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Abstract. In this paper, we describe a low delay real-time multimodal cue
detection engine for a living room environment. The system is designed to be
used in open, unconstrained environments to allow multiple people to enter,
interact and leave the observable world with no constraints. It comprises
detection and tracking of up to 4 faces, estimation of head poses and visual
focus of attention, detection and localisation of verbal and paralinguistic events,
their association and fusion. The system is designed as a flexible component to
be used in conjunction with an orchestrated video conferencing system to
improve the overall experience of interaction between spatially separated
families and friends. Reduced latency levels achieved to date have shown
improved responsiveness of the system.
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1 Introduction

The TA2 (Together Anywhere, Together Anytime) project [1] tries to understand how
technology can help to nurture family-to-family relationships to overcome distance
and time barriers. This is something that current technology does not address well:
modern media and communications are designed for individuals, as phones,
computers and electronic devices tend to be user centric and provide individual
experiences. Existing multiparty conferencing solutions available on the market, such
as Microsoft RoundTable conferencing table [2], are not designed to be used in open,
unconstrained environments.

In our previous work [3], we have developed a framework for just-in-time
multimodal association and fusion for open, unconstrained environments with
spatially separated multimodal sensors. It relies on score-level information fusion
derived from spatially separated sensors. By placing the sensors at their individually
optimal locations, we clearly obtain a better performance of low-level semantic
information. Performance levels achieved on hand-labelled, echo-cancelled dataset
have shown sufficient reliability at the same time as fulfilling real-time processing
requirements with latency within 200-300 ms. In current work we evolve the previous
system towards better responsiveness of the system and integration of additional
components, which have been identified as important for the extraction of additional
semantic cues to be used by an orchestration engine [4]. The orchestration engine
produces then an orchestrated video chat by choosing at each point in time the



perspective that best represents the social interaction based on decision-level rule-
based fusion.

Fig. 1. Illustration of a family environment setup.

In this context, TA2 presents several challenges: the results need to be computed in
real-time with low affordable delay from spatially separated sensors (as opposed to
other systems, such as [5, 6, 7], relying on collocated sensors) in open, unconstrained
environment. Furthermore, the results are supposed to be localised in the image space
to allow for a dynamic and seamless orchestrated video chat.

2 A Real-Time Architecture

The presented multimodal cue detection engine includes a face detector, a multiple
face tracker, multiple person identification, head pose and visual focus of attention
estimation, an audio real-time framework with spatial localisation, a large vocabulary
continuous speech recognizer and keyword spotter, multimodal association and fusion
(see Fig. 2). A face tracking algorithm has been developed to track a variable number
of faces even when there is no face detection for a long period of time. Although the
accuracy of far-field Automatic Speech Recognition (ASR) is not yet good enough to
be exploited for obtaining an accurate real-time transcription, it is sufficient to
augment the behaviour of an orchestration module. Words in the transcript are used to
search for participants’ proper names relevant to the group of people or keywords
relevant to a given scenario. Furthermore, the orchestration (which is not part of the
multimodal cue detection engine) will be able to reason and act upon these events
together with other cues that could potentially come from a game engine, aesthetic or
cinematic rules, making orchestrated video chat dynamic and seamless.
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Fig. 2. The system architecture is built around several modules comprising a so-called Video
Cue Detection Engine (VCDE) with a face detector, a multiple face tracker, multiple person
identification, head pose and visual focus of attention estimation; an Audio Cue Detection
Engine (ACDE) with a direction of arrival estimator, a voice activity detector and a large
vocabulary continuous speech recogniser; a Unified Cue Detection Engine (UCDE) with
association, fusion and transmission of the results to external components (orchestration engine,
video composition engine).

The audio input to the multimodal cue detection engine and the semantic output
from it are implemented via sockets, while the video stream is transferred via shared
memory. The core capture devices for the system are a Full HD video camera and an
audio diamond array with four omnidirectional microphones [8]. Video frames from
the shared memory of the video grabber server are retrieved every 40 ms at a
resolution of 640x360 pixels, while audio packets are retrieved every 10 ms and
contain interleaved 4 channel PCM audio in 16-bit at 48 kHz.

