
A Random Walk Framework to Compute
Textual Semantic Similarity: a Unified

Model for Three Benchmark Tasks
Majid Yazdani

Idiap Research Institute / EPFL
Martigny / Lausanne, Switzerland

Email: majid.yazdani@idiap.ch

Andrei Popescu-Belis
Idiap Research Institute
Martigny, Switzerland

Email: andrei.popescu-belis@idiap.ch

Abstract—A network of concepts is built from Wikipedia
documents using a random walk approach to compute distances
between documents. Three algorithms for distance computation
are considered: hitting/commute time, personalized page rank,
and truncated visiting probability. In parallel, four types of
weighted links in the document network are considered: actual
hyperlinks, lexical similarity, common category membership, and
common template use. The resulting network is used to solve
three benchmark semantic tasks – word similarity, paraphrase
detection between sentences, and document similarity – by
mapping pairs of data to the network, and then computing a
distance between these representations. The model reaches state-
of-the-art performance on each task, showing that the constructed
network is a general, valuable resource for semantic similarity
judgments.

I. INTRODUCTION

Many natural language processing applications must es-
timate the semantic similarity of pairs of text fragments
provided as input, e.g. information retrieval, summarization,
or textual entailment. A simple lexical overlap measure cannot
be successful when text similarity is not based on identical
words, and in general when words are not independent. We
propose here a method to use structured and unstructured
knowledge extracted from the English version of Wikipedia
to compute semantic similarity. A document network is built
from Wikipedia, capturing various forms of user-contributed
knowledge, by considering that every article in Wikipedia
corresponds to a concept node in a graph. Relations between
concepts are derived from: hyperlinks between articles, lexical
content of articles, templates and infoboxes that are invocated,
and membership in a category. To estimate the semantic simi-
larity of two text fragments (single words, phrases, sentences,
or entire documents), they are first mapped to the vertices of
the network built from Wikipedia, then the distance between
sets of vertices is computed.

For example, let us consider two vertices in our network
corresponding to the English Wikipedia documents on “Natu-
ral language processing” (NLP) and “Machine learning” (ML),
with the following notations for relations between documents
A and B: A links−→ B indicates that the text of A contains
a hyperlink to B; A cat.−→ B indicates that A and B belong
to the same Wikipedia category and A

cont.−→ B indicates that

they have similar lexical contents (as defined in Section III).
It is possible to find various paths between the NLP and ML
documents by using a sequence of one or more relations from
Wikipedia. Some of the simplest paths are shown below, but
as their length increases, there are of course many more: ML
links−→ NLP;
ML links−→ Artificial Intelligence links−→ NLP;
NLP links−→ Data Mining links−→ ML;
ML cat.−→ Mallet (software project) links−→ NLP;
ML cont.−→ Algorithm links−→ NLP;
NLP cat.−→ Grammar Induction links−→ ML.

In this work, we use the random walk framework to compute
various properties of the paths between concept nodes. We
overview related work in Section II, and describe in Section III
the English Wikipedia resource used to build the network, in
particular the type of knowledge used to infer paths between
vertices. Similarity measures are computed in Section V,
and are applied in Section VI to three well-known problems
of semantic computing: word similarity (VI-A), document
similarity (VI-B), and paraphrase detection (VI-C). The results
on each data set are close to the best published ones, showing
that this resource provides a unified and robust answer to
several semantic tasks.

II. RELATED WORK

Several approaches enhance the overlap-based lexical sim-
ilarity distance. A taxonomy of concepts and relations can be
constructed manually or automatically onto which fragments
to be compared can be mapped, such as Wordnet [1] and
Cyc This makes use of coherent concepts that humans can
understand and reason about, but the knowledge represen-
tation granularity is limited by the taxonomy. Building and
maintaining the knowledge bases requires a lot of effort from
experts. Moreover, the bases cover only a small fraction of
the vocabulary of a language and usually include few proper
names, conversational words, or technical terms. Another
approach makes use of unsupervised methods to construct a
semantic representation of documents by analyzing mainly
co-occurrence relations between words in a corpus. Latent
Semantic Analysis(LSA) [2] and probabilistic LSA [3] are



unsupervised methods that construct a low-dimensional feature
representation or “concept space”, in which words are no
longer supposed to be independent. These methods offer a
larger vocabulary coverage, but the resulting “concepts” are
difficult for humans to interpret. Mihalcea et al. [4] compare
several knowledge-based and corpus-based methods. In addi-
tion, word similarity and word specificity are used to define
one general text semantic similarity measure. However, the
measure is only suitable for similarity between two short text
fragments because it needs to compare all word pairs.

