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TDOA- (time difference of arrival-) based algorithms are common methods for speech source localization. The generalized cross
correlation (GCC) method is the most important approach for estimating TDOA between microphone pairs. The performance of
this method significantly degrades in the presence of noise and reverberation. This paper addresses the problem of 3D localization
in joint noisy and reverberant conditions and a single-speaker scenario. We first propose a modification to make the GCC-PHAse
transform (GCC-PHAT) method robust against environment noise. Then, we use an iterative technique that employs location
estimation to improve TDOAs accuracy. Extensive experiments on both simulated and real (practical) data (in a single-source
scenario) show the capability of the proposed methods to significantly improve TDOA accuracy and, consequently, source location
estimates.

1. Introduction

The ever-increasing communication between humans and
machines needs localizing and tracking of acoustic sources.
Automatic camera tracking for video-audio applications,
microphone array beamforming for suppressing noise and
reverberation, distant-talking speech recognition and robot
audio systems are sample applications for speech source
localization [1–8].

The problem of sound source (speaker) localization
has been extensively explored in the last two decades;
state-of-the-art methods for sound source localization can
be generally classified into four categories [9]: (1) time
difference of arrival (TDOA)-based techniques, (2) steered
response power- (SRP-) based methods, (3) energy ratio
estimation, and (4) subspace characterization. These meth-
ods usually employ linear [10, 11] or circular [12–16]
microphone arrays to locate the sound source. Considering
the practical issues (such as small intermicrophone distance,
reverberant environments, etc.), the choices for sound
source localization will be actually limited to TDOA- and
SRP-based categories [9]. TDOA-based methods have been

widely employed in recent years mainly because of their
low-complexity. Although SRP-based algorithms, espe-
cially the well-known SRP-PHAse transform (SRP-PHAT)
method, have shown very good results in sound source
localization, the computational complexity is much higher
than TDOA-based methods [17].

Also, previous works have been focused mostly on
estimating only azimuth, mainly by means of circular arrays
(e.g., see [14, 15]). So, the application of a limited number
of microphones for 3D localization of the speaker (in either
Cartesian or polar coordinates) is still a challenging problem.

In this research, we have focused on 3D localization of
(single) speaker in a practical (joint noisy and reverber-
ant) room. Adding the constraint of low complexity, the
most appropriate option would be the TDOA-based family.
To make 3D localization feasible, we have proposed and
implemented a new triangular-shape microphone placement
(explained in Section 6).

In the TDOA-based methods, firstly, the TDOA of
the signals is estimated for each microphone pair (TDOA
estimation stage), then, the source location is estimated
based on these TDOAs (location estimation stage) [3].
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When only two microphones are available, there are
two main approaches for TDOA estimation [18]: the first
approach works based on blind estimation of the impulse
responses between the source and two microphones [19, 20].
In the other approach, relative delay is directly estimated
from the cross correlation of two microphone signals [21–
23].

The generalized cross correlation (GCC) method [21] is
the most common and the fastest two-channel algorithm for
TDOA estimation [18]. The delay is obtained as the time
lag that maximizes the cross correlation between (the filtered
version of) the received signals [21].

The accuracy of estimated TDOAs is very important,
since any error in TDOAs leads to a high error in localization
[24]. In real acoustic environments, the accuracy of TDOAs
is degraded due to noise and/or reverberation. Several
modifications have been proposed to improve the perfor-
mance of TDOA-based methods in noisy or reverberant
situations. While most of these modifications have been
proposed to improve the localization accuracy in reverberant
environments [24–27], a few of the others deal with noisy
conditions [21, 28].

In many practical situations (like meeting rooms), the
situation becomes more severe, where the source localization
should be done in the presence of both noise and reverber-
ation [28]. This problem has drawn increasing attention in
recent years.

One approach would be the use of single-step (direct)
methods that preserve and propagate all the intermediate
information and use them to estimate the source location at
the very last step. A modified version of this class, steered
beam (SB) sound source localization has been proposed
in [29]. This method has similarities with the SRP-based
category and is a good choice when the computational
complexity is not the main constraint.

As another solution, a method has been proposed in
[30] that employs harmonicity of the speech signal to handle
the localization in joint noisy and reverberant situations.
This method (and most of the recent works) has high
computational complexity and/or fails to provide acceptable
performance. So, the topic is still being researched.