The multimodal processing operates in multi-framing mode with non-overlapping
video frames, overlapping audio frames of 16 ms in step of 10 ms for voice activity
detection and ASR, and overlapping audio frames of 32 ms in step of 16 ms for
direction of arrival estimation.



2.1 Multiple Face Tracking

A multiple face tracking algorithm is automatically initialised and updated using
outputs from a standard face detector [9]. The challenge for face tracking in this
scenario is that face detections are not continuous and that the time between two
successive detections can be very long (up to 30 s in our experiments). This is due to
head poses that are difficult to detect by state-of-the-art algorithms, or partial
occlusions caused by hands in front of the face (see Fig. 3). However, in the TA2
scenario it is necessary to know at each time instant where the people are in the video
scene.

Fig. 3. An example of difficult to detect head poses and partial occlusions [10].

The solution employed in this work is based on a multi-target tracking algorithm
using Markov Chain Monte Carlo (MCMC) sampling, similar to [11]. This is a
Bayesian tracking framework using particles to approximate the current state
distribution of all visible targets. At each time step, targets are added and removed
using the output of an additional probabilistic framework that takes into account the
output of the face detector as well as long-term observations from the tracker and
image [12].

The state space is the concatenation of the states of all visible faces, where the state
of each single face is a rectangle described by the 2D position in the image plane, a
scale factor and the eccentricity (height/width ratio).

The dynamic model is the product of the models of each visible face and a Markov
Random Field that prevents targets becoming too close to each other. The state
dynamics of each single face are described by a first-order autoregressive model for
the position and a zeroth-order model for scale and eccentricity.

Finally, the observation likelihood is the product of the observation likelihoods of
each visible face, which in turn is calculated using the Bhattacharyya distance
between the HSV (Hue-Saturation-Value) colour histograms over three horizontal
bands on the face region and the respective reference colour histograms which are
initialised when the face is detected.



2.2 Multiple Person Identification

Whenever a tracker loses a target and reinitialises it later on, or a person leaves the
visual scene and comes back later, the tracking algorithm tries to recognise the
respective person in order to associate it to a previously tracked target. This is not
done inside the tracking algorithm but on a higher level taking into account longer-
term visual appearance observations. Each person’s appearance is modelled by three
sets of HSV colour histograms calculated on face and shirt regions. Using multiple
histograms per person copes for different appearances due to changes in body pose.
However, only the most similar histogram of a person is used and updated at each
time.

When identifying a "new" face, the current colour histograms are compared to the
stored models of all previously seen people and if the similarity is above a certain
threshold the corresponding ID is assigned, otherwise a new person model is created.

Fig. 4. Consistent person identification within the session (here indicated by different colours)
is an important requirement to the multimodal cue detection engine.

2.3 Head Pose Estimation

Based on the output of the face tracker, the head pose (i.e. rotation in 3 dimensions) of
an individual is estimated. The purpose of computing head pose is the estimation of a
person's visual focus of attention (see section 2.4).

Head pose is computed using visual features derived from the 2-dimensional image
of a tracked person's head. The features used here are gradient histograms [13] and
colour segmentation histograms. Colour segmentation is done by classifying each
pixel around the head as either skin, hair, clothing or background based on colour
models that are adapted to each individual being tracked [14].



To compensate for the variability in the output of the face tracker, the 2-
dimensional face location is re-estimated by the head pose tracker. This serves to
normalise the bounding box around the face as well as possible, while simultaneously
using the visual features mentioned above to estimate pose. This joint estimation of
head location and pose improves the overall pose accuracy [15].

2.4 Visual Focus of Attention

Given the estimated belief (probability distribution) over head pose, the visual focus
of attention target is estimated. In the context of this work, the following targets are of
interest: the video conferencing screen, the touch sensitive table, and any other person
in the room.

The range of angles that correspond to each target is modelled using a Gaussian
likelihood. This likelihood is derived from the known spatial locations of the targets
within the conference room. The posterior belief over each target is computed with
Bayes' rule using the method given in [16].

Fig. 5. Multimodal cue visualisation. For each person, it shows its ID (at the top-left of the face
bounding box), its head orientation estimation, i.e. pan and tilt, with a variance indication (on
the top and right side of the box), and the estimated distribution over targets where the person is
looking at (at the bottom of the box), where the left-most target is the most likely one. The
letter “S” means “screen”, “T” means “table”, “?” means “unknown”, and the numbers
correspond to the IDs of the other persons. The blue line in the bottom of the image indicates
the estimated direction of arrival of sound. The speech bubble indicates that a person is
speaking, and the output of the keyword spotting is shown in the top-right of the image, here
the word “I”.



