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Abstract

In many real world applications we do not have access to fully-labeled training
data, but only to a list ofpossiblelabels. This is the case, e.g., when learning visual
classifiers from images downloaded from the web, using just their text captions or
tags as learning oracles. In general, these problems can be very difficult. However
most of the time there exist different implicit sources of information, coming from
the relations between instances and labels, which are usually dismissed. In this
paper, we propose a semi-supervised framework to model thiskind of problems.
Each training sample is a bag containing multi-instances, associated with a set
of candidate labeling vectors. Each labeling vector encodes the possible labels
for the instances in the bag, with only one being fully correct. The use of the
labeling vectors provides a principled way not to exclude any information. We
propose a large margin discriminative formulation, and an efficient algorithm to
solve it. Experiments conducted on artificial datasets and areal-world images and
captions dataset show that our approach achieves performance comparable to an
SVM trained with the ground-truth labels, and outperforms other baselines.

1 Introduction

In standard supervised learning, each training sample is associated with a label, and the classifier is
usually trained through the minimization of the empirical risk on the training set. However, in many
real world problems we are not always so lucky. Partial data,noise, missing labels and other similar
common issues can make you deviate from this ideal situation, moving the learning scenario from
supervised learning to semi-supervised learning [7, 26].

In this paper, we investigate a special kind of semi-supervised learning which considers ambiguous
labels. In particular each training example is associated with severalpossiblelabels, among which
only one is correct. Intuitively this problem can be arbitrarily hard in the worst case scenario.
Consider the case when one noisy label is consistently appearing together with the true label: in this
situation we could not tell them apart. Despite that, learning could still be possible in many typical
real world scenarios. Moreover, in real problems samples are often gathered in groups, and the
intrinsic nature of the problem could be used to constrain the possible labels for the samples from
the same group. For example, we might have that two labels cannot appear together in the same
group or a label can appear only once in each group, as, for example, a specific face in an image.

Inspired by these scenarios, we focus on the general case where we havebagsof instances, with
each bag associated with a set of several possible labeling vectors, and among them only one is fully
correct. Each labeling vector consists of labels for each corresponding instance in the bag. For easy
reference, we call this type of learning problem a CandidateLabeling Set (CLS) problem.

As labeled data is usually expensive and hard to obtain, CLS problems naturally arise in many
real world tasks. For example, in computer vision and information retrieval domains, photographs
collections with tags have motivated the studies on learning from weakly annotated images [2], as
each image (bag) can be naturally partitioned into several patches (instances), and one could assume
that each tag should be associated with at least one patch. High-level knowledge, such as spatial
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correlations (e.g. “sun in sky” and “car on street”), have been explored to prune down the labeling
possibilities [14]. Another similar task is to learn a face recognition system from images gathered
from news websites or videos, using the associated text captions and video scripts [3, 8, 16, 13].
These works use different approaches to integrate the constraints, such as that two faces in one
image could not be associated with the same name [3], mouth motion and gender of the person [8],
or modeling both names and action verbs jointly [16]. Another problem is the multiple annotators
scenario, where each data is associated with the labels given by independently hired annotators. The
annotators can disagree on the data and the aim is to recover the true label of each sample. All these
problems can be naturally casted into the CLS framework.

The contribution of this paper is a new formal way to cast the CLS setup into a learning problem.
We also propose a large margin formulation and an efficient algorithm to solve it. The proposed
Maximum Margin Set learning (MMS) algorithm, can scale to datasets of the order of105 instances,
reaching performances comparable to fully-supervised learning algorithms.

Related works. This type of learning problem dates back to the work of Grandvalet in [12]. Later
Jin and Ghaharmani [17] formalized it and proposed a generalframework for discriminative models.
Our work is also closely related to the ambiguous labeling problem presented in [8, 15]. Our frame-
work generalizes them, to the cases where instances and possible labels come in the form of bags.
This particular generalization gives us a principled way for using different kinds of prior knowledge
on instances and labels correlation, without hacking the learning algorithm. More specifically, prior
knowledge, such as pairwise constraints [21] and mutual exclusiveness of some labels, can be easily
encoded in the labeling vectors. Although several works have focused on integrating these weakly
labeled information that are complementary to the labeled or unlabeled training data into existing
algorithms, these approaches are usually computational expensive. On the other hand, in our frame-
work we have the opposite behavior: the more prior knowledgewe exploit to construct the candidate
set, the better the performance and the faster the algorithmwill be.

Other lines of research which are related to this paper are multiple-instance learning (MIL) prob-
lems [1, 5, 10], and multi-instance multi-label learning (MIML) problems [24, 25] which extends the
binary MIL setup to multi-labels scenario. In both setups, several instances are grouped into bags,
and their labels are not individually given but assigned to the bags directly. However, contrary to
our framework, in MIML noisy labeling is not allowed. In other words, all the labels being assigned
to the bags are assumed to be true. Moreover, current MIL and MIML algorithms usually rely on
a ‘key’ instance in the bag [1] or they transform each bag intosingle instance representation [25],
while our algorithm makes an explicit effort to label every instance in a bag and to consider all of
them during learning. Hence, it has a clear advantage in problems where the bags are dense in la-
beled instances and instances in the same bag are independent, as opposed to the cases when several
instances jointly represent a label. Our algorithm is also related to Latent Structural SVMs [22],
where the correct labels could be considered as latent variables.

