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ABSTRACT

In this paper, we propose a new low bit rate representation
of a sound field and a new method for the corresponding
cloudless low delay hands-free diarization suitable for low-
performance mobile devices, e.g. mobile phones. The
proposed audio spatio-temporal fingerprint representation
results in low bit rate (500 bytes/second), however contains
complete information about continuous audio tracking of
multiple acoustic sources in an open, unconstrained
environment. The core of the algorithm is based on
simultaneous multiple data stream processing using audio
spatio-temporal fingerprint representation to cover higher
level events relevant for diarization, e.g. turns, interruptions,
crosstalk, speech and non-speech segments. Performance
levels achieved to date on 5 hours of hand-labelled datasets
have shown the feasibility of the approach at the same time
as resulting in 7.58% CPU load on 1-core ultra-low-power
mobile processor running at 1 GHz and low algorithmic
delay of 112 ms.

Index Terms — Microphone arrays, array signal
processing, mobile computing, source coding

1. INTRODUCTION

Speaker diarization is the task of determining “who spoke
when” in an audio stream. The diarization systems identify
the speech segments corresponding to each speaker and
estimate the number of speakers. Conventional speaker
diarization systems [1] use an ergodic Hidden Markov
Model (HMM) with speakers as HMM states. Good results
were achieved by the systems using the combination of Mel-
Frequency Cepstral Coefficients (MFCC) and Time
Difference of Arrival (TDOA) features [2] with arrays
composed of different number of microphones, while
performance of standalone TDOA features was estimated as
poor in respect to MFCC [3]. TDOA features can be used
without prior knowledge of the geometry of the microphone
array. In the case that the geometry of the microphone array
is known in advance, TDOA features can be replaced by the
speaker locations, which are often used as complementary
features to conventional MFCC [4].

Figure 1. Conceptual family environment setup.

In our work we rely on prior knowledge of the geometry
of the microphone array and perform the study on the
feasibility to achieve reasonable performance with focus on
computationally efficient multi-source localisation as the
primary standalone features for the speaker diarization
system in an open, unconstrained environment.

Typically, speaker localisation can either be done in the
audio modality, video modality or multimodality. The first
one implies a microphone array usage, while the second one
is based on movement detection. Multimodal localisation
allows results to be less affected by noise in the audio
modality, although it increases significantly the CPU load.
The general multimodal approach is to transform the data in
such a way that a correlation between the audio and a
specific location in the video is found [5, 6]. Other
multimodal techniques use score-level fusion via estimation
of the mutual information between the average acoustic
energy and the pixel value [7], probability density estimation
[8] or a trained joint probability density function [9]. While
in our study we consider the audio modality only, an
extension to multimodal techniques is applicable.

Finally, we present an overview of a few potential
application systems, where the proposed method can be
exploited. Nowadays most of the applications of speaker
diarization/localisation systems are restricted by business
area because of its complexity and cost aspects. Though it
could happen that one day in the future the corresponding
system setup can be as simple as randomly placing a mobile
phone on a table (Figure 1).



2. COMPUTATIONALLY EFFICIENT DIARIZATION

To achieve seamless low delay real-time performance the
algorithm presented in this paper was implemented and
evaluated as a plug-in for the data-flow architecture Tracter
[10]. Data-flow is a well established signal processing
technique that represents individual processing elements
(plug-ins) as vertices in a directed graph. The data is
propagated through the graph using a “pull” mechanism,
instigated by the sink. The pull mechanism also allows the
dataflow to be driven by the Weighted Finite State
Transducer (WFST) decoder [11], if required by a
subsequent application.

The core capture device for the system is any type of
embedded (not yet available on the market) or external
microphone array, e.g. an audio diamond array with four
omnidirectional microphones or USB-based Microcone [12]
(Figure 2). Audio signals from the microphone array are
retrieved in real-time and contain interleaved 4+ channel
PCM audio in 16-bit samples at 16 kHz.
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Figure 2. External diamond array based on 4
omnidirectional AKG C562CM microphones (above),
Beyerdynamic MPC23SW (middle) and USB-based
Microcone (below).

