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ABSTRACT related works on Variational Bayesian clustering of spesakarried
in the framework of Broadcast News (BN) audio [9], [10] where
the Free Energy has been used to select only the actual nwhber
speakers. BN data are clean recordings and the clustetiyyjdslly
evaluated according to speaker/cluster purity measuneshéother
hand, this work focus on conversational meetings recordedfar-
field microphones. The results are scored in terms of Ditoza
Error Rate (DER).

The remainder of the paper is organized as follows: section 2
describes the basic of Bayesian model selection and thes@isfipn
3 describes the Variational Bayesian framework. Sectiattréduce
the diarization system based on the VB framework and se&ion
describes experiments and comparisons on the RT06 evalugsta.

This paper investigates the use of the Variational BayefiB)
framework for speaker diarization of meetings data extamgtire-
vious related works on Broadcast News audio. VB learningsain
maximizing a bound, known as Free Energy, on the model margin
likelihood and allows joint model learning and model setatiac-
cording to the same objective function. While the BIC is galnly
in the asymptotic limit, the Free Energy is always a valid tmhu
The paper proposes the use of Free Energy as objective darinti
speaker diarization. It can be used to setBetamicallywithout any
supervision or tuning, elements that typically affect theridation
performance i.e. the inferred number of speakers, the dSitkeo
GMM and the initialization. The proposed approach is coragar
with a conventional state-of-the-art system on the RTO6ueti@n
data for meeting recordings diarization and shows an ingarmnt 2. BAYESIAN MODEL SELECTION
of 8.4% relative in terms of speaker error. ] ) ] ] ] )
o ) .. This section describes the theoretical Bayesian modettsaheand
~ Index Terms— Variational Bayesian Methods, Speaker Diariza- the most common approximation to it, the Bayesian Inforare@ri-
tion, Meetings Data terion (BIC). Let us consider a data 36t a set of statistical models
M = {m;} and a probability estimaY|m ;) for each modein;
1. INTRODUCTION in M. The modebn that better "explains” dat&” is the model that
maximizes the posterior probabilipfm;|Y") given by:
Most of the current diarization systems are based on aggime
tive hierarchical clustering of audio segments (for a revéee [1]). M = argmazm; p(m;|Y) = argmazm; p(Y|m;)p(m;)/p(Y) (1)
The system measures the similarity between clusters aradivly ) . -
merges the closest pairs of segments until a stoppingioritermet. . Wherep(m;) is the prior probability of the modeh; andp(Y")
A common criterion choice is based on the Bayesian Infornati IS the probability of the data (independent from the modéfp(rm, )
Criterion (BIC) [2] which has been applied to speaker cltistg IS ur)|fqrm, the model that maX|m|zq§(mj|Y) is the model that
problems for the first time in [3]. The BIC is obtained as an ap-TaXimizesp(Y'|m;). Letus denote witt®, the set of parameters
o . Do associated with modeh;. It is possible to write:
proximation of the marginal log-likelihootbg p(Y'|m) of the data
Y given a modeln and is valid only in the large data limit. The
estimation oflog p(Y |m) is untractable for complex models that ™) = ./p(y’ ©;lm3)d0; = ./p(ylej’mj)p(ej‘mj)dej' @
contain hidden variables. In those cases, the BIC is usealisemf . . o
its simplicity. Large number of studies have been devotedaking ~ Wherep(©;|m;) is the prior distribution of the parametefs . Ex-
the BIC effective in case of limited amounts of data (seeristance ~ Pression (2) is referred asarginal likelihoodand is a key quantity
[41, 5D " B‘?%ZSIraerl]art?gr? eblests\llzgtrllo?ﬁe marginal likelihood and the model
. This work !nvestlgates a type of approximation referred E.'B'V complexity has been established ir? [11] where it is shown tti
ational Bayesian (VB) methods. VB methods [6],[7],[8] ai@#s  integral (2) embeds a term (referred as Occam’s factor)pangl-
directly maximizing a bound,, on the marginal log-likelihood izes more complex models with respect to simpler models. The
log p(Y|m). This bound is also known as Variational Free Energyconventional Bayesian Information Criterion (BIC) [2] iftained
F,, and allowsjoint model learning and model selectioising the ~ approximating the marginal likelihood in the large dataitim
same objective function. While the BIC is obtained in theyéar 4
data limit, the bound is always valid. Speaker diarizatiorolves  limy_.o log (p(Y|m;)) = log (p(Y|Onrrr, m;)) — 5 log N = BIC(m;) (3)
simultaneous clustering and model selection; this workashthat
the Variational Free Energ¥;,, can be used as objective function whered is the number of free parameté®s, .. is the Maximum
for achieving both goals. The parameters that typicallgafthe di-  Likelihood estimation of the model parameters avds the avail-
arization error like the number of speakers, the number efs&ian  able amount of data i.e. the cardinality |f|. In case of limited
components per speaker and the initialization can be adaimax-  amounts of data, the BIC criterion is not effective. A simptdu-
imizing the Free Energy. The procedureuissupervised.e. does tion is tuning the penalty factog' log N with an heuristic constant
not need tuning on a separate data set. The paper extendsusrev as proposed in many speaker clustering systems (see 6.9. [4]



