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Abstract— In many visual multi-object tracking applications,  proposing new features or new multi-cue fusion mechanisms,
the question when to add or remove a target is not trivial and results are demonstrated mostly on short sequences. Few
due to, for example, erroneous outputs of object detectorsro ¢ them address the issue of track initialisation (esphgial

observation models that cannot describe the full variabiliy of hen doi f luati Itis oft od th
the objects to track. In this paper, we present a real-time, oline when doing performance evaluation). Itis often assum a

multi-face tracking algorithm that effectively deals with missing @ face detector is used for that purpose, but how to rely on a
or uncertain detections in a principled way. The tracking face detector? If &igh confidence threshold is used, there is

is formulated in a multi-object state-space Bayesian filtdng g higher risk of missing an early track initialisation. [fav

framework solved with Markov Chain Monte Carlo. Within — threshold is chosen, false track alarms are likely to occur.
this framework, an explicit probabilistic filtering step re lying on . 6{3
head detections, likelihood models, and long term observians Even fewer works address track terminaiomdeed, how

as well as object track characteristics has been designed to do we know at each point in time that a tracker is doing fine
take the decision on when to add or remove a target from or that there is a failure? This an important issue in pragtic
the tracker. The proposed method applied on three challengig  since a false failure detectiore§. due to the absence of
platasets of more than 9 hour_s_shows a S|gn|f|cant_ performance detected faces) may mean losing a person track for a long
increase compared to a traditional approach relying on head . . . - .
detection and likelihood models only. period until the detector finds the face again. Most algorih
work recursively, and assessing tracking failure is ofefh |
. INTRODUCTION to the (sudden) drop of objective or likelihood measures
The real-time detection of objects is an important comwhich are not that easy to control in practice [8], [9].
ponent in many computer vision applicatioesy. human-  Finally, in many scenarios of interest, the camera is fixed,
computer interaction, video-surveillance, and augmented and due to the application and the room configuration, people
ality. Moreover, faces play a crucial role in human commuin front of the camera tend to occupy the same space or
nication. Thus, the automatic visual detection and tragkinpehave similarly over long periods. However, most of the
of faces is of particular interest in video-conferencinglap existing face tracking methods ignore this long-term infar
cations or in the analysis of social interaction. tion, as they concentrate on videos that are often not longer
The most straightforward approach to solve this problenhan a minute. Or otherwise, long term information is mainly
is to employ a face detector [13]. However, despite muchsed to construct stable appearance models of tracked®bjec
progress performed in recent years on multi-view face dgs], [16], e.g. by working at different temporal scales [12].
tection, and the use of these detectors in “simple” scesari@imilarly, some approaches [1], [4] train an (object-speki
where people predominantly look towards the camera (videfetector online, during tracking, to make it more robust
conferencing, HCI), this is not sufficient, ad to 40% of  to short-term and long-term appearance changes. Recently,
faces are missed as demonstrated in our results. There Mikami et al. [8] introduced the Memory-based Particle
indeed many situations where faces are not detected, whighter where a history of past states (and appearances [9])
is especially due to variability in face appearance or light s maintained and used to sample new particles. However,
conditions. Above all, it is the consequence of less commafey only addressed single, near-frontal face trackingigh
head poses that people naturally take. to look at other resolution videos and only evaluated the method on 30 to
people in the same room, or to look down (at objects 080 second video clips. Finally, other workad. [6], [11])
a table, or if they are tired or bored) which often involvegackle the problem of long-terwerson tracking by analysing
large head tilts. Unfortunately, the missed detections @b nthe statistics of features from shorter tracks (trackleisy
happen at random time, since for the above reasons, th¢ proposing methods to effectively associate them. These
difficult head postures can last for long periods (up to ongigorithms are essentially different from ours as they pssc
minute in some of our recordings). In practice, this meange dataoff-line, i.e. the observations at each point in time
that face detection algorithms have to be complemented ke known in advance, and they mainly deal with the tracking
robust tracking approaches; not only to interpolate d&tect of whole persons (not just the face).
results or filter out spurious detection as is often assumed,
Igut also to allow head localisation over extended periods of1 \gte that principled methods exist to integrate track éweagnd
time. termination within the tracking frameworle.g. Reversible-Jump Markov