2.1. Instantaneous spatial fingerprints

We propose to define instantaneous spatial fingerprints as
bit patterns of overlapping sector-based acoustic activity
measures, where each sector is represented by 1 bit of
information (Figure 3). The corresponding instances in time
refer to processing frames of 32 ms length.

Each sector is defined as a 36° wide and 60° high (from
the horizontal plane) connected volume of physical space
around the microphone array. The sectors are taken in the
horizontal plane in steps of 6°. This results in a total of 60
sectors. Wider sectors in smaller steps allow to avoid
jittering of acoustic directions and smooth acoustic tracking
of dynamic sources.

The sector activity measure [13] is defined as integrated
within the sector point-based steered response power with
phase transform weighting (SRP-PHAT). SRP-PHAT [14]
in turn is defined as the sum of generalized cross
correlations with phase transform weighting (GCC-PHAT
[15]) for each microphone pair. Further, a sparsity
assumption is applied for each frequency bin via
minimisation of phase error and the sector activity measures
are normalised by the volume of the sector. The sector
activity measure relies only on the geometry of the
microphone array and does not depend on prior knowledge
of the room dimensions.

Each sector activity measure is thresholded to keep a
binary decision, which gives us 60 bits of data for 360°
spatial representation per each instance in time. This
information is stored as one 64 bit integer value.

Finally, the spatial fingerprint is multiplied by the
predefined mask. This multiplication results in directional
filtering of the predefined areas of interest, elimination of
unnecessary post calculations and outlier removal. It can be
very helpful in the case of interconnected environments,
where audiovisual links do not have an echo suppression
mechanism. For example, remote parties can be shown on a
TV screen (Figure 1), while the corresponding TV zone is
out-of-interest for local diarization (distributed diarization
can be driven as the superposition of local diarizations from
all interconnected environments).
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Figure 3. Slicing frames for spatial fingerprints.
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2.2. Spatio-temporal fingerprint processing

We define the spatio-temporal fingerprint representation as
an array of temporally connected spatial fingerprints taken in
steps of 16 ms. This results in a 2D bit pattern (Figure 4)
with a total of 62.5 columns per second and the low bit rate
of 500 bytes/second (62.5 long integer values of 64 bits
each). The spatio-temporal fingerprints are defined as
subsets of the spatio-temporal fingerprint representation.
The length of spatio-temporal fingerprints depends on the
application and can vary from 32 ms to several seconds.

The intersection fingerprint is defined as an intersection
in the time domain of all elements within a spatio-temporal
fingerprint. Similarly, the union fingerprint is defined as a
union in the time domain of all elements within a spatio-
temporal fingerprint. While the default length for all spatio-
temporal fingerprints has been chosen to be 112 ms, in the
next section we present the results of a study for shorter and
longer spatio-temporal fingerprints as well. The resulting
intersection and union fingerprints are normalised at each
time instance by keeping one centralised bit per active
source.

Due to the compact fingerprint representation we can
benefit from the exploitation of multiple (60) data streams
against a single instruction stream to perform operations,
which may be naturally parallelized. This approach is widely
used in many areas of Information and Communication
Technologies (ICT) nowadays and is often referred as Single
Instruction, Multiple Data (SIMD) streams according to
Flynn's taxonomy [16]. In our study the SIMD approach is
exploited for most of the bitwise operations (e.g.,
intersection, union and normalisation operations are
represented via bitwise AND, OR and XOR operators).

Because the speech is known to be intermittent, we
introduce at the next step a State Transition Network (STN,
Figure 5), which allows us to enforce speech continuity. The
intersection and union fingerprints are used for transitions
from one state to another, while only intersection
fingerprints are used for continuous tracking of acoustic
sources within “speech” and “crosstalk” states.