Explicit Semantic Analysis (ESA) [5], instead of mapping
a text to a node (or a small group of nodes) in a taxonomy,
maps the text to the entire collection of available concepts,
by computing the degree of affinity of each concept to the
input text. ESA uses Wikipedia articles as a collection of
concepts and maps texts to this collection of concepts by use
of terms/documents affinity matrix. Similarity is measured in
the new concept space, with the implicit (but questionable)
assumption that concepts are orthogonal. However, ESA does
not use link structure and other structured knowledge from
Wikipedia, although these contain valuable information about
relatedness between articles.

Milne and Witten [6] attempt to enrich documents (e.g. news
stories or educational) with links to explanatory Wikipedia
articles, thus bringing structured knowledge to any unstruc-
tured text fragment, using a bag of words representation.
Their method requires heavy computation, as it performs
disambiguation for all n-grams and computes relatedness of
all senses to the context articles.

The closest antecedent of this study is the work of Yeh
et al. [7], who also start from a graph of documents and
hyperlinks computed from Wikipedia. Then, a personalized
page rank [8] is computed for each text fragment, with
the teleport vector being the one resulting from the ESA
algorithm. To compute semantic similarity between two texts,
Yeh et al. then simply compare their personalized page rank
vectors. By comparison, we consider in the present work,
in addition to hyperlinks, the effect of word co-occurrence
between article contents. We also propose a different method
to capture knowledge from category membership and template
calls, which makes random walk computation faster and easier
to handle. We also use two other measures, in addition to
personalized page rank, capturing different properties of the
network and giving improved final results.

III. WIKIPEDIA AS A NETWORK OF CONCEPTS

We consider the Wikipedia encyclopedia as a network of
concepts. Every article in Wikipedia is considered as one
concept in the network – after a filtering procedure explained
at the end of this section. Based on different relations between
articles that we can infer from Wikipedia, we consider the
following link types in the construction of the network.

Hyperlinks between articles. We assume that if page A
links to page B in Wikipedia, this shows that article B helps
to understand article A, so B is related to article A. To capture

this relation, we simply use the hyperlink structure between
articles in Wikipedia to our network.

Content links. Another important potential relation between
articles is based on their word co-occurrence. If two articles
are using the same words, then there is a similarity relation
between them. To capture content similarity we compute the
cosine similarity between articles body vectors. We link every
article to its k most similar articles (here, k = 10), with
a weight according to their similarity score. By using this
approach we can benefit from word co-occurrence knowledge
between millions of articles in Wikipedia.

Category links. Every article in Wikipedia is at least
assigned to one category, and often to more than one. There
is a hierarchy between categories, constituting a directed
acyclic graph. To capture relations between articles according
to their categories, given an article, all other articles are
sorted based on their category membership similarities and
the top k are chosen to connect to the article according to
their similarity scores (here, k = 10). In other words, we
build a k nearest neighbor graph between articles based on
category membership similarity. To compute category mem-
bership similarity between articles, we consider every article
as a document that consists of its direct categories and one
level ancestors upper ones (limitation to one level is based
on experiments). Similarity between two articles according to
category membership can be computed by cosine similarity in
the space of all categories.

Templates and Infoboxes. Each template or infobox is de-
fined in its own article, and then referenced in calls from other
articles. Each template call includes a set of named parameters
to the template. Calling a same template from two articles
shows a certain relation between them that is different from
category membership. Again, there is a hierarchy structure
between templates. To capture relations between articles based
on templates we proceed as with categories. Every article
is connected to the k most similar articles according to the
template call similarity scores (here, k = 10).

Overall, the concept network is built from Wikipedia by
using the Wex [9] data set. We drop all Wikipedia articles
that belong to the following name spaces: Talk, File, Image,
Template, Category, Portal, and List – because these articles do
not describe concepts. In addition to that, we drop all articles
with less than 100 words, as their content is not reliable for
the distance computation described below. Yeh et al. set this
limit to 2,000 non-stop words, but we found that we might lose
important concepts with this limit. After filtering, we are left
with 1,264,611 articles and 35,214,537 hyperlinks between
them. For every hyperlink we extracted the corresponding
anchor text and mentioned it as another title for the linked
article. Similarly, we added the title of each redirect page to
the title of the article it redirects to. There are thus three types
of titles for an article: original title, anchor texts pointing to
it, and redirects.