Numerous methods for visual tracking of multiple face€hain Monte Carlo (R3-MCMC) [5], [15]. But to be effectivéyey require
appropriate global scene likelihood models involving a dixeumber of

have been proposed in .the Iiteratueeg( []_-0]’ [14]’ [7]' [2]) observations (independent from the number of objects), thede are
Most of them work on improving tracking performance bydifficult to build in multi-face tracking applications.



In this paper, we propose a novel multi-face trackindNote that this is actually feasible since the creation and
algorithm. It relies on a principled Bayesian filter solveithw deletion of targets are defined outside the filtering step
a MCMC sampling scheme that handles object interactionésee next section),e. k; ; is not updated during this step.
The main contributions of the paper are threefold: i) emplof¥he dynamico (X, ;|X;.—1) of visible faces are described
an explicit probabilistic filtering framework to decide whe by a first-order auto-regressive model for the translation
to add or remove an object from the tracker based on @mponents and a zero-th order model with steady-state for
longer-term image features, the output of a face detecsor, the scale and eccentricity parameters. The steady-state is
well as features coming from the face tracker itself(state updated only when a detected face is associated and at a
variance); ii) propose the use bfng-term image observa- much slower pace compared to the frame-to-frame dynamics.
tions in order to cope effectively with missing or uncertain The interaction priop, is defined as
face detections; iii) a thorough performance evaluation on

nearly 10 hours of video conferencing videos involvidgo po(Xilke) = H¢(Xi,t7 X;t)
5 persons per view, with arourz®, 000 annotations. Results {i,jteP 4)
demonstrate the validity of our approach. _ X exp {_ )\ng(Xi,t,Xj,t)},

The paper is organised as follows. The next Section GireP

describes our multi-face MCMC particle filter framework. _ b | h oth h
Sectior Tl presents our approach for track creation arld faiPreventing targets to become too close to each other. The

ure detection. And in sectidn]V, we present our experimentet?” = {14, 7} [kiy =1 A kj =1 A i # j} consists of all
possible pairs of objects that are visible. The penalty fionc

results. T 24(BinB;) - : .
9(Xi, Xj0) = TBotaBy 1S the intersection area as a
K i J .
Il. MULTI-FACE TRACKING WITH PARTICLE FILTER fraction of the average area of the two bounding boRes

We tackle the problem of multi-face tracking in a recursiveand B; defined byX, ; andX, ;, whereqa(.) denotes the area
Bayesian framework. Assuming we have the observatiormperator. The factak, controls the strength of the interaction
Y. from time 1 to ¢, we want to estimate the posteriorprior and was set t6 in our experiments.
probability distribution over the stafX, at timet: ) o

C. Observation Likelihood
p(Xi[Y14) = ip(Yt|X,g) As a trade-off between robustness and computational
C o B ~ complexity, we employ a relatively simple but effective
X / p(X¢|Xi—1)p(Xi—1]Y14-1) dXi—1, (1) observation likelihood for tracking. Note that another ralod
Xi-1 could be used as well.
whereC' is a normalisation constant. As closed-form solu- Given our scenario, we assume that the face observations
tions are usually not available in practice, this estimmatioy,; are conditionally independent given the state, leading
is implemented using a particle filter with a Markov Chainto an observation likelihood defined as the product of the
Monte Carlo (MCMC) sampling scheme [5]. The mainvisible individual faces likelihoods:
elements of the model are described in more detail in the -
following sections. p(YiXy) = [ p(YirlXin). (5)
ilki =1

