ)

is the prior probability ofα for a given model.
Preliminary results using VTLN in statistical speech syn-

thesis are presented in [2]. The bilinear transform based warp-
ing function is used in an ML optimization framework using a
grid search technique. The all-pass transform based normaliza-
tion is applied to the mel-generalized cepstral (MGCEP) fea-
tures that are commonly used in statistical speech synthesis. It
is shown that VTLN brings in some speaker characteristics and
provides additive improvements to CMLLR, especially when
there is a limited number of adaptation utterances. In [6], it is



argued persuasively that VTLN amounts to a linear transformin
the cepstral domain. In fact, this is also evident from the mel-
generalized approach to feature extraction [7]. Hence, VTLN
can also be implemented as an equivalent model transform.
Representation of VTLN as a model transformation enables the
use of techniques like EM for finding the optimal warping fac-
tors [8, 9]. The main advantage of using EM is that the resulting
warping factor estimation is based on a gradient descent tech-
nique which provides finer granularity ofα values. This im-
plementation is also efficient in time and space, since features
need not be recomputed for every warping factor. EM can be
embedded into the HMM training utilizing the same sufficient
statistics as CMLLR. This also opens up the possibility of es-
timating multiple warping factors for different phone classes.
Since the ML optimization does not provide a closed form so-
lution to the EM auxiliary function, Brent’s search is used to
estimate the optimal warping factors.

The Jacobian determinant should be used in the likelihood
calculation to choose a warping parameter,α; this is attributed
to [10]. Representation of VTLN as a linear transform facili-
tates a simple estimation of this factor. In fact, [10] only use
the Jacobian as part of a more involved derivation of an algo-
rithm to train the transformation. TTS uses higher order features
compared to ASR which results in some challenges in warp-
ing factor estimation [2]. Jacobian normalization also causes
some problems in warping factor estimation. A detailed study
of techniques to overcome the problems with Jacobian normal-
ization is presented in [11] along with a Bayesian interpretation
of VTLN. Jacobian normalization and higher order features to-
gether reduce the spread ofα values and limit them to a range
corresponding to negligible warping.

It was shown in [11] that techniques to improve the spread
of warping factors did not show significant improvements in
performance of ASR. Unlike ASR, it is not easy to decide which
warping factors can give better performance for TTS. Ideally,
TTS should favour higher values ofαs since this brings in
strong gender characteristics. A few informal perceptual exper-
iments are conducted at the begining of this research which re-
sulted in the following observations. It is observed that male or
female characteristics could be perceived only when the warp-
ing is beyond a certain limit. Also, it is hard to discriminate the
speakers with similar VTLs. Noticeable changes in the charac-
teristics of the synthesized voice are observed only if the warp-
ing factors have a higher interval. In TTS, VTLN alone can-
not bring in many speaker characteristics. There might evenbe
a correlation between pitch and warping factor estimation that
needs to be explored. Towards this end, this paper first presents
the results of a subjective evaluation designed to assist infinding
optimal warping factors for VTLN adaptation of HMM-based
TTS.

3. Analysis of VTLN for synthesis
VTL varies across speakers resulting in corresponding changes
in the spectral peak positions. Alternatively, warping thespec-
tral frequencies should bring in approximately the same varia-
tion that is audible due to the differences in VTL. A prelimi-
nary experiment conducted on a speaker’s voice using analysis
synthesis with different levels of warping provides evidence for
this fact. It was noticed that whenever the spectral frequencies
are expanded, the speech sounded more “feminine” as if from a
shorter vocal tract. Also, whenever the spectral frequencies are
compressed, the speech sounded more “masculine” as if from
a longer vocal tract. Both phenomena are observed in spite of

Table 1:Frequency of female speakers with different combinations of
vocal tract length and pitch

Pitch vs. Alpha group 1 2 3 4 5 6
Low (159-190) 1 5 4 1 0 0

Medium (191-222) 0 4 8 8 1 1
High (223-255) 0 1 1 4 0 1

using the natural pitch of the speaker. These observations led to
the design of a subjective evaluation to determine the optimal
warping factors for a set of speakers. The values obtained from
these evaluations are compared with the warping factors derived
from the model.