IV. MAPPING TEXT FRAGMENTS TO NETWORK CONCEPTS

To compute similarity between two texts, first we map them
to the network of concepts, and then we compute similarity
between the sets of vertices resulting from the mapping. To
perform mapping of a given text, we compute lexical similarity
of the text and of the Wikipedia articles corresponding to the
vertices in the network. The text is mapped to vertices of the
k most similar articles according to the corresponding lexical
similarity score. To have a more accurate lexical similarity
measure, we distinguish words in the title from words in the
body of articles and give more importance to the former. After
each text fragment is mapped to the network, methods to
compute similarity between concepts in the network (see next
section) are applied to solve semantic similarity tasks (see
SectionVI).

V. SEMANTIC SIMILARITY USING RANDOM WALK

We define now a general framework to compute similarity
between two texts by using a network of concepts and the
documents associated to them. The framework is independent
of a specific network, though we will keep the Wikipedia-
based network in mind. Let S = {si} be set of concept vertices
with size n in the network. The relation between concepts si

and sj is represented by a combination of L different types
of directed links. Link types between concepts are represented
by L matrices Al, 1 ≤ l ≤ L, where Al shows the structure of
links of type l between all concepts. In each matrix, Al(i, j)
is the weight of the link (of type l) between si and sj .

The transition matrix Cl that shows the probability of
transition between concepts based on link type l can be
computed from the Al matrix: Cl(i, j) = Al(i,j)∑n

r=1 Al(i,r)
.

Let the weight wl show the importance of link type l in the
Markov process related to the random walk over this network
(actual weight values are disscussed in Section VI). If we
note the transition matrix of this walk by C, then we have:
C =

∑L
l=1 wl ×Cl. Ci,j is the transition probability between

concepts si and sj .
In the following subsections, we introduce various algo-

rithms to measure similarity between two texts by measur-
ing different properties of the concept network. We suppose
throughout this section that the probability vector r resulting
from mapping a text to the vertices of the network is given.
The vector r indicates the probability of concepts in the
network given the text, therefore the sum of its elements is
one.

A. Hitting Time and Commute Time

The first method to compute the distance between two
vertices in the graph uses the hitting time from node si to
sj , noted Hij . This is the average number of steps a random
walker that starts from si should take to visit node sj for the
first time. If p(si →t sj) is the probability to visit sj for the
first time after exactly t steps starting from si, we can define
Hij as: Hij =

∑∞
t=1 t× p(si →t sj)

This defines hitting time as the expected path length of the
first visit of sj starting from si. It is possible to truncate the

computation after T steps, i.e. to consider paths of length at
most T , e.g. using the approach proposed in [10]. Because
hitting time is not symmetric and we are looking here for a
similarity measure, we define commute time as: Cij = Hij +
Hji.

Hitting time and commute time are defined between two
vertices. Let us consider now again r1 and r2, the resulting
vectors from mapping texts to the network. First, let us
measure hitting time from r1 to a vertex sj . We assume there
is a virtual node corresponding to r1 that is connected to
concept si according to (r1)i and we do not consider penalty
for traveling links between the virtual node and concepts in
the network. According to this assumption, hitting time can
be computed as: Hr1j =

∑
i(r1)iHij . To compute the hitting

time from a single vertex si to the vector r2 we assume there
is a virtual vertex Vr2 representing r2. Concept si is connected
to it according to (r2)i, Therefore we introduce matrix C ′ by
adding a new row to matrix C with all elements zero to show
Vr2 and update other rows as follows:

C ′ij = Cij(1− (r2)i) for i, j 6= Vr2

C ′iVr2
= (r2)i for all i,

C ′Vr2 j = 0 for all j

Now we compute HsiVr2
to measure Hsir2 . Based on

the above equations we are able to compute Hitting time
between vectors r1 and r2 resulting from mapping the texts
to the network vertices: Hr1r2 =

∑
i r1i

HsiVr2
. Finally, to

approximate similarity between two texts, we compute Cr2r1 ,
the average distance between the texts given the network.