A. Sate space ) )
. . . The observation model for a face is based®n= 6 HSV
We use a multi-object state space formulation, with our

global state defined aX, — (X, k), where X; — colour histogramsY;, = h(r,X;,) that are computed on
X1 and k. — {I{ ! b El'r’1e variabletX the face region described by the stag; and compared to
it ri=1..M t = it pi=1..M- it

denotes the state of face which comprises the position histogram model#; ,(r), allowing to define the observation

scale and eccentricityi.é. the ratio between height and likelihood for a tracked face as follows:
6

width) of the face bounding box. Eadf ; denotes the status .
of facei at timet, i.e. k; ; = 1 if the face is visible at time P(YitXi ) o< exp(=Ap ZDQ[hi,t(r)’ h(r, X)), (6)

t, andk; ; = 0 otherwise. Finally A/ denotes the maximum r=1

number of faces visible at a current time step. where D denotes the Euclidean distaBcand Ap is set to

20. More precisely, we divided the face into three horizontal
bands and compute two normalised histograms in each of the
band using two different discretisationsj, = 8 and N, = 4

B. Sate Dynamics
The overall state dynamics is defined as:

o M bins per channel, using the scheme proposed in [10] which
P(X¢|Xi-1) o po(Xefke) [ [ P(XitlXe-1.ke) . (2)  decouples coloured pixels (accumulatediipx N, HS bins)
i=1 from greyscale pixels (put iV, separate bins).
i.e. the product of an interaction pripp and of the dynamics  Finally, the histogram models of one face are initialised
of each individual faces. More precisely, when a new target is added to the tracker. To improve the

tracker's robustness to improper initialisation and cliagg

P(Xie| Xip—1) if k=1
p(X’i,t|Xt71,kt) = ( ? | 2, ) T, . |
! otherwise 2A Bhattacharyya distance could have been used as well.



lighting conditions, they are updated whenever a detected
face is associated with the given face track (see below). Let
h;{t denote the histograms computed from the detected face

associated with a tracked objectThen: G

hia(r) = (L= ehi, 1 (r) +ehdy(r) ¥r,  (7)

wheree is the update factor (set @2 in our experiments).

Fig. 1. The HMM for tracker target creation, used at each inpixel.
The variablec; indicates if there is a face at a particular position. The
probability of ¢; is estimated recursively using the observatidpsand ;.

D. Tracking algorithm

At each time instant, the tracking algorithm proceeds iRonrolling the proportion of samples generated by each
two main stages: first, recursively estimate the states @f thyixiure component. It relies on the dynamics from past

currently visibI_e faces relying on the model described &0V, ticle to propose good state candidates assuming tempora
and solved using a MCMC sampling scheme. Second, mag?noothness, and on the output of a face detector which is
a decision on adding a new face or on deleting currentlysef,| for handling tracker drift.

tracked faces. This second stage is described in Sdction IlI

The MCMC sampling scheme allows for efficient sampling Ill. TARGET CREATION AND REMOVAL
in this high-dimensional state space of interacting tarffst ~ The way objects are added and removed from the tracker is
and works as follows. a key feature of the proposed algorithm. In previous work [5]

Let N be the total number of particles and, the number [15], target creation and removal are directly integrated i
of “burn-in” particles. At each tracking iteration, do thethe probabilistic tracking framework. However, this regsi
following steps: global scene likelihood models which are difficult to obtain
1) initialise the MCMC sampler at timewith the sample in this type of application (see footndi¢ 1 on page 1). Our
Xgo) obtained by randomly selecting a particle fromgoal is to achieve a high precision during tracking, we
the set{f(gs_)hs = (Ny+1)...N} at timet —1 and Would like to avoid as much as possible false alarms. This
sample the state of every visible targen XEO) using means t_hat Fhe tracker shoulq be gble to _detect as qwckly
the dynamics(X.¢|Xic1); as possible if there is a tracking fallgre; smultanequﬂy,
2) sample iterativelyV particles from the posterior distri- Should not stop tracking when there is no failure, since the
bution of [1) using the Metropolis-Hastings algorithmalgor'thm may have to wait for a long time before th_e face_' is
according to: detected again. Surprisingly, this problem has receivgé li
N . attention in the past.
3) S?‘mF"e anew P"’(‘S'C'Kf frgm a proposal dis- g propose to use two different Hidden Markov Models
tribution ¢(X; |X; ) (described below); (HMM) for that purpose, as described in the following sec-
b) compute the acceptance ratio: tions. One is used for object creation and the other for @bjec
=~ > ()< ! removal, and they receives different types of observations
e = min <1, pXt Vi) ¢(Xs / X+ ) 8) A face detector (for both frontal and profile views) is
p(Xt(S)|Y1;t) q(X, |Xt(s)) called every 10 frames.é. roughly once per second, as our
o s (1) ., algorithm is able to process around 10 frames/s in real time)
c) accept the particlei.g. define X, = X¢) The HMMs are updated only at these instants, but rely on
with probabilitya. Otherwise, add the old particle ppservations computed on all frames since the last update.