This paper aims to improve the performance of the
state-of-the-art and simple GCC-based source localization
methods in practical joint noisy and reverberant situations.
We firstly explain the GCC basics and its variants. Then,
noting the defects of these techniques in real (practical)
applications, we propose a novel modification of the GCC for
TDOA estimation in joint noisy and reverberant situations.

Furthermore, we propose a hybrid localization method to
improve the accuracy. In this algorithm, TDOA estimation
is iteratively combined with source localization estimation
to improve the accuracy of TDOA estimation. This, in turn,
makes the source localization more accurate. In the proposed
method, TDOA estimation is modified according to the
primary estimated location of source (that is estimated by
a closed form method such as spherical interpolation (SI) or
spherical intersection (SX) [31]). Moreover, we supplement
an outlier removal technique to the system that improves the
localization accuracy.

By implementing the proposed modifications and eval-
uating the whole system on simulated and real (practical)
data, we have demonstrated the superiority of the proposed
methods in accurate speech source localization.

The rest of this paper is organized as follows. In
Section 2, the GCC method is described. The modified
GCC-PHAT method is presented in Section 3. Section 4
explains closed-form source location estimation methods. In
Section 5, hybrid localization method and outlier removal
are presented. Sections 6 and 7 explain the setup and the
results of the experiments on the simulated and real data,
respectively. Finally, some concluding remarks are given in
Section 8.

2. Generalized Cross Correlation Method

The GCC algorithm uses time delay information from only
one pair of microphones [21]. Due to the use of FFT, the
computational complexity of GCC is low; therefore, it is a
common choice for real-time applications.

In this method, delay estimation is obtained via [18, 21]

τ̂GCC = arg max
m

ΨGCC[m], (1)

where

ΨGCC[m] =
K−1∑

K−0

Φ[k]Sx0x1 [k]e j2πmk/K , (2)

is the so-called GCC Function (GCCF) and m is the delay
index (in samples). Sx0x1 [k] is the cross spectrum and is
approximately equal to X0[k] X∗1 [k], where Xn[k] is the
DFT of xn[n] and ∗ is the (complex) conjugate operator.
Also, Φ[k] is a weighting function. Several weighting func-
tions have been proposed in the literature, two of the most
important of them will be described in the following.

2.1. GCC-PHAT Algorithm. In this method, the weighting
function is applied by a PHAse Transform (PHAT) function
defined as [21]:

ΦPHAT[k] = 1∣∣Sx0x1 [k]
∣∣ . (3)

Neglecting noise effects in (2), we can deduce that the
weighted cross correlation spectrum is free from the source
signal and depends only on the channel response. More
precisely, it can be shown [16] that the PHAT is a special
case of the maximum likelihood (ML) approach for sound
localization under low noise conditions. Moreover, PHAT
remains an optimal solution in ML sense regardless of the
amount of reverberation [16]. This way, we can justify good
performance of the method in reverberant situations.

2.2. GCC-ML Algorithm. In this case, the weighting function
is a maximum likelihood (ML) filter defined as [21]

ΦML[k] = |X0[k]||X1[k]|
|N1[k]|2|X0[k]|2 + |N0[k]|2|X1[k]|2

, (4)
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where Nn[k] is the noise power spectrum in the nth
microphone and is estimated during silent frames [3]. In
the ML filter, signal and noise are assumed independent
and stationary. So, in reverberant environments where these
conditions are not satisfied, the performance of the GCC-ML
method will drastically degrade.

3. Modified GCC-PHAT Algorithm

The most important problem with GCC-PHAT method is
its low robustness in noisy situations. This problem can be
justified by the identical contribution of different frequency
bins in the PHAT weighting function. In other words, even
the frequency components with dominant noise have the
same effect in the PHAT function calculation.

To de-emphasize the effect of noisy frequency compo-
nents, we propose a method based on the idea of generalized
spectral subtraction method (a well-known technique in
speech enhancement [32]). We call this new method GCC-
Modified PHAT (or briefly, GCC-MPHAT).