B. Personalized Page Rank

If the average path length connecting two concepts is
long, the distance based on hitting time is large regardless
of the “connection strength” between them. The personalized
page rank (PPR) distance [8] considers “connection strength”
between concepts with a penalty for long paths. Let p(si|r,N)
be the probability of concept si given r and N , where r is
the normalized vector resulted from the mapping function and
N is the network. To compute this probability, we imagine a
random walk process, the input of which is the vector r and
the output of which is a concept in the network as follows:

Step 0: Choose the initial state of the transition process
with probability P (S0 = si|r) = ri where ri is ith element
of the vector r showing the probability of concept si in r.

Step t: Given that we have chosen state St−1, then with
probability 1 − α return the concept corresponding to St−1

and reset the process to step 0. Otherwise, with probability α,
choose next concept according to transition matrix C.

The probability of returning si given r, p(si|r,N), is the
sum over all probabilities of returning si given r with different
lengths of random walk:

p(si|r,N) =
∞∑

t=0

p(si|r,N)t =
∞∑

t=0

(1− α)αt(rCt)i

In the above equation, (rCt)i is ith element of the vector rCt

and p(si|r,N)t shows the probability of returning si after t



steps. The parameter α conveys the notion of “distance”: a
smaller α makes the process tend to return concepts with
closer distance to r. If vectors r1 and r2 are the results
of mapping two text fragments to the network, then after
running the above process for each of them, to approximate
text semantic similarity between them, we compare the two
resulting probability distributions for r1 and r2 (using cosine
similarity in the experiments below).

C. Visiting Probability and a Truncated Approximation

In the computation of PPR, self-loops (that is, paths that
start from a concept and end to it) boost the probability
of the concept. If some pages have this type of loops after
using PPR, then they have high probability although they
might not be very close to the teleport vector. We introduce
Visiting Probability (VP) to address this issue. Given the initial
probability vector r of the network vertices, and a vertex sj

in the network, we compute the probability of visiting sj for
the first time starting from r in the network according to the
following process:

Step 0: Choose initial state with probability P (S0 =
si|r) = ri.

Step t: Given that we have chosen state St−1, if St−1 = sj

then return success and finish the process. Otherwise, with
probability of α choose next concept according to transition
matrix Ct and with probability 1− α return fail.

We introduce C ′ as being equal to the transition matrix C,
except that in row j, C ′jk = 0 for all k. This indicates the fact
that when the random walker visits j for the first time, it can
not exit from it and its probability mass drops to zero in the
next step. We defined this new transition matrix to fit with the
definition of VP as the probability of first visit of sj .

We define pt(success) as the probability of success in the
above process at step t. We can then compute pt(success)
as follows: pt(success) = αt × (rC ′t)j . The probability of
success in the above process is the sum over all probabilities
of success with different lengths:

p(success) =
∞∑

t=1

pt(success) =
∞∑

t=1

αt × (rC ′t)j

The probability of success in the above process shows the
probability of visiting sj for the first time when we consider
a random walk with a penalty for long paths. This probability
converges if sj is reachable from all vertices in the graph.

Truncation in this case can be done by looking at the
probability of not returning success and failure in first t steps,
which is:

∑n
i 6=j α

t(rC ′t)i, that is, the probability mass at
time t at all vertices except sj . If pt(success) denotes the
probability of success considering path of length at most t,
then we have: p(success) − pt(success) ≤

∑n
i 6=j α

t(rC ′t)i.
The term on the right is decreasing over time because αt

and
∑n

i 6=j(rC
′t)i are both decreasing over time. Truncate the

computation, we can return pt(success) as an approximation
for p(success) with at most

∑n
i 6=j α

t(rD′t)i error.
A more flexible method is to truncate different paths at

different times, more specifically truncate paths with lower

probabilities in earlier steps and let paths with higher probabil-
ities continue more steps. If αt(rC ′t)i denotes the probability
of being at si in time step t, then if it is small enough we can
neglect it and set it to zero. The maximum error caused by this
truncation is αt(rC ′t)i. This means we no longer follow paths
that are at si in time step t. We used this truncated visiting
probability in our experiments below, showing competitive
results while allowing a very fast computation time – an
essential requirement when using the entire Wikipedia.

