
VARIATIONAL BAYESIAN SPEAKER DIARIZATION OF MEETING RECOR DINGS

Fabio Valente, Petr Motlicek and Deepu Vijayasenan

fabio.valente@idiap.ch, petr.motlicek@idiap.ch, dvijaya@idiap.ch
IDIAP Research Institute, Martigny CH-1920, Switzerland.

ABSTRACT

This paper investigates the use of the Variational Bayesian(VB)
framework for speaker diarization of meetings data extending pre-
vious related works on Broadcast News audio. VB learning aims at
maximizing a bound, known as Free Energy, on the model marginal
likelihood and allows joint model learning and model selection ac-
cording to the same objective function. While the BIC is valid only
in the asymptotic limit, the Free Energy is always a valid bound.
The paper proposes the use of Free Energy as objective function in
speaker diarization. It can be used to selectdynamicallywithout any
supervision or tuning, elements that typically affect the diarization
performance i.e. the inferred number of speakers, the size of the
GMM and the initialization. The proposed approach is compared
with a conventional state-of-the-art system on the RT06 evaluation
data for meeting recordings diarization and shows an improvement
of 8.4% relative in terms of speaker error.

Index Terms— Variational Bayesian Methods, Speaker Diariza-
tion, Meetings Data

1. INTRODUCTION

Most of the current diarization systems are based on agglomera-
tive hierarchical clustering of audio segments (for a review see [1]).
The system measures the similarity between clusters and iteratively
merges the closest pairs of segments until a stopping criterion is met.
A common criterion choice is based on the Bayesian Information
Criterion (BIC) [2] which has been applied to speaker clustering
problems for the first time in [3]. The BIC is obtained as an ap-
proximation of the marginal log-likelihoodlog p(Y |m) of the data
Y given a modelm and is valid only in the large data limit. The
estimation oflog p(Y |m) is untractable for complex models that
contain hidden variables. In those cases, the BIC is used because of
its simplicity. Large number of studies have been devoted tomaking
the BIC effective in case of limited amounts of data (see for instance
[4], [5]).

This work investigates a type of approximation referred as Vari-
ational Bayesian (VB) methods. VB methods [6],[7],[8] aimsat
directly maximizing a boundFm on the marginal log-likelihood
log p(Y |m). This bound is also known as Variational Free Energy
Fm and allowsjoint model learning and model selectionusing the
same objective function. While the BIC is obtained in the large
data limit, the bound is always valid. Speaker diarization involves
simultaneous clustering and model selection; this work shows that
the Variational Free EnergyFm can be used as objective function
for achieving both goals. The parameters that typically affect the di-
arization error like the number of speakers, the number of Gaussian
components per speaker and the initialization can be obtained max-
imizing the Free Energy. The procedure isunsupervisedi.e. does
not need tuning on a separate data set. The paper extends previous

related works on Variational Bayesian clustering of speakers carried
in the framework of Broadcast News (BN) audio [9], [10] where
the Free Energy has been used to select only the actual numberof
speakers. BN data are clean recordings and the clustering istypically
evaluated according to speaker/cluster purity measures. On the other
hand, this work focus on conversational meetings recorded with far-
field microphones. The results are scored in terms of Diarization
Error Rate (DER).

The remainder of the paper is organized as follows: section 2
describes the basic of Bayesian model selection and the BIC,section
3 describes the Variational Bayesian framework. Section 4 introduce
the diarization system based on the VB framework and section5
describes experiments and comparisons on the RT06 evaluation data.

2. BAYESIAN MODEL SELECTION

This section describes the theoretical Bayesian model selection and
the most common approximation to it, the Bayesian Information Cri-
terion (BIC). Let us consider a data setY , a set of statistical models
M = {mj} and a probability estimatep(Y |mj) for each modelmj

in M . The modelm̄ that better ”explains” dataY is the model that
maximizes the posterior probabilityp(mj |Y ) given by:

m̄ = argmaxmj
p(mj |Y ) = argmaxmj

p(Y |mj)p(mj)/p(Y ) (1)

wherep(mj) is the prior probability of the modelmj andp(Y )
is the probability of the data (independent from the model).If p(mj)
is uniform, the model that maximizesp(mj |Y ) is the model that
maximizesp(Y |mj). Let us denote withΘj the set of parameters
associated with modelmj . It is possible to write:

p(Y |mj) =

Z

p(Y, Θj |mj)dΘj =

Z

p(Y |Θj, mj)p(Θj |mj)dΘj . (2)

wherep(Θj |mj) is the prior distribution of the parametersΘj . Ex-
pression (2) is referred asmarginal likelihoodand is a key quantity
in Bayesian model selection.