3.1. Experimental design

The HMM speech synthesis system (HTS) [12] is used to build
average voice models using 39th order cepstral features along
with ∆ and ∆2 values of MGCEP features. Experiments are
performed on the WSJCAM0 (British English) database with 92
speakers in the training set. The details of the synthesis system
can be seen in [2].

A set of 20 speakers are selected from the 40 female speak-
ers present in training in such a way that they covered the dif-
ferent possible combinations of pitch and VTLs. The gender
restriction helps to minimize the size of the evaluations. The
distribution of the warping factors for male speakers is expected
to be symmetric to that of the female speakers. The pitch range
of all the female speakers in the training data is equally divided
into 3 sets: high, medium and low. Similarly, the range ofα

values derived using the SI model for these speakers is also di-
vided into 6 equally spaced groups. The warping factors are
estimated using the EM approach described in the next section.
Jacobian normalization is used for estimating theα values from
the average voice HMM models. The distribution of speakers
according to this grouping is shown in Table 1. 20 speakers
are selected using this table so that maximum possible combi-
nations are covered. It can be observed that the frequency of
speakers with high pitch and low warping is small compared
to the combination of high pitch and high warping. This sug-
gests the idea that mostly high pitch voices are associated with
females who have shorter VTL compared to males.

Natural pitch contours are extracted from the recorded
speech of the selected speakers. Speech files are synthesized
using the average voice models and the original pitch contours
with 6 different warping factors in the range 0 to 0.1. Listeners
are asked to judge the speaker similarity in the original speech
file with that of the speech synthesized with different warping
factors and the natural pitch of the speaker. This is repeated for
20 utterances each from a different speaker. It is interesting to
note that combination of a single pitch with different vocaltract
lengths can generate a wide variety of voices. A few expert
listeners could perceive that the speaker’s voice can be almost
reproduced from the average voice with the natural pitch and
just a single parameter representing the VTL.

3.2. Results and Discussion

25 listeners participated in this evaluation. The results of the
subjective evaluations for 20 speakers are shown in Figure 1a.
Each box represents a speaker in the evaluation set. Listen-
ers prefer higher warping factors rather than lower warpingfac-
tors. The extreme warping is also not preferred. Correlation
between results from subjective evaluations andα derived from
the HMM models are presented in Table 2. The table compares
the values of mean, mode and median of the warping factors



Table 2:Correlation between model derivedαs (with and without Ja-
cobian) and results of subjective evaluation. Correlationbetween warp-
ing factors from both schemes and pitch is also presented.

Pitch Mean Mode Median
Jacobian -0.4875 0.2238 0.0553 0.2154

No Jacobian -0.3396 0.4362 0.1976 0.4821
Pitch - -0.1244 -0.1120 -0.0400

observed in the subjective evaluation. The results are not statis-
tically significant as it shows there is no significant correlation
between any values. The best correlation is seen between the
means of the warping factors from subjective evaluation and
those derived from the model without using Jacobian normal-
ization. A more detailed study of how Jacobian normalization
affects the warping factor estimation is presented in section 5.2.
Pitch does not show much correlation to warping factors de-
rived using any scheme. The model derived warping factors
have closer correlation to pitch than the warping factors de-
rived from the subjective evaluations. Further investigation is
required on this subject before making any further conclusions
regarding the relation between pitch and VTL. Perception of
VTLN is a very difficult task to assess, but it is evident that
on average the perceived warping factors are higher than those
estimated with the model using ASR paradigm. This experi-
ment provides a good prior distribution of the warping factors
for VTLN synthesis. The next section presents the details ofan
efficient VTLN implementation for HMM synthesis using the
EM optimization.

4. EM based warping factor estimation
It has been shown that EM can be used to estimate VTLN warp-
ing factors for ASR [3, 8, 9]. Warping parameters are estimated
by maximizing the EM auxiliary function over the adaptation
data. The objective function obtained is similar to the one used
in MLLR or CMLLR [13]. Even the same sufficient statistics as
used in CMLLR can be used for optimizing the VTLN auxiliary
function.