(i.e. setXt(TH) =X, S)) According to our experiments, applying the detector to yver
At the end of iterationt, the particle set{XES)}ﬁ’:NW framg did not greatly improve the tra<_:king performa_nce and
represents an estimation of the posteyio)it|Y1;t). considerably slowed down the algorithm. A detection gets

The proposal functiop() allows to select good candidatesaSSOF:iated w_ith a target_if their distance is smaller than
for the particle set. Efficiency in the MCMC is obtained by!Wo times their average width. Naturally, only un-asseat
modifying object states one at a time. More precisely, thdetections are considered for the initialisation of a negea

new sample is selected by letti§, = X, randomly A. Creation

select a facer amongst the visible ones, and sample the 4 geciding when to add new targets to the face tracker,
proposed stat&; , of facei from: we propose a simple HMM that estimates the state of a
~ 1 hidden, discrete variable,(i,7) indicating at each image
q(X5 X)) = | (1 - a)N ~ Zp(X;thgi),l) position (i, j) if there is a face or not at this position. Fig. 1
— N, ! 4 X X ) -
T illustrates this. (In the following, we drop the indexeand
+ ap(XQ_JXf)} (9) for clarity.) The HMM uses two different types of observed
' image features: one based on the output of the face detector,
where X¢ denotes the state of the closest detection coming, and a long-term “memory” of the statese( positions)
from a face detector [13] and associated with fac&hat of tracked faces];. The posterior probability(c:|l1.¢, d1:+)
is, the proposal is defined as a mixture with = 0.3 is recursively estimated and then used to validate or reject
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Fig. 3. The HMM for tracker target removal, used for eachkeakcface.
Fig. 2. Example image with corresponding tracking memoryirdu  The variablek; indicates for a given face if it is still tracked correctly ibr
tracking a failure occurred. The probability df; is estimated recursively using the
observationsd:, I+, y¢, andv;.

detections coming from a face detector, helping to ingali
new tracking targets. Note that here we define the transition probability
The first observation measured at iteratiomnd image p(ctlci—1) = 1 iff ¢¢ = ¢,y and 0 otherwise. Thus we

position (, j) is based on the output of the face detector: don't include the term in_15.
Now, for each face detection that is not associated to any

1 if (i,7) is covered by one of the boundingacker target we take its centre posititinj) and compute

di(i,7) = boxes coming from the face detector, the probability ratio:
0 otherwise.
(10) ,,,C(,L- ) o p(Ct(i,j) = 1|d11t(i7j)7llit(i7j)) (16)
The likelihoodp(d;|c;) can be approximated with e\ d) = p(ce(i,5) = 0|d1:4(4,5), 1.6 (4, 7))

p(d; = 0lc; = 0) = 1 — fa, p(d; = 1|e; = 0) = fa, If r{(z,7) > 1, a new track is initialised from the detection.
p(dy = 0le; = 1) = md, plde=1le=1)=1-md, o o
wherefa is the false alarm rate andd the missed detection |, 4 similar manner. for each tracked faceve employ a