The proposed method works as follows: First, for
each microphone signal, the normalized quantity w′[k] is
obtained according to signal spectrum and the estimation of
the noise spectrum in each frame via

w′[k] = |X[k]|α − β|N[k]|α

|X[k]|α , (5)

where α and β are spectral subtraction parameters that are
determined according to the environment situations. N[k]
is the noise power spectrum in the microphone and is
estimated in a way similar to that in GCC-ML algorithm.
Then, we define w[k] as

w[k] =




1, w′[k] > R,

γ, w′[k] < R,
(6)

where R is a threshold value (0 ≤ R ≤ 1) and 0 ≤ γ < 1
is a floor value for noisy frequency components. Finally, the
PHAT filter (3) is modified as

ΦMPHAT[k] = w0[k]w1[k]

|X0[k]X1[k]| . (7)

w0[k] and w1[k] are computed through (6) for the first and
second microphones, respectively.

4. Closed-Form Source Location Estimation

In a constant sound velocity environment, the TDOAs are
proportional to differences in source-sensor ranges, called
range-differences (RDs). The source location is convention-
ally found as a weighted intersection of the set of constant-
RD hyperboloids. This results in a nonlinear set of equations
with high computational complexity. Although several opti-
mal solutions have been proposed for this problem in the
literature, suboptimal closed-form solutions (like SI and SX)
are of much interest due to the tremendous computational
savings. SX and SI localization methods can be briefly
explained as follows [31].

Considering xs = (xs, ys, zs) as the source position
and xi = (xi, yi, zi) as the position of ith microphone,
the source-microphone distance, source-origin distance,
and microphone-origin distance are determined via Di =
‖xi − xs‖, Rs = ‖xs‖ and Ri = ‖xi‖, respectively. Hence,
the RD between the ith and jth microphone will be di j =
c · τi j = Di − D j , (i = 1, . . . ,N , j = 1, . . . ,N). In the SI or
SX methods, xs is determined such that matches with di j ’s, in
a suboptimal manner.

Defining the error vector as ε = δ − 2Rsd − 2Sxs, where

δ =




R2
2 − d2

21

R2
3 − d2

31

...

R2
N − d2

N1




, d =




d21

d31

...

dN1




, S =




x2 y2 z2

x3 y3 z3

...
...

...

xN yN zN




, (8)

and considering W as the error weighting matrix, by
minimizing εTWε, the least squares (LS) solution for the
source location is obtained as

xs =
1

2
S∗w(δ − 2Rsd), (9)

where

S∗w =
(
STWS

)−1
STW. (10)

The SI and SX methods are suboptimal solutions that
approximate the above nonlinear problem. In the SI method,
the source location is estimated as

xs =
1

2
S∗w
(
δ − 2R̃sd

)
, (11)

where

R̃s =
dTP0

sVP0
s δ

2dTP0
sVP0

sd
, Ps = S

(
STWS

)−1
STW , P0

s = 1− Ps.

(12)

The SX solution is obtained by substituting the LS
solution (9) for xs given Rs into the quadratic equation R2

s =
xTs xs:

R2
s =

[
1

2
S∗w(δ − 2Rsd)

]T[1

2
S∗w(δ − 2Rsd)

]
. (13)

After expansion, the above equation yields the standard
form aR2

s + bRs + c = 0, where

α = 4− 4dTS∗Tw S∗wd, b = 4dTS∗Tw S∗wδ, c = −δTS∗Tw S∗wδ.

(14)

This quadratic equation has two solutions of the form

Rs =
−b ±

√
b2 − 4ac

2a
, (15)

where the positive one is taken as an estimate of the source-
to-origin distance. Substituting this value in (9), the source
location, xs, is estimated.
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5. Hybrid Method for Source Localization

5.1. Problem Definition. TDOA estimation algorithms can
be employed in two- or multi-microphone forms. Although
two-microphone algorithms are fast, in real-life applications,
they fail in estimation of accurate TDOA. On the other hand,
multimicrophone algorithms use redundant information
of several microphone-pairs and have better performance
in TDOA estimation. An example method that uses this
redundancy for the disambiguation of TDOA estimations in
multipath multisource environments is the DATEMM that is
proposed in [33].

Many source localization techniques do the TDOA
estimation and location estimation as two separate stages;
however, these two stages are obviously related. In the con-
ventional algorithms, if the estimate of TDOA is erroneous
(due to noise and/or reverberation), there will be no way
to correct it. Actually, if the estimated TDOA of only one
microphone pair is erroneous, the source location estimation
(the second stage of the whole localization process) will be
biased.