Earlier research applying a grid search based bilinear trans-
form VTLN using ML criteria for statistical speech synthesis is
presented in [2]. There are many drawbacks in the grid search
approach for warping factor estimation, the first one being that
warping factors are chosen from a set of available values and
cannot be estimated with greater precision. Another drawback
is that the likelihood estimation for features with different warp-
ing factors consumes a lot of processing time and requires fea-
tures to be extracted for each warping factor in the grid. This
increases the complexity of training process in time and re-
sources. This work presents an EM formulation for the warping
factor estimation which performs a gradient descent ratherthan
grid search. This enables more accurate estimation of warp-
ing factors and embeds this estimation in the HMM training.
The EM formulation exploits the representation of VTLN as a
model transform and does not involve calculation of features
with different warping factors. Hence, the warping factorscan
be estimated very efficiently and accurately.

4.1. VTLN as model transform

It was shown in [6] that VTLN can be represented as a linear
transform of the cepstral features. Warping the spectral frequen-
cies can be represented equivalently as a feature transform.

xα = Aα × x (2)

where,xα are spectral featuresx warped with the warping factor
α which can be represented as a matrix transform denoted by

Aα. This is equivalent to

cα =





Aα 0 0
0 Aα 0
0 0 Aα









c

∆c

∆2c



 (3)

where,cα is the warped cepstral coefficients,c is the static fea-
tures,∆c and∆2c are dynamic part of the cepstra. Transforma-
tion can be directly applied to the dynamic part of the cepstra
as well. The unwarped cepstral features are multiplied withthe
linear transformation matrix to generate warped features.This
results in significant computational savings since features need
not be individually recomputed for each warping factor. Ma-
trix representation of the MGCEP bilinear transform in cepstral
domain was presented in [2].

Similar to the CMLLR adaptation, feature transform can be
analogously represented as a model transform [13]. The maxi-
mum likelihood optimization in feature domain is:

α̂ = arg max
α

p(Aαx|µ,Σ)p(α|Θ) (4)

The same equation can be represented as a model transform:

α̂ = arg max
α

|Aα|p(x|A−1
α µ, (A−1

α )TΣA−1
α )p(α|Θ) (5)

µ andΣ correspond to the mean and variance of a gaussian com-
ponent in the model. The Jacobian normalization can be calcu-
lated as the determinant of matrix (Aα) representing the linear
transformation of the cepstral features.

4.2. Auxiliary function for EM

The EM formulation of warping factor estimation results in the
following auxiliary function. Taking the log of the function
and considering the assumption of Gaussian components in the
model.

α̂ = arg max
α

{ F
∑

f=1

M
∑

m=1

γm

[

log(N(Aαx|µm,Σm))

+ log |Aα|
]

+ logp(α|Θ)

}

(6)

where,Aα is the transformation matrix for input feature vector
x, M is the total number of mixtures,F is the total number of
frames,γm is the posterior probability of mixturem, µm and
Σm are the parameters of the Gaussian mixture component,m.

Expanding and ignoring the terms independent of warping
factor α, estimation of a warping factor using this criteria can
be shown to be equivalent to maximizing the following auxiliary
function [3].

Q(α) =

F
∑

f=1

M
∑

m=1

γm

[

−
1
2
(Aαx − µm)TΣm

−1(Aαx − µm)

]

+ β log |Aα| + logp(α|Θ) where,β =

F
∑

f=1

M
∑

m=1

γm

In the case of a single mixtureβ could reduce to F, the total
number of frames. Optimizing this function requires the calcu-
lation of the matrix derivative. The form of the warping matrix
renders inappropriate the CMLLR solution of decompositionof
the determinant derivative using cofactors. A set of precom-
putedα matrices can be multiplied with the sufficient statistics
to estimate the optimal warping factors [8]. This approach re-
duces to a grid search rather than gradient descent estimation.
Higher order terms in the matrix can be ignored to give a closed



form solution [14, 15]. Optimization using lower order terms
in the matrix or using few lower order cepstral coefficients does
not guarantee maximization of the auxiliary function for the en-
tire feature length. This work presents Brent’s search for finding
the optimal value of the warping factor from this auxiliary func-
tion. Assuming a diagonal covariance for the auxiliary function
results in minimization of the following function.

Q(α) =
1
2

F
∑

f=1

M
∑

m=1

γm

N
∑

i=1

(Aαi
xi − µmi

)2

σ2
mi

− β log |Aα| − logp(α|Θ) (7)

where,N is the dimensionality of the features. Brent’s [16]
search is used to find an optimal warping factor with this auxil-
iary function. For VTLN, the search is bounded using a bracket
of -0.1 and 0.1.