5
3
S

112 ms

1
DOOEAAAAAAARAAAAAAAAAAAAAAAARAARAAAARAA
olofo]o|ofo|ofo]o|ofo|ofolo|o|o]o|ofo]o|o|o|ofo]ofo|o]ofolololololofolololo
o|lojo|o|ojofofo]o|o]o|o|ofo|ofo]o]|ojofofofalo]o]ofo|o|o EiEETIEET RN
ofololololofofolofolololofolofolololojojofajo]o|ojofofo[oTOTO[O[O(O[0[0]0]0
o @I e ebiofofofo o o)o|o|ojo|o|ojofofo|o|ojo]o|ojofofo]a|o
o|ofoToToTo oo 0[0]0(0|0(o(o(olo[a[T|ojo|ojo]o|ojofofofofojolo]|ojofofole]o
olofo|o|ojofofole|ofo|o|ofofofo]e|o]ojojofafo]e]ojofofofofajo]o|ajofofole|o
olojo|o|ojofofole|ofo|o|ofofofo]e|o]ojojofafo]o]ojofofo|o|ajo]o|alofofole|o
olojo|o|ajofofo]e|ofo|ololololololololololalololojololololalolo]ajafofole|o
olofolo|ojofofo]o|o|o @ EEI AT 0o b iio oo ofolo)o|o|ofofo|o|o
olojo|o|ojofofo|o|o|o[OfOfO(O[O(0]0[C|0j0[0]0]0]0|0(0(0(0[0[0]|0o|ojofofo]o|o
o ﬂ&ﬂﬂaaﬁaiﬂ0&&&&&&&&&&000000&&&3“'&33

112 ms | | 112 ms | L 112 ms

Confirmation filter for speaker speech start
(O ) Confirmed speech segment per speaker

(") confirmation filter for speaker speech stop
Figure 4. Spatio-temporal fingerprint processing.

Figure 5. State transition network topology.

To allow low delay real-time and seamless diarization,
transitions between states are associated with events. These
events include, but are not limited to: crosstalk, successful
and unsuccessful interruptions, turn taken, voice activity, no
voice activity and pause. The pause differs from no voice
activity by a longer confirmation time filter and has an
impact only on an orchestrated video conferencing system,
presented in the following section.

The transition into a state with a lower number of
acoustic sources is performed based on a union fingerprint,
while the transition into a state with a higher number of
acoustic sources is performed based on an intersection
fingerprint. The number of simultaneous acoustic sources is
estimated as the Hamming distance between the last
confirmed fingerprint and 0. The corresponding spatial
locations of the active sources are computed as bit positions
inside the confirmed intersection fingerprint multiplied
by 6°.

The turn taken event is used as an additional trigger for
speech segmenting to allow better association with the
respective source. Taking into account that acoustic sources
are not static in general, we cannot apply the Hamming
distance between two intersection fingerprints to establish
the turn taken event. The turn taken is confirmed only in the
case that a shift of the active source bit position from the
previous confirmed state is higher than the predefined
threshold. Otherwise the state is updated with the new
location without issuing the turn taken event. If the speech
segments of different speakers overlap or concatenate each
other, the turn taken event is augmented by detection of
successful or unsuccessful interruption, which could be
employed by subsequent social signal processing. The turn
taken event can also be used for estimation of number of
speakers over a predefined time window.

The crosstalk event is triggered if there is concurrent
speech from two or more sources for at least 112 ms.
Depending on the application, the meaning of the event is
different. For example, in the case of an orchestrated video
conferencing system, it would mean switching to a wider
shot to cover crosstalking participants. In the case of a
subsequent speech transcription, this event could trigger
corresponding reinitialization of associated beamformers for
better source separation.