The BIC is used because of its simplicity and because the exabtained iterating across the following set of equations :
act form of the marginal likelihood (2) is not available fooro- . ) L <log p(¥,X|©)>
plex models. In fact, if the model contains hidden variabtgsthe E-like-step: ¢(X) = Zx ¢ ’ ) ™
maximization of [ p(Y, X, 0;|m;)dXdO can became easily un- M-like-step: ¢(©) = =e<1o8 PV XI®)>0x) p(@m)  (8)
tractable given the dimension of the joint sp&cég ©). Variational ©
Bayesiarmethods aim at bounding the integral using a simpler (apwhere Zx and Zg are normalization constant ard a >, desig-
proximated) posterior distribution farX, ©). Those approxima- nates the expected value @fn.r.t. b. Equations (7-8) are often re-

tions are described in the next section. ferred as Variational Bayesian Expectation MaximizatioiBEM,
see [8]). The Free Energy,, can be used to perform model selec-
3. VARIATIONAL BAYESIAN METHODS tion as it is related to the complexity of the model (for distaiee
[7D.
Let us consider a modeh with a parameter se® and an hidden Coming back to the initial question of section 2, the model se
variable setX. The marginal log-likelihood can be written as: lection given bym = argmazm; p(m;|Y’) needs the estimation of
the untractable quantity(Y'|m;) = [ p(Y,0, X|m;). The deci-
log p(Y|m) = log/ p(Y,X,0|m)dO dX (4)  sion can be replaced by = argmazy.; Fn;(q¢(0),q(X)) where

Fy,; is tractable and can be estimated using VBEN,, can be
Variational Bayesian approximations (e.g. [7],[8]) assuthat the used at the same time as objective function for clusterirdfan
unknown and untractable distribution©, X|Y,m) can be ap- model selection criterion.
proximated with another (simpler) distributig®, X) referred as
Variational Bayesian posterior distribution. An upper bdwn the 4. VARIATIONAL BAYESIAN SPEAKER DIARIZATION
marginal log-likelihood (4) can be obtained multiplyingdadivid-
ing the argument of the integral ly©, X') and applying the Jensen This section describes the application of the VB framewaorklit
inequality as follows: arization of an audio recording with an associated acodstiture
streamO (i.e. MFCC features). Let us divide the stream into seg-
log p(Y|m) = log/ 9(9, X)p(¥, &, X|m) dedXx ments of equal lengttb® i.e. O = {O;} witht = 1,....T. We
9(6, X) useD = 300ms. O, is composed ofD consecutive frames i.e.
p(Y,0,X|m)

O = {Otl OtD}
dOdX 5 t ’
q(©, X) ©)

Most of the current systems are based on an agglomerative hi-
. . o L . erarchical clustering of speech segments and the Bayatiamia-