The relation between the marginal likelihood and the model
complexity has been established in [11] where it is shown that the
integral (2) embeds a term (referred as Occam’s factor) thatpenal-
izes more complex models with respect to simpler models. The
conventional Bayesian Information Criterion (BIC) [2] is obtained
approximating the marginal likelihood in the large data limit :

limN→∞ log (p(Y |mj)) = log (p(Y |ΘML, mj)) −
d

2
log N = BIC(mj) (3)

whered is the number of free parameters,ΘML is the Maximum
Likelihood estimation of the model parameters andN is the avail-
able amount of data i.e. the cardinality of|Y |. In case of limited
amounts of data, the BIC criterion is not effective. A simplesolu-
tion is tuning the penalty factord

2
log N with an heuristic constant

as proposed in many speaker clustering systems (see e.g. [4]).



The BIC is used because of its simplicity and because the ex-
act form of the marginal likelihood (2) is not available for com-
plex models. In fact, if the model contains hidden variablesX, the
maximization of

R

p(Y, X, Θj |mj)dXdΘ can became easily un-
tractable given the dimension of the joint space(X, Θ). Variational
Bayesianmethods aim at bounding the integral using a simpler (ap-
proximated) posterior distribution for(X, Θ). Those approxima-
tions are described in the next section.

3. VARIATIONAL BAYESIAN METHODS

Let us consider a modelm with a parameter setΘ and an hidden
variable setX. The marginal log-likelihood can be written as:

log p(Y |m) = log

Z

p(Y,X, Θ|m) dΘ dX (4)

Variational Bayesian approximations (e.g. [7],[8]) assume that the
unknown and untractable distributionp(Θ,X|Y, m) can be ap-
proximated with another (simpler) distributionq(Θ, X) referred as
Variational Bayesian posterior distribution. An upper bound on the
marginal log-likelihood (4) can be obtained multiplying and divid-
ing the argument of the integral byq(Θ,X) and applying the Jensen
inequality as follows:

log p(Y |m) = log

Z

q(Θ, X)p(Y,Θ, X|m)

q(Θ, X)
dΘ dX

≥

Z

q(Θ, X) log
p(Y,Θ, X|m)

q(Θ, X)
dΘ dX (5)

The key point of this approximation is the definition of the dis-
tribution q(Θ, X) simple enough to allow tractability but close
to p(Θ,X|m) to obtain a reasonable approximation. In [7], the
use of the mean-field approximation is proposed i.e.q(Θ, X) =
q(Θ)q(X) i.e. the approximated distributions over parameters and
hidden variables are considered independent. Thus bound, (5) can
be rewritten as:

Fm(q(X), q(Θ)) =

Z

q(X)q(Θ) log p(Y,X|Θ, m)dXdΘ

−

Z

q(X) log q(X)dX −

Z

q(Θ) log
q(Θ)

p(Θ|m)
dΘ (6)

Expression (6) is generally referred as Variational Free Energy
Fm(.) and is composed of three terms:

Term 1:
R

q(X)q(Θ) log p(Y |X, Θ, m)dXdΘ is the expected
log-likelihood computed w.r.t. the approximated posterior distribu-
tionsq(X) andq(Θ).

Term 2: −
R

q(X) log q(X) is the entropy of the approximated
posterior distribution over hidden variablesq(X).

Term 3:
R

q(Θ) log q(Θ)
p(Θ|m)

= KL(q(Θ)||p(Θ|m)) ≥ 0 is
the Kullback-Leibner divergence between the Variational posterior
parameter distributionsq(Θ) and the prior parameter distributions
p(Θ|m). Being the KL divergence positive, this term acts as penalty
(i.e. the Occam factor), reducing the value of the Free Energy for
models that have more parameters. Contrarily to the BIC, where
the model complexity is proportional to the number of free param-
eters,Term 3explicitly considers the divergence between posterior
and prior distributions. The BIC is only an asymptotic approxima-
tion while the Variational bound isalwaysvalid.