3. RESULTS AND EVALUATIONS

The experiments were performed on real life hand-labelled
datasets (3h 50min for dataset 1 (DS1) with echo
suppression enabled [17]; 1h 20min for dataset 2 (DS2) [18]
with echo suppression disabled, lower SNR and higher
density of people). The datasets contain recorded gaming
sessions with video chat enabled and follow the systematic
data description presented in [18]. Each room was recorded
and analysed separately and contained 2 people for dataset 1
and up to 4 people for dataset 2 (Figure 6). The microphone
array configuration consists of four omnidirectional
Beyerdynamic MPC23SW microphones (Figure 2, middle)
for dataset 1 and AKG C562CM (Figure 2, above) for
dataset 2. The microphones are arranged on the corners of a
square. The distance between two microphones on opposite
corners, i.e. the diagonal of the square, was chosen as 4.5 cm
for the Beyerdynamic MPC23SW and 3.2 cm for the AKG
C562CM. The second part of the TA2 database [18],
recorded with a circular array of eight omnidirectional
microphones, was excluded from our consideration due to
non-compact size of the microphone array (the diagonal is
20 cm instead of 3.2-4.5 cm).
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Figure 6. Evaluation setup [18].

The sector of interest for directional filtering was defined
as [-110°, 110°] with respect to the reference direction of 0°,
defined as an imaginary arrow intersecting the camera and
the centre of the microphone array, facing the participants.
This allows us to eliminate remote parties in case of disabled
echo suppression (DS2).

The dependency between precision and recall values is
estimated via application of different thresholds at the step
of packing data into the spatio-temporal fingerprint
representation. In Figure 7 this dependency is illustrated for
speech/non-speech detection and speaker match. Precision is
defined as the accumulated length of true positive segments
(segments correctly detected as belonging to the positive
class) divided by the total length of segments detected as
belonging to the positive class (the sum of true positive and
false positive segments). Recall is defined as the
accumulated length of true positive segments divided by the
total length that actually belongs to the positive class (the
sum of true positive and false negative segments).
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Figure 7. Precision versus recall for speech/non-speech
detection and speaker match (DS1+DS2).

It is clearly visible, that for dataset 1 the speaker match
(solid line) shows better performance than the speech/non-
speech detection (dash dot line). Higher precision values
correspond to lower recall values and vice-versa. Although
only dataset 1 is echo-cancelled we were able to achieve
good precision/recall levels for the speech/non-speech
detection on dataset 2 due to application of the directional
filtering, nevertheless the higher people density in dataset 2
resulted in lower precision/recall values for the speaker
match. Depending on the subsequent application, the
precision and recall priorities can be different.

Another parameter, which has a strong impact on the
performance of the system, is the length of spatio-temporal
fingerprints. This parameter defines as well the algorithmic
delay of the proposed approach. In Figure 8 we illustrate
how the length of spatio-temporal fingerprints impacts the
precision and recall values for speech/non-speech detection
and speaker match. The best results were achieved for
spatio-temporal fingerprints within [112 ms, 192 ms].

We were able to achieve 95.0% precision and 80.3%
recall for the speaker match with a delay of 112 ms for
dataset 1 (77.7% precision and 76.7% recall for dataset 2).
For the same parameter set, the speech/non-speech detection
resulted in 79.4% precision and 82.1% recall for dataset 1
(87.1% precision and 87.2% recall for dataset 2). While very
low bit rate representation has no impact on precision/recall
levels for speaker match (only the position of the sector is
used regardless how many bits are dedicated to the sector
representation), it can bring additional speech/non-speech
detection errors into the system (estimated precision/recall
levels for standard energy based speech/non-speech
detection are 89.2% and 88.4% for dataset 1, 72.7% and
71.5% for dataset 2).
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Figure 8. Precision/recall versus fingerprint length for
speech/non-speech detection and speaker match (DS1).

Known meeting-wise speaker error rates for CPU-
intensive state of the art techniques [2] are as low as 7.0%
for realigned MFCC+TDOA combination of the
HMM/GMM system with optimal weights and for Kullback-
Leibler based realigned MFCC+TDOA combination of the
information bottleneck system with optimal weights. In the
case of automatic weights, overall speaker error rates are
13.6% and 9.9% correspondingly. These state of the art
estimates are given only as an overview and cannot be used
for direct comparison with the proposed method as the data,
hardware and scenario used in our experiments differ
(slightly) from the data, hardware and scenario used in [2].
In addition the state of the art systems have a delay of 500
ms and a state of minimum 3 seconds duration, while we
were able to achieve reasonably good results with
algorithmic delay and minimum state duration as low as 112
ms. We should note that the algorithmic delay does not
include capturing delay, which in turn can result in
additional 10-20 ms.