Finally, to compute the visiting probability of vector r2 from
vector r1, we assume a virtual vertex representing r2, Vr2 , in
the graph. We connect all concepts si to Vr2 according to ri.
Therefore we introduce matrix C ′ by adding a new row to
matrix C with all elements zero to show Vr2 and update other
rows as follows:

C ′ij = Cij(1− r2i) for i, j 6= Vr2

C ′iVr2
= r2i for all i,

C ′Vr2 j = 0 for all j

To compute similarity between two texts, we average be-
tween visiting probability of r1 given r2 and visiting probabil-
ity of r2 given r1. A larger probability denotes more similarity
between vectors.

VI. EXPERIMENTS WITH THREE BENCHMARK TASKS

In this section, we discuss the results of the random walk
methods described above, which approximate text similarity
on different data sets. First, we examine each link type
separately and measure the effectiveness of random walk. Then
we measure walk effectiveness on the combinations of link
types.

A. Word Similarity

We used Word Similarity-353 test collection [11] to measure
the effectiveness of our models for word similarity. In this
collection, there are 353 pairs of words, and the average
human similarity score is given for each pair. We measured
Spearman Rank correlation between results of different walks
and human judgments based on exact mapping of each word
to its closest Wikipedia article. Results of walks on every link
type separately are given in Table I.

TABLE I
SPEARMAN CORRELATION BETWEEN RESULT OF RANDOM WALKS AND

HUMAN JUDGMENTS ON WSIM353

Link type Commute
time

Personalized
page rank

Visiting
probability

Hyperlink graph .654 .664 .684
Content graph .495 .595 .573
Category graph .103 .490 .371
Template call graph .010 .302 .250

In this experiment, personalized page rank (PPR) and hitting
time are truncated after 5 steps, and every path with probability
less than 10−5 is truncated when computing visiting probabil-
ity (VP). In the experiments, the results of PPR and VP were
always higher than those of hitting time. It is interesting to
find out how much the results of a random walk on different



link types are correlated. In Table II we give the Spearman
correlation between the scores obtained with VP on different
link types. The correlation shows how much the resulting
scores based on different link types differ.

We also examined random walk on some different combi-
nation of links. We chose the combination weights experimen-
tally by considering the correlation between link types (shown
in Table II) and results on each individual link type, with
results given in Table III. The results show that random walk
results are improved by combining links in comparison with
random walks on individual link types. For example, when
equally combining hyperlinks, content links and category
links, results are improved in comparison with each link type
individually.

TABLE II
SPEARMAN CORRELATION BETWEEN WSIM353 RESULTS OF VISITING

PROBABILITY ON DIFFERENT LINK TYPES

Link types Content Category Template
Hyperlinks .7164 .392 .378

Content – .374 .517
Category – – .281

TABLE III
CORRELATION BETWEEN WALK RESULTS ON COMBINATIONS OF LINKS
AND HUMAN JUDGMENT FOR W353 (PPR: PERSONALIZED PAGE RANK;

VP: VISITING PROBABILITY)

w1 w2 w3 w4 PPR VP
0.25 0.25 0.25 0.25 .686 .696
0.4 0.4 0.1 0.1 .688 .703
0.3 0.3 0.3 0.1 .706 .707
(0.7 0.1 0.1 0.1)2 - (0.2 0.6 0.1 0.1)3 .691 .705
(0.2 0.6 0.1 0.1)2 - (0.7 0.1 0.1 0.1)3 .682 .690
(0.5 0.1 0.4 0)2 - (0.3 0.6 0.1 0)3 .709 .711

In addition, we examined two-stage random walks, in which
at the first stage the network is built by one set of weights
and in the second stage with a different set of weights. The
hypothesis here is that there might be a set of links that are
more useful to be explored first and some other links that
are more useful to be explored later, as discussed by Collins-
Thompson and Callan [12]. For example, in Table III, the row
corresponding to (0.5 0.1 0.4 0)2 - (0.3 0.6 0.1 0)3 shows that
the random walker first explored mainly hyperlinks and cate-
gories for two steps and then for three steps the random walker
mainly followed article content lexical similarities (this two-
stage random walk gave the best result in our experiments).
Our observation shows that multi-stage random walk gives
different results than one stage random walk and can achieve
better results in some cases.