The Variational posterior distributionsq(Θ) and q(X) that
maximize the Free EnergyFm(q(Θ), q(X)) can be obtained us-
ing an inference method similar to the conventional Expectation-
Maximization (EM). A local maximum of the Free Energy can be

obtained iterating across the following set of equations :

E-like-step: q(X) = 1
ZX

e<log p(Y,X|Θ)>q(Θ) (7)

M-like-step: q(Θ) = 1
ZΘ

e<log p(Y,X|Θ)>q(X)p(Θ|m) (8)

whereZX andZΘ are normalization constant and< a >b desig-
nates the expected value ofa w.r.t. b. Equations (7-8) are often re-
ferred as Variational Bayesian Expectation Maximization (VBEM,
see [8]). The Free EnergyFm can be used to perform model selec-
tion as it is related to the complexity of the model (for details see
[7]).

Coming back to the initial question of section 2, the model se-
lection given bym̄ = argmaxmj

p(mj |Y ) needs the estimation of
the untractable quantityp(Y |mj) =

R

p(Y,Θ, X|mj). The deci-
sion can be replaced bȳm = argmaxmj

Fmj
(q(Θ), q(X)) where

Fmj
is tractable and can be estimated using VBEM.Fmj

can be
used at the same time as objective function for clustering and for
model selection criterion.

4. VARIATIONAL BAYESIAN SPEAKER DIARIZATION

This section describes the application of the VB framework to di-
arization of an audio recording with an associated acousticfeature
streamO (i.e. MFCC features). Let us divide the stream into seg-
ments of equal lengthD1 i.e. O = {Ot} with t = 1, ..., T . We
useD = 300ms. Ot is composed ofD consecutive frames i.e.
Ot = {Ot1, ...OtD}.

Most of the current systems are based on an agglomerative hi-
erarchical clustering of speech segments and the Bayesian Informa-
tion Criterion (BIC). We investigate the use of VariationalBayesian
framework for learning a set of clustering models{mj} and select-
ing the most probable model̄m that explains the data. The learning
and the selection is done according to the same objective function,
the Variational Bayesian Free EnergyFm. Let us define the prob-
abilistic modelp(Y |X, θ) and the prior distributionsp(θ|m). We
assume that speech segments{Ot} are independent and can be gen-
erated from one of theS available speakers. Each speaker is modeled
using a Gaussian Mixture Model. The likelihood can be written as:

p(O|Θ) =

T
Y

t=1

p(Ot|Θ) p(Ot|Θ) =

S
X

j=1

αjp(Ot|Θj) (9)

p(Ot|Θj) =

D
Y

p=1

p(Otp|Θj) p(Otp|Θj) =

N
X

i=1

βijN (Ot|µij , Γij)

whereS is the number of speakers,N is the number of Gaus-
sian components per speaker,αj is the probability of speakerj
and Θj are parameters for the model of thejth speaker,Θj =
{βij , µij , Γij} are respectively weights, means and covariance ma-
trix of the ith Gaussian component of thejth speaker.N () denotes
the Gaussian distribution.

The complete parameter set for model (9) is given byΘ =
{αj , βij , µij , Γij}. Prior distributions are chosen in the conjugate
family over parametersΘ i.e.:

p(Θ) = p({αj})
S

Y

j=1

p({βij})
N

Y

i=1

p(µij |Γij)p(Γij)

p({αj}) = Dir(λα0 ) p({βij}) = Dir(λβ0
)

p(µij |Γij) = N(ρ0, ξ0Γij) p(Γij) = W (ν0, Φ0) (10)

whereDir(.) is a Dirichlet distribution,N (.) is a Normal distribu-
tion,W (.) is a Wishart distribution.Λ0 = {λα0 , λβ0 , ρ0, ξ0, ν0, Φ0}

1Those segments can be obtained by uniform segmentation or byspeaker
change detection. We limit here the investigation to the uniform segmentation



are hyperparameters associated with the prior distributions and they
are fixed as follows:ρ0 = Ō, Φ0 = (τ0 + p) Cov(O) where
Ō and Cov(O) are mean and covariance matrix of the acous-
tic vectors as estimated on the entire recording;ν0 = τ0 + p,
{λα0 = λβ0 = ξ0} = τ0 wherep is the dimension of the acoustic
vector2.

Posterior Variational distributions have the same parametric
form of the priors with updated hyperparameters denoted with

Λ = {λαi
, λβij

, ρij , ξij , νij , Φij}. Posterior hyperparameters
are initialized equal to priors apart from{ρij} which are randomly
initialized.