The auxiliary function represented by EM can use the statis-
tics as in CMLLR estimation [13]. It results in the following
auxiliary function.

Q(α) =
1
2

N
∑

i=1

(wiGiw
T

i
− 2wik

T

i
) − β log |Aα| − logp(α|Θ)

(8)
where,

Gi =

M
∑

m=1

1
σ2

mi

F
∑

f=1

γmxfx
T

f
And ki =

M
∑

m=1

1
σ2

mi

µmi

F
∑

f=1

γmxT

f

andwi represents theith row of the transformation matrixAα.
Time complexity for ‘E-step’ of the VTLN EM optimization
is same as CMLLR transform estimation (O(n3)). But, the ‘M-
step’ using Brent’s search is only of the orderO(log(n)M(n)),
compared toO(n4) for CMLLR.

4.3. Multiclass VTLN

VTLN is generally implemented using a single warping factor
for an entire utterance or most often all the utterances of a single
speaker representing a global spectral warping. All phonemes
do not exhibit the same spectral variation due to physiological
differences [17]. It should be more effective to use different
warping factors for different phone classes. Multiple warping
factors have yielded improvements in recognition performance.
Data can be divided into acoustic classes using data-drivenap-
proach or using phonetic knowledge as shown in [17]. Phoneme
dependent warping can be implemented after obtaining phone
labels from a first pass recognition [18]. Frame specific warp-
ing factors can also be estimated by expanding the HMM state
space with some constraints [19].

Different phone classes can be synthesized with different
warping factors for a single speaker. Multiple transforms are
usually applied using a regression class tree. Such regression
classes can also be employed in multi-class VTLN. The regres-
sion class tree structure is derived from the decision tree clus-
tering as in HTS [12]. Each regression class can have different
warping factors. This can result in different warping for differ-
ent classes resulting in appropriate warping for each soundas
anticipated on factors like place of articulation. This research
investigates the multi-class EM-VTLN estimation in the con-
text of statistical synthesis. The issues with VTLN estimation
for higher order features are investigated in the next section.

5. Challenges in Warping factor estimation
Problems with warping factor estimation using Jacobian nor-
malization are discussed in [11]. These problems are further

exacerbated by the higher order features. The following sec-
tions present warping factor estimation problems in these two
scenarios. Ideal warping factors for synthesis using subjective
evaluations are used to define the optimal technique for warping
factor estimation from HMM.

5.1. Higher Order features

Higher order cepstral features will also capture aspects ofspec-
tral fine structure and are not limited to the spectral envelope.
This causes problems when estimating the values ofα. It can
be observed from the Figure 1c that the warping factors concen-
trate on the middle of the range of the warping factors, which
results in very little warping (or no warping) for many speak-
ers. This effect is not seen in lower order features, which have a
bimodal distribution for male and female speakers with a larger
range of warping factors as shown in the Figure 1b.

EM formulation of bilinear transform warping is used to es-
timate the VTLN parameters shown in the figure. Experiments
were also performed to confirm that this phenomena is not due
to the local minima problem of the EM optimization. The warp-
ing factors for male and female speakers were initialized with
the extreme values of 0.1 and -0.1 respectively. Even with this
initialization, the warping factors converged to similar values as
shown in the figure after few iterations of VTLN. In [2], the
authors proposed initialization with warping factors estimated
from lower order features as a work around for this problem.

It was also noted that there can be numerical instabilities
while calculating the inverse of the transformation matrixfor
higher order features. This problem is addressed by generating
the matrix using the inverse of theα value. A−1

α
= Aα−1 This

is an additional advantage of using bilinear transform.

5.2. Jacobian Normalization

Estimation of warping factors using Jacobian normalization re-
duces the spread ofα distribution and restricts the warping fac-
tor values to a small range ofαs. Even though omitting the use
of Jacobian normalization can estimate more distributed warp-
ing factors, it is observed that Jacobian normalization is impor-
tant especially for higher order features. It can be seen from
Figure 1d that the warping factors tend towards the boundaries
when not using Jacobian normalization, thus resulting in anun-
stable estimation. Likelihood scaling or using prior probabil-
ity are two techniques to improve the spread of warping factor
values [11]. Increasing the spread ofα distribution does not
necessarily lead to better recognition performance in ASR [20].