Gabrilovich and Markovitch [5] provide the results of
other methods on the same data set. The best result belongs
to Explicit Semantic Analysis (ESA) with 0.74 Spearman
correlation (results of other methods are given in [5]). We
implemented ESA based on our set of concepts derived
from Wikipedia and our result was a 0.52 correlation. This
difference can be due to different versions of Wikipedia in our
experiments, but more probably to a different way of filtering

pages, which might lead to a substantially different set of final
concepts. Therefore, direct comparison between our score and
the ESA score reported in [5] might not be accurate, and a
closer analysis is required. One of the best reported scores
on this data set (apart from ESA) belongs to LSA, with 0.56
Spearman correlation, which is lower than our best results.

B. Document Similarity

The document similarity data set gathered by Lee et al [13]
was also used as a task. The set contains 50 documents with
average human similarity scores for each pair of documents.
Table IV shows the Pearson correlation of the result of random
walks with human judgments. In this experiment, we mapped
each document to the 1,000 closest concepts in the network.
We used the same random walk parameters which we had used
for the word similarity task.

TABLE IV
PEARSON CORRELATION BETWEEN RANDOM WALK RESULTS AND HUMAN

JUDGMENTS ON DOCUMENT SIMILARITY

Link type PPR VP
Hyperlink graph .578 .667

Content similarity graph .629 .624
Category graph .679 .648

Template call graph .477 .652
0.25 0.25 0.25 0.25 .611 .671

0.4 0.4 0.1 0.1 .614 .673
0.3 0.3 0.3 0.1 .609 .670

(0.7 0.1 0.1 0.1)2 - (0.2 0.6 0.1 0.1)3 .668 .680
(0.2 0.6 0.1 0.1)2 - (0.7 0.1 0.1 0.1)3 .644 .657

(0.5 0.1 0.4 0)2 - (0.3 0.6 0.1 0)3 .681 .676

Again, we examined the correlation between different link
types but due to the space constraints we cannot provide
the complete results here. Category and content links showed
higher correlation in comparison to other link types. We show
however results of some different combinations of links and
some two-stage random walks in Table IV. It is interesting
to see that the best two-stage random walk combination is
similar to the one for word similarity, i.e. walking first mainly
on hyperlinks and then on content links. The best reported
result in Lee et al [13] belongs to LSA with 0.6 correlation,
which is slightly lower than most of our results.

C. Paraphrase Detection

The Microsoft Paraphrase Corpus was used for a third series
of experiments. We used only the test set, which contains 1,725
pairs of statements. We applied our methods it on each pair of
statements, and sorted pairs by their semantic similarity scores.
We compute mean average precision (MAP) for sorted list of
pairs. A high MAP value means that scores of paraphrase
pairs are higher in comparison with no-paraphrase pairs. We
give the result of MAP scores for different random walks in
Table V. All the parameters are the same as in the previous
subsection.

To compare our results with the state-of-the-art method
given in Mihalcea et al. [4] for this task, we give precision,
recall and F-measure in Table VI for the PPR method on
the concept network built using hyperlinks and then content



TABLE V
MEAN AVERAGE PRECISION ON THE MICROSOFT PARAPHRASE CORPUS

Link type PPR VP
Hyperlink graph .818 .793

Content similarity graph .789 .751
Category graph .802 .762

Template call graph .809 .768
0.25 0.25 0.25 0.25 .811 .778
0.40 0.15 0.20 0.25 .835 .793

(0.7 0.1 0.1 0.1)2 - (0.2 0.6 0.1 0.1)3 .815 .788
(0.2 0.6 0.1 0.1)2 - (0.7 0.1 0.1 0.1)3 .806 .774

similarity. In this case we assume a pair of statements is a
paraphrase if the returned score is greater than 0.5. Our results
are comparable to those obtained by Mihalcea et al. [4]: the
“combined” line in Table VI is the average of different knowl-
edge based and corpus based scores [4]. In comparison with
the semantic similarity from [4], our approach scales better,
because the former method must compute word similarity
between all pairs of words in two text fragments. Another
interesting observation is that PPR on hyperlinks graph has
higher recall, while on the content similarity graph it has
higher precision. One possible explanation is that the content
similarity graph shows more accurate relations based on exact
words between articles, while the hyperlinks graph expands
relations between articles and helps the recall score.