rate of the face detector. Here, we skt = 0.0001 and M for estimating the hidden status variatilg, indicating
md = 0.4. o _ _ that the face is visible or not. We will drop the indéxn
The second likelihood(l:|c,) is based on a history of he following. Fig[3B illustrates this model. In addition thee
past image positions of tracke(_j fad@SWh'Ch_ we ‘_’V'" call tracking memoryl;, and the output from the face detector
“tracking memory” in the following. At each iteration of the d;, two other observations are usegy, the observation
tracker, the tracking memory is updated slowly according tgxelihood of the mean state, and, the maximum of the

the mean of the current state distributish: variances inz and y direction of the particle distribution
It = (1= B)li—1+ Bl , (11) of the respective face. We assume that if the target is stil
tracked correctly the observation likelihogdshould be high
where s = 0.001 and and the variance, of the particles should be low.

Here, p(d:|k:) is the same a9(d:|c;) for creating a
target, except that it is now calculated per object and not
per image location. The other three observation likelilood
p(lelke), p(ye|ke), p(ve| k) have been modelled with three

Fig.[2 shows an example of the tracking memory during gifferent sigmoid functions fof: = 1 and with their inverse

run of the face tracker. Intuitively, we would like to iniige 1 — P(|k = 1) for k = 0 (cf.[13t14). The parameters of

targets more quickly in regions where a person has pedpese sigmoids have been Iearr_1t from data gathered from

“seen” previously. We approximated!,|c;) with a pair of real tracker runs on annotated videos.

sigmoid functions Let o, = {oisli_y} = {di,le,ys,v:} be the set of
observations at time. Analogous td_15, we can estimate

1 if (4,7) is covered by one of the
Ii(i,5) = bounding boxes described B,  (12)
0 otherwise

p(leer = 1,0) = a arctan(5ily — ) + % (13) the posterior probability of(k:|o:) recursively:
plelee = 0,0) =1 = p(lg]er = 1) (14) p(kilore) =
wherea = 1, and the paramete®; = (6, 1), i.€. the slope [, p(oiilki) p(kilki—1) p(ki—1]o1:—1) (17)

and the offset of the sigmoid, have been trained offline with >k 1 p(oit|k) p(kilki—1) p(ki—1lor:—1)]
a set of observations collected from real tracking sequence » N ]

Given the observations at timeand the previous esti- | "€ State transition probabilify(k:|k; 1) is 0.999 for stay-
mate of the posterior probability(c;_1|d1:¢_1, l1:—1), We ing in the same st{:\te aridoo1 for_ chang!ng state. _
compute the new posterior: Finally, the tracking of a target is considered to have thile

if the probability ratior] < 1, where
plcrldi, ) = p(deled)p(le|ee) plei—1ldi:i—1,l1:0—1) N
S Zc;p(dt|02)p(lt|62)p(0t71|d1:t717ll:tfl) = Pk = 1lor) ) (18)
(15) p(ke = Olot)




set | duration | # videos | # persons| # different | # annotated 1
in view persons frames B B S
1 | 4h 6 2 5 5000 09 B s
2 25h 32 1-5 27 12000 B-=7"
3 | 25h 2 2-4 7 4800 08
TABLE | I
0.7 e
STATISTICS ON THE THREE EVALUATION DATA SETS = L
06
0.5
04 F face detection ,
MCMC baseline
MCMC with target creation HMM -- 3 - -
03 ) MCMC‘with target greation and ‘removal HM‘M ics
’ 0 0.05 0.1 0.15 0.2 0.25 0.3
false positive rate
Fig. 5. False positive rate vs. recall for Dataset 1
- detection or tracking. We further define the recall and false
) . positive rate as:
Fig. 4. Example frames from datasets 1 (top left), 2 (top tjigand 3 ZG S.d. ZG 5'f'
(bottom row). Faces are blurred for privacy reasons. _ =2 717 _ =2 "It , (20)
Ziciz di ZzG:Q di

whereG is the number of annotated framésthe proportion

of correctly tracked/detected faces in framéaccording to

A. Data [9), f; is the number of false positive outputs divided by
Experiments have been conducted on a total amount tife number of ground truth objects in framieandd; is the

more than 9 hours of video data that has been extensivalyration between frameandi — 1.