5.2. Proposed Hybrid Method. As in the typical example
shown in Figure 1, in the case of incorrect estimation of
TDOA, the GCC-PHAT function usually has a local maxi-
mum in the correct delay sample; however, this maximum
is not a global one. The idea we have used in this research
can be explained as follows. By employing information about
primary estimation of source location and microphone
positions, we find a (more) correct local maximum for the
GCC function (or a more correct TDOA estimation). In
turn, a more accurate estimation of source location will
be available. The process is iterated until a convergence in
estimated location is reached. This idea has been employed
in the proposed hybrid localization method as explained in
the following.

Assuming the (true) source location is known, exact
TDOA estimation in ith microphone pair can be written as

τexact =
|s−mi1| − |s−mi0|

c
, (16)

where s is source location, c = 341 m/s is the velocity of
sound, and mi0 and mi1 are the microphone positions.

In the proposed hybrid method, a primary estimation
of source location (ŝP) is first calculated using the primary
TDOA (τP) values of all microphone pairs; this is done
using the SI or SX methods (such as were explained in
Section 4). Due to erroneous TDOAs in the input of the
SX or SI method, ŝP will be biased. Then, by substitution
of s with ŝP in (16), we obtain a new TDOA value (called
“Intermediate TDOA” or τI). For the microphone pairs with
correct TDOA, intermediate TDOA (τI) and primary TDOA
(τP) are expected to be about the same, but this is not the case
for microphone pairs with incorrect TDOA. Although ŝP is a
biased estimation of the source location, it can be shown [22]
that the primary estimation of direction of arrival (DOA)
is not so affected by erroneous TDOAs. This justifies the
iterative use of (16). In practice, this update process is run
iteratively only for the microphone pairs which have an
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Figure 1: Typical curve of GCC function.

intermediate TDOA in a predefined range of the primary one
(such that has been explained in Section 5.3).

According to the above explanation, it is expected that the
true value of the TDOA will be in the neighboring interval of
τI . By searching the GCC function around the intermediate
TDOA, we find the correct local maximum. In turn, this
determines the accurate TDOA (called “Final TDOA” or τF).
τF is calculated through

τF = arg max
τI−∆≤m≤τI+∆

ΨGCC[m], (17)

where 2∆ determines the search interval among the delay
index, m. ∆ should be small enough that an incorrect global
maximum does not lie in the search interval and also should
be large enough that the correct local maximum lies in the
search interval.

5.3. TDOA Outlier Removal. To improve the accuracy of
source localization, we have also proposed the elimination
of outlier TDOA estimates.

It is known that for 3D source localization, four micro-
phones are necessary. If we employ more than four micro-
phones (or equivalently, more than three independent
TDOAs), we will have some degrees of freedom to remove
outlier TDOAs. Removing outlier TDOAs leads to more
accurate location estimation [34]. In the proposed hybrid
system, if the difference between τI and τP is more than a
predefined threshold (T), we deduce that the TDOA estimate
is incorrect and that it should be removed. The outlier
elimination process is explained mathematically as follows:

|τI − τP|

Remove
>
<

Not Remove

T. (18)

There is an obvious tradeoff between keeping as many
correct TDOAs as possible and removing erroneous ones.
Thus, the optimal value of T is determined experimentally.
In our case, we use T = 5.
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Figure 2: (a) Triangular-shape microphone array. (b) Schematic representation of the simulated room.

Table 1: Comparison between 3D RMSE of various speech source localization methods on artificially generated data.