TABLE VI
PRECISION, RECALL AND F-MEASURE OF DIFFERENT METHODS ON

MICROSOFT PARAPHRASE CORPUS

Method Precision Recall F
Lexical matching 71.6 79.5 75.3
LSA 69.7 95.2 80.5
Combined 69.6 97.7 81.3
Personalized page rank on hy-
perlinks

68.7 96.5 80.3

Personalized page rank on
Content similarity graph

70.3 89.7 78.8

VII. CONCLUSION AND FUTURE WORK

In this work we proposed a general framework for text
semantic similarity based on knowledge extracted from
Wikipedia. We tested our approach on three different bench-
mark data sets, and found that results were competitive with
state-of-the-art results on each set, obtained through meth-
ods particular to each task. We built a unique graph from
Wikipedia articles and extracted four different link structures
between concepts. Results of random walks on different link
structures are different, and but combining them gives better
results on each task. We also examined three different methods
to estimate distances based on random walks: hitting time,
visiting probability, and personalized page rank. The similarity
measures derived from them can be different as they measure
different properties of paths between concepts. One advantage
of our approach is that the update of data set and the graph
is easy without additional cost of recomputation. Also, using
k-nearest neighbors graphs to capture different knowledge
makes the computation possible for a large corpus such as the

English Wikipedia. Finding the optimum weights to combine
different link types is still a challenging issue that should
be investigated more in future using an appropriate training
procedure. Another future task is to design a better way to filter
articles and links in Wikipedia. Different filtering methods lead
to different final set of concepts and different final graph that
have strong effects on the results.

ACKNOWLEDGMENT

This work is supported by the Swiss National Science
Foundation through the NCCR on Interactive Multimodal In-
formation Management (IM2), http://www.im2.ch. The
authors are grateful to Michael D. Lee for access to the textual
similarity dataset.

REFERENCES

[1] C. Fellbaum et al., WordNet: An electronic lexical database. Cam-
bridge, MA: The MIT Press, 1998.

[2] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American Society
for Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[3] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
SIGIR 1999 (22nd Annual International ACM Conference on Research
and Development in Information Retrieval), Berkeley, CA, 1999, pp.
50–57.

[4] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” in Proceedings
of AAAI 2006 (21st National Conference on Artificial Intelligence),
Boston, MA, 2006, pp. 775–782.

[5] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness us-
ing wikipedia-based explicit semantic analysis,” in Proceedings of IJCAI
2007 (20th International Joint Conference on Artificial Intelligence),
Hyderabad, India, 2007, pp. 6–12.

[6] D. Milne and I. H. Witten, “Learning to link with Wikipedia,” in
Proceedings of CIKM 2008 (17th ACM Conference on Information and
Knowledge Management), Napa Valley, CA, 2008, pp. 509–518.

[7] E. Yeh, D. Ramage, C. D. Manning, E. Agirre, and A. Soroa, “Wikiwalk:
random walks on wikipedia for semantic relatedness,” in Proceedings
of TextGraphs-4 (2009 Workshop on Graph-based Methods for Natural
Language Processing), Singapore, 2009, pp. 41–49.

[8] T. H. Haveliwala, “Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search,” IEEE Transactions on Knowledge and Data
Engineering, vol. 15, pp. 784–796, 2003.

[9] Metaweb Technologies, “Freebase wikipedia extraction (WEX),”
http://download.freebase.com/wex/, 2010.

[10] P. Sarkar and A. Moore, “A tractable approach to finding closest
truncated-commute-time neighbors in large graphs,” in Proceedings of
UAI 2007 (23rd Conference on Uncertainty in Artificial Intelligence),
Vancouver, BC, 2007.

[11] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, “Placing search in context: The concept revisited,”
ACM Transactions on Information Systems, vol. 20, no. 1, pp. 116–131,
2002.

[12] K. Collins-Thompson and J. Callan, “Query expansion using random
walk models,” in Proceedings of CIKM 2005 (14th ACM Conference
on Information and Knowledge Management), Bremen, Germany, 2005,
pp. 704–711.

[13] M. Lee, B. Pincombe, and M. Welsh, “An empirical evaluation of
models of text document similarity,” in Proceedings of CogSci 2005
(27th Annual Conference of the Cognitive Science Society), Stresa, Italy,
2005, pp. 1254–1259.