The key point of this approximation is the definition of thes-di tion Criterion (BIC). We investigate the use of VariatioBslyesian

tribution ¢(©, X) simple enough to allow tractability but close framework for learning a set of clustering modéts; } and select-

to p(©, X|m) to obtain a reasonable approximation. In [7], the ing the most probable modet that explains the data. The learning

use of the mean-field approximation is proposed €0, X) = and the selection is done according to the same objectivetifum

q(©)q(X) i.e. the approximated distributions over parameters andh€ Variational Bayesian Free Energy,. Let us define the prob-

hidden variables are considered independent. Thus boBpdag  2bilistic modelp(Y'|.X, 6) and the prior distributiong(6|m). We

be rewritten as: assume that speech segmefiis } are independent and can be gen-
erated from one of th8 available speakers. Each speaker is modeled
using a Gaussian Mixture Model. The likelihood can be wnitie:

> /q(@yX)log

Fon(g(X), 4(O)) = / 4(X)q(8) log p(Y; X0, m)dXd©

T S
_/q(x) 1qu(x)dx_/q(@)log 4©) .o ©) p(0]®) = t:Hlp<ot\<~>> p(ot\e>:;ajp<ot|@j> ©)
p(6lm) - N
Expression (6) is generally referred as Variational Freer§n p(0:|©;) = Hp(otp\ej) p(O1p|©;) :ZﬁijN(Ot“l«ij-,Fij)

1=1

S
Il
A

F..(.) and is composed of three terms:

Term I [¢(X)q(©)logp(Y|X,©,m)dXd® is the expected  \yhere g is the number of speakersy is the number of Gaus-
log-likelihood computed w.r.t. the approximated postedistribu-  gjgn components per speakey; is the probability of speakey

tions¢(X) andg(6). , _ and ©, are parameters for the model of thith speaker®; =
Term 2 — [¢(X)log q(X) is the entropy of the approximated 5. .. ..} are respectively weights, means and covariance ma-

posterior distribution over hidden variablgsx). trix of the ith Gaussian component of thith speaker.\/() denotes
Term 3 [ q(©)log ;425 = KL(¢(O)||p(®|m)) > 0is  the Gaussian distribution. o

the Kullback-Leibner divergence between the Variatiorastgrior The complete parameter set for model (9) is givenehy=

parameter distributions(©) and the prior parameter distributions % 0ii» 14, I'i; . Prior distributions are chosen in the conjugate
Jamlly over parameter® i.e.:

p(©|m). Being the KL divergence positive, this term acts as penalt

(i.e. the Occam factor), reducing the value of the Free Bnéog s N

models that have more parameters. Contrarily to the BIC revhe p(©®) =p({a;}) [ p{Bis P [T p(wisITi5)p(Ti5)

the model complexity is proportional to the number of freeapa =t =1

eters,Term 3explicitly considers the divergence between posterior p({a;}) =Dir(Aay) p({Bi;}) = Dir(Ag,)

and prior distributions. The BIC is only an asymptotic apsimta- p(uij|Tiz) = N(po,&ol'i;) p(Ti;) = W(ro, Po) (10)

tion while the Variational bound ialwaysvalid.
The Variational posterior distributiong(©) and ¢(X) that
maximize the Free Energ¥i.(¢(©),¢(X)) can be obtained us-

ing an inference method similar to the conventional Expearia 1Those segments can be obtained by uniform segmentationspeaker
Maximization (EM). A local maximum of the Free Energy can be change detection. We limit here the investigation to théouni segmentation

whereDir(.) is a Dirichlet distribution A/(.) is a Normal distribu-
tion, W (.) is a Wishart distributionAg = {\a,, Agy, po, 0, Yo, Po}




are hyperparameters associated with the prior distribatémd they  5.1. Number of speakers/clusters
are fixed as follows:pg = O, & = (10 + p) Cov(O) where
O and Cov(0O) are mean and covariance matrix of the acous-
tic vectors as estimated on the entire recording; = 70 + p,
{Aay = Mg, = &} = 70 Wherep is the dimension of the acoustic
vector.

Posterior Variational distributions have the same pareamet
form of the priors with updated hyperparameters denoteld wit

A = {da;; Agy;5 pijs &ig» vij, Pij b Posterior hyperparameters
are initialized equal to priors apart frof;; } which are randomly
initialized.