5.3. Optimal warping factors for synthesis

The main motivation of the perceptual experiments presented in
section 3 is to find the optimum distribution ofα for TTS. One
of the objectives of this paper is to find techniques that provide
similar distributions from EM-based warping factor estimation.
The resulting methods may not agree with the approaches pre-
viously proposed for ASR. It could be hypothesized that ML is
not the right criterion for VTLN in TTS. Techniques like min-
imum generation error (MGE)[21] that have shown better re-
sults with HMM synthesis may perform better, but this paper
focusses only on the ML criterion. The hypothesis from earlier
results with grid search presented in [2] is that synthesis de-
mands higher warping factors. Similar inference is made from
preliminary experiments and the detailed subjective evaluations.

The challenge is that use of Jacobian normalization reduces
the amount of warping. Ideally, not using Jacobian gives higher
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Figure 1: Distributions over warping factor value. The abscissa in cases (b-f) isα, although note that the ranges vary.

values ofα and gives a good spread to the distribution as ex-
pected in TTS. But, not using Jacobian is theoretically incorrect
especially for higher order features. A few techniques werepre-
sented in [11] to increase the spread ofα values. Scaling the
log-likelihood score or using an appropriate prior distribution
can show some improvements. The combination of these two
techniques is expected to give betterα values. Subjective eval-
uations present a good prior for the warping factor distribution
for synthesis. The prior based on a mixture beta distribution
estimated from the statistics obtained from the perceptualex-
periments is shown in Figure 1e.

Using a prior distribution derived from the perceptual ex-
periments cannot have any effect without a scale factor. The
non-use of Jacobian has a similar effect to the right prior with
the right scale factor. These values can only be estimated empir-
ically. Hence, it is pragmatically helpful to estimate the warping
factors in the desired range without using Jacobian normaliza-
tion. This is not true for regression class based VTLN estima-
tion where each class has a separate warping factor. If Jacobian
normalization is not used for multiple class VTLN, the warp-
ing factors go out of bounds for some classes. For these classes
the EM auxiliary function is no longer convex and the Brent’s
search fails to find a minimum. The best available technique
that could be used for multiple transform case is the combina-
tion of scaled likelihood and scaled prior with Jacobian normal-
ization.

6. Evaluations with VTLN
The distribution of warping factors for the adaptation datais
presented in Figure 1f. One utterance for each speaker from a
subset of WSJCAM0 evaluation set is used as the adaptation
data. It can be observed that the warping factor distribution us-
ing Jacobian normalization on the adaptation data does not give
α values as expected for synthesis. The prior distribution ob-
tained from the perceptual evaluations is closer to that obtained
without using Jacobian normalization. The best method to in-
crease the amount of warping is observed to be the combination
of scaled likelihood and scaled prior. None of these schemes
could achieve the spread that is obtained from not using Jaco-
bian normalization. The warping factors for different speakers
are very close and is not helpful in differentiating betweenthem.

Even though single parameter cannot capture too many
characteristics of the speaker, some preliminary results are
shown with single and multi-class VTLN. The experimental

setup presented in [2] is used for these experiments. VTLN is
implemented as EM optimization embedded in the HMM train-
ing. VTLN is not comparable with other techniques like CM-
LLR since there are not enough parameters to represent most
of the speaker characteristics. Ideally, as shown in [2], VTLN
should give additive improvements to CMLLR. The current im-
plementation does not combine the two techniques. Future re-
search will be focussed on this task.

6.1. HMM Speech Synthesis

An average voice model built using WSJCAM0 is used to es-
timate the warping factors for the target speaker. Experiments
are performed with single and multi-class transforms. A single
utterance is used as adaptation data for all the techniques.Dif-
ferent techniques for estimating warping factors are evaluated
using the objective measure based on mel-cepstral distortion
(MCD). MCD is the Euclidean distance of synthesized cepstra
with that of the values derived from the natural speech.