The VBEM algorithm can be applied in a straightforward way
to the model (9) under prior distributions (10) and the Free Energy
can be computed in close form (detailed formula are reportedin
[9],[10]). After convergence this will provide a clustering of seg-
mentsOt into speakers and an approximation of the model com-
plexity. The diarization output is obtained mapping the segmentsOt

to the most probable speaker in the mixture model.
The clustering output, thus the diarization error, dependson: 1)

the number of speakersS 2) the number of Gaussian components
per speakerN 3) the value of the priorτ0 4) the initialization{ρij}.
Let us denote this set of elements withI = {S, N, τ0, {ρij}}.

We propose a method that searches in an exhaustive way the
elementsI and selects the diarization output that corresponds to the
maximum Free Energy. It can be summarized in the following steps:

1 Extraction of the MFCC features from the audio stream; speech/non-
speech detection and rejection of the non-speech frames.

2 Uniform segmentation of the speech into segments of lengthD. In
the following we useD = 300ms i.e. 300 speech frames.

3 For eachI∗ = {S∗, N∗, τ∗
0 , {ρ∗ij}} in I = {S, N, τ0, {ρij}}

3-1 Initialization of the model (9) withS = S∗,N = N∗,τ0 =
τ∗
0 ,{ρij} = {ρ∗ij}.

3-2 Perform Variational Bayesian Expectation Maximization
(VBEM) method and estimate the Free EnergyF (I∗).

4 Selection of the clustering corresponding to the maximum Free En-
ergyF (I).

5 Estimation of the speaker assignment thus the diarizationoutput.

In words, this method generates a large number of diarization
outputs and selects the one which holds the highest Free Energy.
The search in the space of elementsI = {S, N, τ0, {ρij}} is unsu-
pervised and based only on the objective functionFm

5. EXPERIMENTS

The data used for the experiment consists of meeting recordings ob-
tained using an array of far-field microphones also referredas Mul-
tiple Distant Microphones (MDM). Studies are carried on theNIST
RT06 evaluation data for Meeting Recognition Diarization task. A
sum-and-delay beamforming is applied to the MDM signals using
theBeamformIttoolkit [12]3. Such pre-processing produces a single
enhanced audio signal out of those recorded with the far-field micro-
phones. 19 MFCC features are then extracted from the beam-formed
signal.

Being interested in comparing the clustering algorithms, the
same speech/non-speech segmentation will be used across all exper-
iments only the speaker error is reported in the following.

2From the definition of the Wishart distributionν0 must be larger or equal
to the dimension of the vectorp.

3The bug-corrected version of the Beamforming 2.0 is used forexperi-
ments. This provides improved results w.r.t. previous versions.

5.1. Number of speakers/clusters

In this first experiment, we investigate the use of the Free Energy to
select the actual number of speakers (clusters) in the audiofile. The
value ofS (i.e. the number of speakers in the model) changes in
between 1 and 10. Other parameters are arbitrary set toN = 10 (10
components per GMM),τ0 = 1 andρij are randomly initialized.
The sensitivity to those parameters will be studied in section 5.2.

Table 1 reports speaker error obtained using the VB Free Energy
selection. The table also reports oracle results obtained manually
selecting the lowest and the highest speaker error as a function of the
number of speakers and speaker error obtained randomly sampling a
large number of times the generated solutions function of the number
of speakers. In order to be effective, the selection method should be
as close as possible to the best solution and never worst thenthe
random selection.

File Spkr Error (VB) Best Worst Random
CMU 20050912-0900 19.1 19.1 38.6 29.7
CMU 20050914-0900 10.8 9.2 30.7 20.1
EDI 20050216-1051 27.6 20.7 57.6 46.6
EDI 20050218-0900 26.5 26.5 47.3 33.0
NIST 20051024-0930 21.8 10.0 33.3 20.1
NIST 20051102-1323 6.7 6.7 51.5 18.5
TNO 20041103-1130 24.2 22.7 47.1 34.0
VT 20050623-1400 20.3 14.2 42.7 24.0
VT 20051027-1400 19.2 19.2 43.9 34.0

ALL 16.20 12.7 43.40 28.50

Table 1. RT06 Speaker Error obtained using Free Energy, oracle
best/worst selection and random selection.

In 7 of the 9 meetings, the selection is equal or close to the lowest
possible speaker error. In 3 meetings, the proposed approach fails to
select the lowest speaker error. However the VB selection isbetter
then random selection in 9 meeetings.