The VBEM algorithm can be applied in a straightforward way
to the model (9) under prior distributions (10) and the FreerGy

In this first experiment, we investigate the use of the Fresrgnto
select the actual number of speakers (clusters) in the dilelidhe
value of S (i.e. the number of speakers in the model) changes in
between 1 and 10. Other parameters are arbitrary 8t$010 (10
components per GMM);p = 1 and p;; are randomly initialized.
The sensitivity to those parameters will be studied in sechi.2.
Table 1 reports speaker error obtained using the VB Freeggner
selection. The table also reports oracle results obtainaadually
selecting the lowest and the highest speaker error as adaruftthe
number of speakers and speaker error obtained randomlyiiggrap
large number of times the generated solutions functionefitimber
d of speakers. In order to be effective, the selection methodld be

can be computed in close form (detailed formula are repairie | ible to the best soluti 4 e
[9],[210]). After convergence this will provide a clustegirof seg- ?;nggrfwesgﬁagt?c?r? € to the best solution and never wors n

mentsO; into speakers and an approximation of the model com-

plexity. The diarization output is obtained mapping thensegtsO: =i Spkr Effor (VB) | Best | Worst | Random
to the most probable speaker in the mixture model. CMU_20050912-0900 19.1 19.1 | 386 29.7

The clustering output, thus the diarization error, deperdsl) CE'\I/;J—ZZO%?O()Z@)llG“-lOO%OlO ;‘;-g 290-27 g% ig-é
the number of speakertS 2) the nu.mber of G.al.J.ss[an .components EDI20050218-0900 565 65473 30
per speakelN 3) the value of the priory 4) the initialization{ p;; }. NIST_20051024-0930 518 100 | 333 20.1
Let us denote this set of elements witk= {S, N, 70, {pi; } } NIST_20051102-1323 6.7 6.7 | 515 185

We propose a method that searches in an exhaustive way the | TNO-20041103-1130 24.2 227 | 47.1 34.0
elements and selects the diarization output that corresponds to the ﬁéggg?gg%jgg ig-g ig-g g-; gj-g
maximum Free Energy. It can be summarized in the followiegst = . : : : :

| ALL [ 16.20 [ 12.7 [ 4340 2850 |

1 Extraction of the MFCC features from the audio stream; eipeen-  Tapje 1. RT06 Speaker Error obtained using Free Energy, oracle
speech detection and rejection of the non-speech frames. best/worst selection and random selection

2 Uniform segmentation of the speech into segments of lehythn
the following we useD = 300ms i.e. 300 speech frames.

3 For each’™ = {§%, N*, 75, {%,}} in T = {8, N, 0, {pi3)} In 7 of the 9 meetings, the selection is equal or close to thedd

possible speaker error. In 3 meetings, the proposed appfaésto

3-1 Initialization of the model (9) wittf = S*,N = N*,79 = select the lowest speaker error. However the VB selectidmetiter
5 dpiit = {0};}- then random selection in 9 meeetings.
3-2 Perform Variational Bayesian Expectation Maximizatio In order to illustrate how the model selection operates,réigu
(VBEM) method and estimate the Free Enefgf/ ™). 1 (left) plots Term1+Term2 and Term3 (Penalty) for a patticu
4 Selection of the clustering corresponding to the maximueefEn- ~ Meeting ¥7"-200510271400) which contains 4 speakers. Both
ergy F(I). Term1+Term2 and Term3 increase as the number of speakess (th
5 Estimation of the speaker assignment thus the diarizatimput. of parameters) increase. Figure 1 (center) plots the Freegln

In words, this method generates a large number of diamaﬁo(Term1+Term2-T¢_arm3) which shows a maximum e= 4 _speak-
outputs and selects the one which holds the highest Freeggner ers. The same figure also plots the speaker error which shows a
The search in the space of elements: {5, N, 7o, {pi;}} is unsu- minimum in correspondence of four speakers. On the othed,han

’ ’ I 1]

: - figure 1 (right) plots the quantity Term1+Term2d log & which
I h function 2
pervised and based only on the objective func corresponds to replacing the penalty term (Term 3) with tireven-

tional BIC penalty. The theoretical value= 1 estimates a number
5. EXPERIMENTS of speakers equal to 8. The correct number of speakers isedfe

. . . . tuning A = 2.
The data used for the experiment consists of meeting rewgsdib- 9

tained using an array of far-field microphones also refeaziul-
tiple Distant Microphones (MDM). Studies are carried on H&T

sum-and-delay beamforming is applied to the MDM signalsigisi (5 N, 7, {p;;}}. The three following experiments are run and the
the Beamformitoolkit [12]*. Such pre-processing produces a singlefree Energy is used to select the best system:

5.2. Optimization of other parameters

phones. 19 MFCC features are then extracted from the beametdb  The value of5 (i.e. the number of speakers in the model) ranges in
signal. {1, ..., 10} as before and the value af ranges in{1, 10, 100, 1 E3}.