Method GCC method
RMSE (m) for

near source

RMSE (m) for
middle-center

source

RMSE (m) for
middle-corner

source

RMSE (m) for
far source

Average RMSE
(m)

SI
PHAT 2.094 1.190 1.488 2.344 1.779

MPHAT 1.964 1.116 1.339 1.877 1.574

SX
PHAT 1.692 0.941 1.157 1.894 1.421

MPHAT 1.653 0.897 1.058 1.560 1.292

Hybrid SI
PHAT 1.271 0.739 0.934 1.520 1.116

MPHAT 1.260 0.712 0.865 1.151 0.997

Hybrid SX
PHAT 1.069 0.597 0.758 1.112 0.884

MPHAT 0.971 0.561 0.668 0.901 0.775

SI + outlier remove
PHAT 1.442 0.809 1.027 1.610 1.222

MPHAT 1.281 0.762 0.929 1.280 1.063

SX + outlier remove
PHAT 1.297 0.647 0.802 1.242 0.997

MPHAT 1.116 0.631 0.776 1.073 0.899

Hybrid SI + outlier Remove
PHAT 1.247 0.649 0.814 1.266 0.994

MPHAT 1.184 0.645 0.754 1.065 0.912

Hybrid SX + outlier remove
PHAT 0.924 0.546 0.709 1.089 0.817

MPHAT 0.919 0.530 0.641 0.882 0.743

SRP-PHAT 0.980 0.655 0.605 0.950 0.798

We note that the outlier removal procedure has been
practically implemented in the body of hybrid localization
method (explained in Section 5.2).

6. Experiments on Simulated Data

To evaluate the effect of the proposed modifications, we
first simulated a practical room. The parameters of this

simulation are explained as follows. More details about the
selection of these parameters is available in [35].

(a) Dimensions of the simulated room: 10×6×4 m (x×
y × z).

(b) Array structure and position: we have considered
a novel 3D (multi-) triangular-shape microphone
array (already proposed by the authors in [35])
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Figure 3: TDE performance in reverberant situations (exact value of TDOA is 9 samples).

that is depicted in Figure 2(a). The array consists 9
point microphones with a spacing of 40 cm. Superior
performance of the triangular-shape array has been
demonstrated in comparison with rectangular- and
L-shape arrays. This can be justified by proper
coverage of all dimensions yielded by the proposed
triangular-shape array. The location of the array
in the room is shown in Figure 2(b) (note to the

coordinates). As shown, the reference microphone is
located at (5, 6, 4).

(c) Source location: we focus solely on single-speaker
localization. To examine the effect of speaker position
(relative to the array), the experiments were repeated
for four different source positions; these are: (5, 5,
and 1.8) (near to and in front of the array), (5, 3, and
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Figure 4: TDE performance in noisy situations (exact value of TDOA is 9 samples).

1.8) (middle-center the room, in front of the array),
(3, 4, and 1.8) (middle-corner of the room), and (1,
1, and 1.8) (far from the array).

(d) Reverberation and noise modeling: for reverberation
modeling, we have used the image method [36]. The
reverberation time has been assumed T60 = 350 ms

and T60 = 350 ms to model moderate- and high-
reverberant rooms, respectively. Once the impulse
responses from the source to each microphone
were determined, the speech signal was convolved
with the synthetic impulse responses. The original
speech signal was from a male speaker, digitized
at 16-bit resolution at FS = 16 kHz. The original
signal was from the TIMIT database [37] and had
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Figure 5: TDE performance in joint noisy and reverberant situations (exact value of TDOA is 9 samples).

about 30 s time length. Finally, mutually independent
white Gaussian noise was scaled and added to each
microphone signal to set the SNR at two levels (0 and
5 dB).

In the implementation of TDOA estimation and localization
algorithms, the values of the parameters were selected as
follows. Ideally, optimal values for most of these parameters
should be determined adaptively (in different environments
and even different frames of signal).

(a) The processes have been done in a frame-by-frame
basis. The reported results are the average over all
active (speech) frames of 30 s input microphone
signals. Speech presence was detected using a voice
activity detector (VAD). In all the experiments, a
64 ms (or K = 1024 at Fs = 16 kHz) nonoverlapping
Kaiser window was applied to the frames.