2.5 Direction of Arrival Estimation

Speaker localisation is performed by the direction of arrival module (Fig. 2). The
algorithm is based on spatio-temporal fingerprint processing [17] in steps of 6°, which
represents a computationally efficient solution with low algorithmic delay compared
to short-term clustering of generic sector-based activity measures [8, 18] used in our
previous study [3]. It relies only on the geometry of the microphone array and does
not depend on prior knowledge of the room dimensions. It can be effectively used to
both detect and localise multiple sources in open, unconstrained environments.

2.6 Voice Activity Detection

Voice activity detection (VAD) covers both verbal and paralinguistic activities and is
implemented as a gate. The gate segments the input stream in accordance to
directional and voice activity / silence information from an algorithm based on silence
models or trained multi-layer perceptrons (MLP) using traditional ASR features [19].
The association and fusion [3] of the detected voice activity events with person IDs
from the video-based identification are performed by the time voice activity is
confirmed and the corresponding audio-based directional cluster is estimated.

2.7 Keyword spotting

The ASR component is represented by the Weighed Finite State Transducer (WFST)
based token passing decoder known as Juicer [19]. The output from the decoder is
used to perform the spotting, association and fusion [3] of proper names and
keywords with person IDs from the video identification taking into account the
estimated audio-based directional cluster for the corresponding time interval. More
specifically, the spotting is performed based on the predefined list of participants and
keywords relevant to the given scenario (e.g., orchestrated video chat).

3 Improvements and Results

During subjective evaluations of our previous version of multimodal cue detection
engine, several bottlenecks have been experienced. To overcome these bottlenecks,
several architectural and algorithmic changes have been applied and presented in this
paper.

First of all, while the socket interface was allowing for a flexible software solution,
the experienced latency for uncompressed video signal transmission from remote
video grabber was resulting in additional latency of 30-300 ms. This clearly
noticeable lag was successfully removed by switching to a shared memory interface
for video input stream. While a shared memory interface could be potentially used for
audio input stream as well, experienced latency of 12-20 ms for the audio
transmission is on an acceptable level.



To reduce the latency of audio processing we have decided to reduce the
algorithmic delays of both direction of arrival estimation and voice activity detection.
The algorithmic latency of both components has been reduced from 200 ms down to
128 ms. This is due to the replacement of the previous implementation based on a
short-term clustering approach by the computationally more efficient spatio-temporal
fingerprints processing and the reduction of corresponding temporal filters.

Exact clock synchronisation between separated audio and video grabbers was seen
as another source of potential problems and during subjective evaluations we have
found that the use of local timestamps results in more consistent multimodal
association and fusion. Moreover, since the position of people does not significantly
change within a few hundred milliseconds, predictive temporal association was finally
employed within the system to further remove possible lags during the capturing of
the video stream by hardware and video grabber.

We have found that it is beneficial to have acoustic tracking of the active acoustic
sources as an additional input to the voice activity detection gate to properly treat
barge-in events, which were not always detected in a former system.

Since the participants do not sit at predefined positions in the room, theoretically it
can cause ambiguities in the association and fusion. Clearly, the same acoustic
directional cluster can correspond to different positions in the image and vice-versa.
However, since the participants are mainly located around a coffee table, such
ambiguities occur rarely during evaluations.

Finally, head pose and visual focus of attention estimation have been identified as
important semantic cues for the orchestration engine and have been successfully
integrated into the multimodal cue detection engine. Head pose estimation is to be
used for better selection of frontal/side views with respect to aesthetic and cinematic
rules, while visual focus of attention can be beneficial for better modelling of social
interactions (e.g. predictive turn estimation during grant-floor moments) and can have
a direct impact on temporal filters within the aesthetic and cinematic rules.

Objective evaluations of involved components were performed, and their results
can be found in [3, 12, 14, 17]. The corresponding annotated dataset has been made
publically available [10]. The algorithmic latency within the multimodal cue detection
engine stays within 130 ms, except for proper name and keywords spotting, which are
transmitted by the end of acoustically separated utterances.