Being interested in comparing the clustering algorithni® t The number of Gaussian components is arbitrarily fixet/te= 10
same speech/non-speech segmentation will be used adrespert  and,; are randomly initialized. Results are reported in tablest fir

iments only the speaker error is reported in the following. line.
2From the definition of the Wishart distributiony must be larger or equal 2-Simultaneous selection of the .number of Gaussian compo-
to the dimension of the vectar nentsN, 7o andS. The value ofS (i.e. the number of speak-
3The bug-corrected version of the Beamforming 2.0 is usedfperi- €S in the model) ranges ifi, ..., 10} and the value ofy ranges

ments. This provides improved results w.r.t. previousioers in {1, 10,100, 1E3}, the number of gaussian component ranges in
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Fig. 1. Left figure plots Term1+Term2 and Term3 as a function of timaber of speakers for meeting V20051027-1400. Center figure plots
the Free Energy (Term1+Term2-Term3) and the speaker erandeting VT20051027-1400; the maximum of the Free Energy corresponds
to the minimum speaker error in correspondence of 4 speakéght picture plots Term1l+Term2\ d %: the actual number of speaker is

obtained tuning the BIC penalty with = 2.

N = {5,10,15,20}. ps;; are random initialized. Results are re-
ported in table 2 second line.
3-Simultaneous selection of the initializatipg; and NV, 7o and

We emphasize that the proposed approach operates in com-
pletely unsupervised fashion and all the related paramedes
obtained as maximization of an objective function.

Those-fin

S. The value ofS (i.e. the number of speakers in the model) rangesngs extends previous related work on Broadcast news dhfaqp

in {1,...,10} and the value of, ranges in{1, 10,100, 1E3}, the ~ where Free Energy was used only to select the actual number of
number of Gaussian component ranged’ir= {5, 10, 15,20}. The  speakers and shows the effectiveness also on meetingslddta.
valuesp;,; are set according to 10 different random initializations. ture work we plan to experiment with more informative pritike,
Results are reported in table 2 third line. the one proposed in [14].

The joint optimization of all the elements ih reduces the
speaker error from6.2% to 12.7%. The Free Energy based model
selection outperforms the random model selection in at€as
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Table 2. Speaker Error for optimization of parametessiV,p;; ob- (1]

tained using VB selection, oracle best/worst and randoecteh.

The VB system is compared with a state-of-the-art diamzati
system based on a modified BIC criterion [13] that perfornes-hi
archical agglomerative clustering. This system perfortaatively
clustering and realignment until the stopping criterionist [5].
The baseline is tuned on a development data set and is irgthl
with 16 speakers modeled by a 5 component Gaussian Mixture[s]
Model. The baseline achieves a speaker error equaBi¥% as
compared to thd2.7% obtained by the VB system thus the pro- ]
posed approach outperform the baseline8bif% relative speaker

error.
[7]

6. CONCLUSION (8]

This paper investigates the use of the Variational Freedyras ob- [0
jective function for speaker diarization. The conventidBEC crite-
rion is valid only in large data limit and typically needs tog to be
effective. The Free Energy is an always valid, tractablendaan the
marginal log-likelihood of the model.

Experiments on the RTO6 data reveal that is an effective cri-
terion for selecting in between the number of actual speaikethe
audio file, the number of Gaussian components per speakenith
tialization and the prior,. Comparison with a state-of-the-art sys-
tem based on a modified BIC and agglomerative clusteringate\ae
speaker error reduction 8f4% relative.

(0]
(11]
(12]
(13]

(14]

Parameter| Spkr Error (VB) | Best [ Worst | Random formation Management IM2 and by the Indo-swiss project KERSThe author would
To 16.0 120 | 434 255 like to thank colleagues at IDIAP and ICSI for their help witle meeting setup.
N 14.7 11.7 44.4 25.4
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