CPU load (in respect to a single CISC core running at
1 GHz; averaged result for a session of 3h 50m) for the
proposed approach was 7.58%, most of it due to sound field
packing into spatio-temporal fingerprints. The complete
audio processing chain including feature extraction
components for subsequent ASR resulted in 15.94% CPU
load (ASR decoder based on Weighted Finite State
Transducer [11] was omitted from this test because it is the
most CPU-intensive task, not suitable for mobile devices).
Thus we can conclude that the computational efficiency of
the proposed approach is suitable for mobile devices and
results to date give us good prerequisites for future research
in spatio-temporal fingerprint processing to be able to
achieve higher precision/recall values and lower CPU load.

4. APPLICATION SYSTEMS

In this section we describe a few potential application
systems that could benefit from using the proposed
technique in real life. To our knowledge there is no single
mobile phone available on the market with an integrated
microphone array designed for distant use; nevertheless this
can be resolved by using any of the USB microphone arrays
available on the market (e.g., Microcone [12]). In the future,
we presume, the situation can be changed and compact
microphone arrays can be directly integrated by
manufactures into next generation mobile phones.

One of the potential systems is an orchestrated video
conferencing system with spatially separated non-intrusive
sensors. By placing the sensors at their individually optimal
locations, better performance of semantic information
extraction can be expected (as opposed to other systems [19,
20], relying on collocated sensors). Semantic information,
extracted on the fly, is used to produce an orchestrated video
chat [21] by taking pure video streams from multiple
cameras and at each point in time choosing the perspective
that best represents the social interaction. While for many of
us, video conferencing systems are still associated with
expensive business solutions from Tandberg/Cisco [22] or
Polycom [23], recently there were several attempts to enter
the home entertainment market by leading video
conferencing companies and research projects.

The TA2 project (Together Anywhere, Together
Anytime [24]) is a large scale research project, which tries to
understand how corresponding technologies can help to
nurture family-to-family relationships to overcome distance
and time barriers in home environments. The technique
presented in this paper can potentially decrease the
complexity of the complete system by execution of
corresponding bits of the scene analysis within a mobile
phone. Further it can directly communicate corresponding
acoustic events with a low delay via wireless interface to the
orchestrated video conferencing system by the same
principle as was described in our previous work [25]. In
future work we are going to exploit the proposed method
within a distributed multimodal analysis system to be
employed by the orchestrated video conferencing system.

Another potential system for exploitation is automatic
multiparty speech transcription, which allows significantly
improved semantic value of the media data. The
corresponding technologies have already entered the market
as cloud-based services, provided by Koemei [26], Google
[27], Nuance [28] and others. The last bridge to boost these
cloud-services to everyone can rely on a computationally
efficient multiparty capturing/segmenting method (e.g., as
described in this paper) running within a simple mobile
phone, placed randomly on a table as illustrated in Figure 1.
Especially it could have big success in the home
entertainment market, where the price of a solution plays a
significant role in its exploitation.



5. CONCLUSIONS

We have shown the feasibility of using audio spatio-
temporal fingerprints as a computationally efficient solution
for low delay hands-free diarization, suitable for low-
performance mobile devices. Performance levels achieved to
date on 5 hours of hand-labelled datasets have shown
sufficient reliability at the same time as fulfilling real-time
processing requirements with an algorithmic delay of 112 ms
and a sound field bit rate of 500 bytes/second. The estimated
CPU load is 7.58% on a 1-core ultra-low-power mobile
processor running at 1 GHz. An overview of potential
application systems shows that there is a demand for low
cost computationally efficient solutions. The results are
promising for future research in audio spatio-temporal
fingerprint processing in respect of accuracy gap
minimisation between the proposed computationally
efficient method and CPU-intensive state of the art
algorithms.
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