(b) The parameters of (5) and (6) (i.e., α, β, R, and
γ) are practically dependent on the frame SNR.
To determine the optimal values for each of these
parameters, we fixed the other three parameters and
examined the effect of several different values for
the intended parameter on the accuracy of TDOA
estimation. Extensive trials were done on the all
simulated microphone signals gathered for above-
mentioned four source positions. A detailed report
on these examinations is available at [35]. It was
shown that optimal values for α are in the range of
0.8 ≤ α ≤ 1. Also, examining three different values
for β (0.4, 0.7, and 1), it was shown that much better
results could be achieved in the case of β = 0.7,
while smaller values for β make the performance of
the MPHAT very similar to that of PHAT, the larger
values of β remove many informative frequency bins.
In the tradeoff between noise reduction and signal
distortion, the optimal value for R was found to be
R = 0.2. Also, optimal value for the noise floor
level was determined via extensive trials on different
values of γ, while large values for γ make the MPHAT
similar to the PHAT, small (or near zero) values for
γ degrade the performance of TDOA estimator in

reverberant situations. Briefly, the following values
for the algorithm parameters were used in our
experiments

α = 1, β = 0.7, R = 0.2, γ = 0.1. (19)

(c) Using extensive trials on the outlier removal algo-
rithm, proper values for the parameters were found
to be T = 5 and ∆ = 5. Experiments show that
these values lead to acceptable results in almost all
cases. It is noted that both sampling frequency and
microphone spacing have a direct effect on TDOA,
and consequently, on the value of T . Also, the
sampling frequency directly affects the search interval
(∆).

6.1. Performance of GCC-MPHAT. To compare TDOA esti-
mation methods, we evaluated their performance in rever-
berant and noisy situations, separately, in Figures 3 and 4.
As a sample, we report TDOAs of the third microphone
pair in the case of second source position (middle-center
the room, in front of the array). Similar comparative results
are obtained for other microphone pairs and different source
locations. The histograms of TDOA estimates of GCC-ML,
-PHAT, and -MPHAT functions in different reverberant
situations are depicted in Figure 2, while those for different
noisy situations are shown in Figure 3.

As illustrated in Figure 3, in a moderately reverberant
situation (T60 = 350 ms), all algorithms result in approx-
imately accurate TDOAs. However, when reverberation
becomes high (T60 = 580 ms), ML performance decreases
significantly, while PHAT and MPHAT retain very good
performance.

Figure 4 shows that all algorithms have acceptable
performance in moderately noisy situations (SNR = 5 dB).
However, when the noise level is increased (SNR = 0 dB),
PHAT performance will decrease drastically, while ML and
MPHAT method have significantly better performance.

Also, we compared the performance of these meth-
ods in joint noisy and reverberant situations (SNR =
5 dB, T60 = 350 ms) in Figure 5. As seen, the performance
of MPHAT method is much improved over the others. This
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Figure 6: Comparison between (a, c, e) primary TDOA (τP) and (b, d, f) final TDOA (τF) values estimated using the hybrid algorithm (exact
value of TDOA is (−5) samples.).

demonstrates MPHAT robustness against both noise and
reverberation.

6.2. Performance of Hybrid Localization Method. As a pri-
mary evaluation of the proposed hybrid system, we applied
the hybrid TDOA estimation on artificially generated micro-
phone signals and compared the histograms of τP and τF . To
examine the effect of different TDOA estimation techniques,
we repeated this evaluation for GCC-ML, -PHAT, and
-MPHAT methods. It is noted that the comparisons of
this part were done in a reverberant and moderate noisy

condition (SNR = 5 dB, T60 = 350 ms). The results were
drawn in Figure 6 for the case of first microphone pair and
the second source position (as a sample case). In each row,
the left histogram is for τP and the right one is for τF . As
shown, in all cases, τF is more accurate (robust) compared to
τP . This demonstrates the superiority of the proposed hybrid
localization method. The improvement is more obvious in
the case of MPHAT (and PHAT).

In the next experiment on the artificially generated data,
we performed sound source localization using the SX and
SI methods and compared 3D RMSE (root mean square
error) values. Table 1 summarizes the comparative results for
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different localization methods. As a reference, we also include
the RMSE values for the well-known SRP-PHAT method
[17] (with a grid size of 0.1 × 0.1 × 0.1 m (x × y × z)). As
shown, we have the following.

(i) MPHAT weighting function outperforms PHAT in all
cases.

(ii) While the hybrid localization and outlier removal
techniques have improved the accuracy of the sound
localizer, the best results were reached by joint hybrid
localization and outlier removal.

(iii) The highest localization accuracy was obtained for
the middle-center source. As the source-array dis-
tance increases, the reverberation increases; this, in
turn, degrades the localization accuracy.

(iv) In the case of near source (at (5, 5, and 1.8)), the
far-field assumption is clearly violated; this explains
poor performance of the TDOA-based localization
methods for the near source.