In order to illustrate how the model selection operates, figure
1 (left) plots Term1+Term2 and Term3 (Penalty) for a particular
meeting (V T 200510271400) which contains 4 speakers. Both
Term1+Term2 and Term3 increase as the number of speakers (thus
of parameters) increase. Figure 1 (center) plots the Free Energy
(Term1+Term2-Term3) which shows a maximum forS = 4 speak-
ers. The same figure also plots the speaker error which shows a
minimum in correspondence of four speakers. On the other hand,
figure 1 (right) plots the quantity Term1+Term2-λ d log N

2
which

corresponds to replacing the penalty term (Term 3) with the conven-
tional BIC penalty. The theoretical valueλ = 1 estimates a number
of speakers equal to 8. The correct number of speakers is inferred
tuningλ = 2.

5.2. Optimization of other parameters

This section investigates the joint optimization of all parametersI =
{S, N, τ0, {ρij}}. The three following experiments are run and the
Free Energy is used to select the best system:

1- Simultaneous selection of the best priorτ0 and speakersS.
The value ofS (i.e. the number of speakers in the model) ranges in
{1, ..., 10} as before and the value ofτ0 ranges in{1, 10, 100, 1E3}.
The number of Gaussian components is arbitrarily fixed toN = 10
andρij are randomly initialized. Results are reported in table 2 first
line.

2-Simultaneous selection of the number of Gaussian compo-
nentsN , τ0 and S. The value ofS (i.e. the number of speak-
ers in the model) ranges in{1, ..., 10} and the value ofτ0 ranges
in {1, 10, 100, 1E3}, the number of gaussian component ranges in
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Fig. 1. Left figure plots Term1+Term2 and Term3 as a function of the number of speakers for meeting VT20051027-1400. Center figure plots
the Free Energy (Term1+Term2-Term3) and the speaker error for meeting VT20051027-1400; the maximum of the Free Energy corresponds
to the minimum speaker error in correspondence of 4 speakers. Right picture plots Term1+Term2−λd N
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: the actual number of speaker is

obtained tuning the BIC penalty withλ = 2.

N = {5, 10, 15, 20}. ρij are random initialized. Results are re-
ported in table 2 second line.

3-Simultaneous selection of the initializationρij andN , τ0 and
S. The value ofS (i.e. the number of speakers in the model) ranges
in {1, ..., 10} and the value ofτ0 ranges in{1, 10, 100, 1E3}, the
number of Gaussian component ranges inN = {5, 10, 15, 20}. The
valuesρij are set according to 10 different random initializations.
Results are reported in table 2 third line.

The joint optimization of all the elements inI reduces the
speaker error from16.2% to 12.7%. The Free Energy based model
selection outperforms the random model selection in all cases.

Parameter Spkr Error (VB) Best Worst Random
τ0 16.0 12.0 43.4 25.5
N 14.7 11.7 44.4 25.4
ρij 12.7 10.7 44.4 24.9

Table 2. Speaker Error for optimization of parametersτ0,N ,ρij ob-
tained using VB selection, oracle best/worst and random selection.

The VB system is compared with a state-of-the-art diarization
system based on a modified BIC criterion [13] that performs hier-
archical agglomerative clustering. This system performs iteratively
clustering and realignment until the stopping criterion ismet [5].
The baseline is tuned on a development data set and is initialized
with 16 speakers modeled by a 5 component Gaussian Mixture
Model. The baseline achieves a speaker error equal to13.6% as
compared to the12.7% obtained by the VB system thus the pro-
posed approach outperform the baseline by8.4% relative speaker
error.

6. CONCLUSION

This paper investigates the use of the Variational Free Energy as ob-
jective function for speaker diarization. The conventional BIC crite-
rion is valid only in large data limit and typically needs tuning to be
effective. The Free Energy is an always valid, tractable bound on the
marginal log-likelihood of the model.

Experiments on the RT06 data reveal thatFm is an effective cri-
terion for selecting in between the number of actual speakers in the
audio file, the number of Gaussian components per speaker, the ini-
tialization and the priorτ0. Comparison with a state-of-the-art sys-
tem based on a modified BIC and agglomerative clustering reveals a
speaker error reduction of8.4% relative.

We emphasize that the proposed approach operates in com-
pletely unsupervised fashion and all the related parameters are
obtained as maximization of an objective function. Those find-
ings extends previous related work on Broadcast news data [9],[10]
where Free Energy was used only to select the actual number of
speakers and shows the effectiveness also on meetings data.In fu-
ture work we plan to experiment with more informative priorslike,
the one proposed in [14].
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