The results in Table 3 support the fact TTS demands a
higher range of warping factors which can be achieved through
not using Jacobian normalization or using a prior with likeli-
hood scaling. The best method observed is the combination of
Jacobian normalization with scaled prior and scaled likelihood
(denoted as ‘Modified’). It was observed that inter-speakervari-
ability for α values is better when not using Jacobian normal-
ization. Hence, the subjective evaluations are performed with α

values estimated without using Jacobian for single class VTLN
and using the combination of Jacobian with scaled prior and
scaled likelihood for multi-class VTLN. It is observed during
training that the log likelihood score of the training data im-
proved consistently while using single and multi-class VTLN.
This is also evident from the MCD scores shown in the table,
which are higher for the SAT trained models than the SI av-
erage voice models. SI models are trained without any adap-
tation and SAT models are trained with multiple iterations of
VTLN transformation and HMM parameter estimation. The
multi-class SAT trained VTLN has maximum MCD and should
represent the best average voice. Even with very little adapta-
tion data, multi-class VTLN gives better MCD scores.

The distribution ofα for different phoneme classes for a
male speaker is shown in the Figure 1g. It is observed that si-
lence has very noisy warping factors and ideally should be ig-
nored in adaptation. Multi-class VTLN can facilitate this task
by ignoring the classes representing silence. ‘C’ represents con-



Table 3:MCD (in dB) for VTLN synthesis. Label ”VTLN” represents
the single parameter and ”Multi-VTLN” is the regression class based
multiple transform VTLN. MCD for Average Voice (SI model) without
using VTLN is 1.118

VTLN Multi-VTLN
Average Voice (SAT) 1.153 1.197

No Jacobian 1.014 -
Jacobian 1.080 1.062

Jacobian+ScaledPrior 1.035 1.019
Jacobian+ScaledLL 1.001 0.972

Modified 0.984 0.948

sonants in general with warping factors tending to lower values.
The Voiced (‘VC’) and Unvoiced (‘UC’) category of consonants
show somewhat opposite trends to each other. The values are
derived from the Modified method of using Jacobian normal-
ization with scaled likelihood and prior. The warping factors
are slightly biased towards the prior for all classes which ex-
plains the high warping factors for some consonant classes.A
clearer difference is observed in the case where no prior is used.

Speaker similarity and Naturalness are the subjective mea-
sures evaluated. Evaluations are performed on 60 sentences
from 3 different systems. Systems evaluated are vocoded
speech, single parameter global VTLN transforms and multiple
transforms based VTLN using regression classes. The parame-
ters are estimated using a single adaptation utterance. Jacobian
normalization is not used in single transform case and Jacobian
with scaled likelihood and prior is used in multi-VTLN case.
Listeners were asked to rate the sentences on a 5 point scale,
5 being “completely natural” or “sounds exactly like speaker”
and 1 being “completely unnatural” or “sounds like a totallydif-
ferent speaker”. 20 listeners participated in the evaluation and
results are presented in Figure 1h. There is not much differ-
ence in speaker characteristics perceived using single or multi-
ple transform VTLN, but the naturalness is a little better for the
multiple transform case. This is a contradiction to the obser-
vations with CMLLR, which sounds less natural to VTLN [2].
The reason for this phenomenon could be that multiple trans-
forms in effect is just a better implementation of VTLN and
performs appropriate warping on different sounds. The differ-
ence could also be due to different techniques used in single
and multi-class VTLN. Further investigation needs to be per-
formed on this result. Even though the MCD values are not
very far apart, (not as much as the values which are usually pos-
tulated as the perceivable change in speech), the difference is
easily perceived in subjective evaluations. Demos available at
www.idiap.ch/paper/ssw7_vtln/demo.html.

7. Conclusions

This work presents an efficient and accurate implementationof
VTLN based on EM. Appropriate warping factors for TTS are
analyzed and techniques are suggested to estimate similar val-
ues from the model. Regression class based multiple transform
VTLN is also presented which performs appropriate warping
on different sounds. VTLN has a limited number of parameters
(single warping factor in case of bilinear transform) to be esti-
mated. On one hand, this enables estimation of warping factors
and adaptation using very little adaptation data. On the other
hand, there is only limited characteristics that this parameter
can capture. VTLN is not comparable to model based transfor-
mations like CMLLR especially when there is large amount of
adaptation data. Hence, in order to get improvements in adap-
tation when more adaptation data is available, VTLN should be

combined with CMLLR. In order to combine VLTN with CM-
LLR, the current research focusses on implementing VTLN as
a prior to CMLLR transform as in constrained structural maxi-
mum a posteriori linear regression (CSMAPLR).
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