(v) The localization accuracy of the proposed method is
of the order of SRP-PHAT accuracy, while requiring
lower computational complexity.

7. Experiments on Real Data

We also evaluated the performance of the whole speech
source localization system (and proposed modifications) on
real data recorded in a sample practical room. Figure 7
shows a schematic representation of the real-data recording
room. The room dimension is 5.65 × 7.34 × 3.23 m (x ×
y × z). Considering different environmental noise sources
(from fans, PCs, lights, babble noise from outside, etc.), the
noise field can be approximated as a diffuse one. The hard
surfaces and walls made the environment highly reverberant.
Reverberation time of the room is estimated T60

∼= 650 ms.
Data recording was done by means of a microphone array
setup that consists of 16 microphones with a spacing of
35 cm. The microphones were attached to the edges of a table.

The speech data was recorded from a male speaker,
digitized at 16-bit resolution at Fs = 16 kHz. Three
marked positions were considered as the speaker standing
point; these positions were (1.78, 2.78, and 1.6) (near the
microphones), (3.02, 4.38, and 1.6) (middle of room), and
(1.78, 5.28, and 1.6) (far from the microphones). In these
locations, the average SNR in the reference microphone
was about 12.7 dB, 7.1 dB, and 3.2 dB, respectively. At each
position, the speaker uttered a predefined text with a time
length of about 20 s. The details of recording setup and the
microphone placements have been explained in [35].

In Figure 8, we compare performance of GCC methods
in the real acoustic environment. This comparison has been
done for the data from a near speaker and a far speaker.
The advantage of the MPHAT method over the ML and
PHAT methods is evident in both near and far cases. As
expected, by increasing the distance between speaker and
microphones, the reverberation becomes more challenging;
consequently, the performance of the ML method is highly
degraded. Furthermore, as the distance increases, the SNR at

0
1

4
5

6
7

3
2

0

1

2

3

4

5

0

1

2

3

Width (y)

Le
ng

th
(x

)

H
ei

gh
t

(z
)

Sources

Microphones

Figure 7: Schematic representation of real-data recording room.

the input decreases. This results in the degradation of PHAT
performance. So, the MPHAT superiority is more obvious in
the case of a far speaker, where the input signal is highly noisy
and reverberant.

As a final evaluation, we have evaluated the effect of the
proposed modifications on the real (practical) data. Table 2
compares the 3D RMSE of the proposed hybrid method
with conventional SX and SI methods. Both PHAT and
MPHAT methods for TDOA estimation are considered in
comparative evaluations. Again, we have also included the
RMSE values for SRP-PHAT for reference. As it is shown, we
have the following.

(i) Applying the MPHAT technique for TDOA estima-
tion results in more accurate estimation of source
location.

(ii) The hybrid localization method improves the perfor-
mance of both SI and SX methods.

(iii) TDOA outlier removal increases the localization
accuracy.

(iv) By applying all proposed modifications (i.e., hybrid
SI + outlier remove with MPHAT), we get the best
results.

(v) The highest localization accuracy is achieved in the
case of the second source position, where the speaker
is in the middle of the room and in front of the array.

8. Conclusions

In this paper, we presented and evaluated three novel
modifications to improve the performance of TDOA-based
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Table 2: Comparison between 3D RMSE of various speech source localization methods on real (practical) data.

Method GCC method
RMSE (m) for

near source
RMSE (m) for
middle source

RMSE (m) for
far source

Average RMSE
(m)

SI
PHAT 2.765 1.864 2.861 2.497

MPHAT 2.412 1.651 2.437 2.167

SX
PHAT 2.803 1.976 2.915 2.565

MPHAT 2.519 1.765 2.608 2.297

Hybrid SI
PHAT 1.486 0.867 1.847 1.400

MPHAT 1.245 0.764 1.608 1.206

Hybrid SX
PHAT 1.515 0.964 1.867 1.449

MPHAT 1.327 0.881 1.688 1.299

SI + outlier remove
PHAT 1.841 1.216 2.139 1.732

MPHAT 1.529 0.976 1.962 1.489

SX + outlier remove
PHAT 1.870 1.416 2.224 1.837

MPHAT 1.651 1.237 2.060 1.649

Hybrid SI + outlier remove
PHAT 1.300 0.851 1.726 1.292

MPHAT 1.195 0.751 1.589 1.178

Hybrid SX + outlier remove
PHAT 1.326 0.902 1.745 1.324

MPHAT 1.266 0.784 1.652 1.234

SRP-PHAT 1.227 0.742 1.701 1.223
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Figure 8: TDE performance in real acoustic environment (a) near speaker (exact value of TDOA is (−1) samples), (b) far speaker (exact
value of TDOA is (−19) samples).