4 Conclusion

We have developed a low delay real-time multimodal cue detection engine for open,
unconstrained environments with spatially separated multimodal sensors. We have
described applied architectural and algorithmic changes to reduce an overall latency
down to 130 ms and fulfil real-time processing requirements. The achieved results are
promising for future wider evaluations and further development of the platform in
several directions such as improvement of performance, reduction of the latency, and
integration of additional components allowing richer multimodal cues.



Acknowledgments. The research leading to these results has received funding from
the European Community's Seventh Framework Programme ICT Integrating Project
“Together Anywhere, Together Anytime” (TA2, FP7/2007-2013) under grant
agreement no. ICT-2007-214793. We are grateful to Philip N. Garner and Jean-Marc
Odobez for their valuable help at various stages of this work.

References

1. Integrating project within the European research programme 7: Together anywhere, together
anytime, http://www.ta2-project.cu (2008)

2. Microsoft: Microsoft RoundTable conferencing table,
http://www.microsoft.com/uc/products/roundtable.mspx (2007)

3. Korchagin, D., Motlicek, P., Duffner, S. and Bourlard, H.: Just-in-time multimodal
association and fusion from home entertainment. In: Proc. IEEE International Conference on
Multimedia & Expo (ICME), Barcelona, Spain (2011)

4. Falelakis, M. et al.: Reasoning for video-mediated group communication. In: Proc. IEEE
International Conference on Multimedia & Expo (ICME), Barcelona, Spain (2011)

5. Bohus, D. and Horvitz, E.: Dialog in the open world: platform and applications. In: Proc. of
ICMI, Cambridge, USA (2009)

6. Otsuka, K. et al.: A realtime multimodal system for analyzing group meetings by combining
face pose tracking and speaker diarization. In: Proc. of ICMI, Chania, Greece (2008)

7. Bernardin, K., Stiefelhagen, R.: Audio-visual multi-person tracking and identification for
smart environments. In: Proc. of ACM Multimedia (2007)

8. Korchagin, D., Garner, P.N., and Motlicek, P.: Hands free audio analysis from home
entertainment. In: Proc. of Interspeech, Makuhari, Japan (2010)

9. Viola, P. and Jones, M.: Rapid object detection using a boosted cascade of simple features.
In: Proc. of CVPR, Hawaii, USA (2001)

10.Duffner, S., Motlicek, P., and Korchagin, D.: The TA2 database: a multi-modal database
from home entertainment. In: Proc. of Signal Acquisition and Processing, Singapore (2011)

11.Khan, Z.: MCMC-based particle filtering for tracking a variable number of interacting
targets. In: IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1805—
1918 (2005)

12.Duffner, S., Odobez, J.-M.: Exploiting long-term observations for track creation and
deletion in online multi-face tracking. In: Proc. IEEE Conference on Automatic Face &
Gesture Recognition (2011)

13.Dalal, N. and Triggs, B.: Histograms of oriented gradients for human detection. In: Proc.
IEEE Conference on Computer Vision and Pattern Recognition (2005)

14.Scheffler, C. and Odobez, J.-M.: Joint adaptive colour modelling and skin, hair and clothing
segmentation using coherent probabilistic index maps. In: Proc. of BMVC (2011)

15.Ba, S.O. and Odobez, J.-M.: A probabilistic framework for joint head tracking and pose
estimation. In: Proc. of the International Conference on Pattern Recognition (2004)

16.Ba, S.O. and Odobez, J.-M.: Recognizing visual focus of attention from head pose in natural
meetings. In: IEEE Transactions on System, Man and Cybernetics, 39(1):16-33 (2009)

17.Korchagin, D.: Audio spatio-temporal fingerprints for cloudless real-time hands-free
diarization on mobile devices. In: Proc. of the 3rd Joint Workshop on Hands-Free Speech
Communication and Microphone Arrays (HSCMA), pp. 25-30, Edinburgh, UK (2011)

18.Lathoud, G. and McCowan, I. A.: A sector-based approach for localization of multiple
speakers with microphone arrays. In: Proc. of SAPA, Jeju, Korea (2004)

19.Garner, P. N, et al.: Real-time ASR from meetings. In: Proc. of Interspeech, pp. 2119-2122,

Brighton, UK (2009)