annotated. We used three sets of video files recorded in dif-2) Algorithms: We compared the following algorithms:

ferent environments (see Talble I). According to our scenari « a standard face detector [13] with models for frontal

of interest, the recorded people have been sitting around a and profile view

table and filmed by a central camera. They are playing online « an MCMC baseline tracker.e. the algorithm described

games with people in a remote location using a laptop or in section[dl. Every (un-associated) detection is ini-

touchscreeni.e. they are often looking downwards, and in tialised as a new target. We also tried to initialise a target

IV. EXPERIMENTAL RESULTS

the videos their faces are often not detected by a standard
face detector [13]. For efficiency reasons, the videos are
processed at a resolution ®f0 x 360 pixels, and the original
frame rate has been changed to 12.5 fps.

Figure[4 shows images from the three datasets. In dataset
1, the lighting conditions are good. However, as in the other
datasets, there are long periods where faces are not dktecte
In dataset 2, the lighting conditions are more difficult, and
the scene is more dynamic because it involves more people,
including children. Also, occlusions are occurring more

only after several successive detections but this didn’t
have a big impact on the precision measures. A tracked
target gets removed if it has no associated detections
for 100 frames £ 8 seconds) or if the likelihood drops
below 10% of the running average of its likelihood.

the proposed MCMC tracker with the HMM for target
creation (see section 1IHA). Target removal has been
done as for the baseline.

the proposed MCMC tracker with HMMs for target
creation and removal (see sectigns TlI-A and T1I-B).

frequently. In the videos of dataset 3, people sit close thea|| the trackers use 500 particles.
othefl, and lighting conditions are bad. Also, the number of 3) Results: We plotted the recall and false positive rate

participants is varying throughout the videos.

B. Tracking evaluation

1) Performance measures:In a given video frame, a

for the different algorithms with varying face detector
threshold. Figi 537 show the results. Clearly, for low d&tec
thresholds the false positive (FP) rate of the face detétdr
solid lines) is much too high for many practical applicaton

face detection or tracker output is counted as correct if thT—eor higher thresholds, the detector misses a lot of faces. We

F-measure with the ground truth is greater thitah. The

F-measure is defined as:
2a(B; N Bj)
=" """ 19
a(B) T a(By) (19)

where B; is the ground truth rectanglé.€. a bounding box

can see that for an acceptable FP rate0(1) the recall is
rather low (betweerd.4 and0.7). The dashed green lines
show the results of the baseline tracker. Although it ddesn’
use the HMMs for target creation and removal it achieves a
good performance. When using the HMM for target creation

of the entire head) an@; is the rectangle output from face (blue dashed lines) there is a slight increase in perforemanc

SDataset 3 is available at http://www.idiap.ch/datasgt/ta

The improvement is only marginal here because the face
detector produces very few false positives. Finally, thipfzu


http://www.idiap.ch/dataset/ta2.

1 face tracking HMM 1 | HMM 1
detection | w/o HMMs +HMM 2
0.9 recall 61.0% 89.5% 86.5% 95.6%
o 1 | FP rate 4.64% 11.47% 5.3% 8.02%
08 # interruptions 350 305 141
& recall 61.6% 78.4% 81.3% | 82.2%
= o I E— 2 | FPrate 4.66% 1.8% 3.7% 1.2%
© ] ] # interruptions | — 967 794 647
0.
recall 59.6% 85.1% 78.1% 95.5%
05 3 | FP rate 1.21% 2.12% 0.95% 1.78%
' / # interruptions | — 403 407 96
o4 f ST — TABLE Il
0s MCMC with tzr;ﬂrge’\?grg:t?ofgneég;agl\?g EW e PERFORMANCE COMPARISON ON THE THREE DATASETEWITH FACE
o 0.05 0.1 0.15 0.2 0.25 03 DETECTOR THRESHOLD3).

false positive rate

Fig. 6. False positive rate vs. recall for Dataset 2
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