3D localization system in a single-speaker scenario. The
proposed modifications were MPHAT (instead of PHAT), a
hybrid localization method, and TDOA outlier removal.

The GCC-MPHAT method modifies the PHAT weight-
ing function based on an idea borrowed from the generalized

spectral subtraction method. The GCC-MPHAT has the
advantages of the PHAT method, while it is also robust
against noise. In the hybrid algorithm, we use the primary
estimation of the source location to modify erroneous TDOA
estimates and find true delays. Consequently, a more accurate
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estimate of source location is achieved. At the TDOA outlier
removal stage, we find erroneous TDOAs and remove them
from the source localization process.

Our extensive experiments on both simulated and real
(practical) data have demonstrated the capability of the
proposed modifications in improvement of a speech source
localization system.

Acknowledgment

The authors would like to sincerely thank Philip N. Garner
(senior researcher at Idiap) for his constructive comments
and corrections that helped to improve the paper.

References

[1] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum-likelihood
source localization and unknown sensor location estimation
for wideband signals in the near-field,” IEEE Transactions on
Signal Processing, vol. 50, no. 8, pp. 1843–1854, 2002.

[2] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-
time passive source localization: a practical linear-correction
least-squares approach,” IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 8, pp. 943–956, 2001.

[3] M. S. Brandstein and H. F. Silverman, “A practical methodol-
ogy for speech source localization with microphone arrays,”
Computer Speech and Language, vol. 11, no. 2, pp. 91–126,
1997.

[4] J. E. Adcock, M. S. Brandstein, and H. F. Silverman, “A closed-
form location estimator for use with room environment
microphone arrays,” IEEE Transactions on Speech and Audio
Processing, vol. 5, no. 1, pp. 45–50, 1997.

[5] C. Wang and M. S. Brandstein, “Multi-source face tracking
with audio and visual data,” in Proceedings of the IEEE
3rd Workshop on Multimedia Signal Process, pp. 169–174,
Copenhagen, Denmark, 1999.

[6] M. Omologo and P. Svaizer, “Use of the crosspower-spectrum
phase in acoustic event location,” IEEE Transactions on Speech
and Audio Processing, vol. 5, no. 3, pp. 288–292, 1997.

[7] A. Pentland, “Smart rooms,” Scientific American, vol. 274, pp.
68–76, 1996.

[8] P. Aarabi and S. Zaky, “Robust sound localization using multi-
source audiovisual information fusion,” Information Fusion,
vol. 2, no. 3, pp. 209–223, 2001.

[9] F. Ribeiro, C. Zhang, D. A. Florêncio, and D. E. Ba, “Using
reverberation to improve range and elevation discrimination
for small array sound source localization,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 18, no. 7, pp.
1781–1792, 2010.

[10] J. Kleban, Combined acoustic and visual processing for videocon-
ferencing systems, M.S. thesis, Rutgers University, 2000.

[11] H. Wang and P. Chu, “Voice source localization for automatic
camera pointing system in videoconferencing,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP ’97), vol. 1, pp. 187–190, Munich,
Germany, 1997.

[12] R. Cutler, Y. Rui, A. Gupta et al., “Distributed meetings: a
meeting capture and broadcasting system,” in Proceedings of
the ACM International Multimedia Conference and Exhibition,
pp. 503–512, Juan-les-Pins, France, 2002.

[13] Y. Rui, D. Florêncio, W. Lam, and J. Su, “Sound source
localization for circular arrays of directional microphones,” in

Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’05), pp. 93–96, March
2005.

[14] C. Zhang, Z. Zhang, and D. Florêncio, “Maximum likelihood
sound source localization for multiple directional micro-
phones,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’07), pp. 125–
128, April 2007.
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