2 Learning from Candidate Labeling Sets

Preliminaries. In this section, we formalize the CLS setting, which is a generalization of the
ambiguous labeling problem described in [17] from single instances to bags of instances.

In the following we denote vectors by bold letters, e.g.w,y, and use calligraphic font for sets, e.g.,
X . In the CLS setting, theN training data are provided in the form{Xi,Zi}

N
i=1, whereXi is a bag of

Mi instances,Xi = {xi,m}Mi

m=1, andxi,m ∈ R
d, ∀ i = 1, . . . , N, m = 1, . . . ,Mi. The associated

set ofLi candidate labeling vectors isZi = {zi,l}
Li

l=1, wherezi,l ∈ YMi , andY = {1, ..., C}. In
other words there areLi different combinations ofMi labels for theMi instances in thei-th bag.
We assume that the correct labeling vector forXi is present inZi, while the other labeling vectors
maybe partially correct or even completely wrong. It is important to point out that this assumption
is not equivalent to just associatingLi candidate labels to each instance. In fact, in this way we also
encode explicitly the correlations between instances and their labels in a bag. For example, consider
a two instances bag{xi,1,xi,2}: if it is known that they can only come from classes 1 and 2, and
they can not share the same label, thenzi,1 = [1, 2], zi,2 = [2, 1] will be the candidate labeling
vectors for this bag, while the other possibilities are excluded from the labeling set. In the following
we will assume that the labeling setZi is given with the training set. In Section 4.2 we will give a
practical example on how to construct this set using the prior knowledge on the task.
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Given the training data{Xi,Zi}
N
i=1, we want to learn a functionf(x), to correctly predict the

class of each single instancex, coming from the same distribution. The problem would become
the standard multiclass supervised learning if there is only one labeling vector in every labeling set
Zi, i.e. Li = 1. On the other hand, given a set ofC labels, without any prior knowledge, a bag
of Mi instances could have maximumCMi labeling vectors, which becomes a clustering problem.
However, we are more interested in situations whenLi ≪ CMi .

2.1 Large-margin formulation

We introduce here a large margin formulation to solve the CLSproblem. It is helpful to first define
byX the generic bag ofM instances{x1, . . . xM}, Z = {z1, . . . , zL} the generic set of candidate
labeling vectors, andy = {y1, . . . , yM}, z = {z1, . . . , zM} ∈ YM two labeling vectors.

We start by introducing the loss function that assumes the true labelym of each instancexm is
known

ℓ∆(z,y) =
M∑

m=1

∆(zm, ym) , (1)

where∆(zm, ym) is a non-negative loss function measuring how much we pay forhaving predicted
zm instead ofym. For example∆(zm, ym) can be defined as1(zm 6= ym), where1 is the indicator
function. Hence, if the vectorz is the predicted label for the bag,ℓ∆(z,y) simply counts the number
of misclassified instances in the bag.

However, the true labels are unknown, and we only have accessto the setZ, knowing that the true
labeling vector is inZ. So we use a proxy of this loss function, and propose the ambiguous version
of this loss:

ℓA∆(z,Z) = min
z
′∈Z

ℓ∆(z, z′) .

We also define, with a small abuse of notation,ℓA∆(X ,Z; f) = ℓA∆(f(X ),Z), wheref(X ) returns
a labeling vector which consists of labels for each instancein the bagX . It is obvious that this loss
underestimates the true loss. Nevertheless, we can easily extend [8, Proposition 3.1 to 3.3] to the
bag case, and prove thatℓA∆/(1 − η) is an upper bound toℓ∆ in expectation, whereη is a factor
between 0 and 1, and its value depends on the hardness of the problem. Like the definition in [8],η
corresponds to the maximum probability of an extra label co-occurring with the true label over all
labels and instances. Hence, minimizing the ambiguous losswe are actually minimizing an upper
bound of the true loss. It is a known problem that direct minimization of this loss is hard, so in the
following we introduce another loss that upper boundsℓA∆ which can be minimized efficiently.

We assume that the prediction functionf(x) we are searching for is equal toargmaxy∈Y F (x, y).
In this framework we can interpret the value ofF (x, y) as the confidence of the classifier in assigning
x to the classy. We also assume the standard linear model used in supervisedmulticlass learning [9].
In particular the functionF (x, y) is set to bew · φ(x) ⊗ ψ(y), whereφ andψ are the feature and
label space mapping [20], and⊗ is the Kronecker product1. We can now defineF(X ,y; w) =∑M

m=1 F (xm, ym), which intuitively is gathering from each instance inX the confidence on the
labels iny. With the definitions above, we can rewrite the functionF as

F(X ,y; w) =

M∑

m=1

F (xm, ym) =

M∑

m=1

w · φ(xm) ⊗ ψ(ym) = w · Φ(X ,y) , (2)

where we definedΦ(X ,y) =
∑M

m=1 φ(xm) ⊗ ψ(ym). Hence the functionF can be defined as the
scalar product betweenw and a joint feature map between the bagX and the labeling vectory.

Remark. If the prior probabilities of every candidate labeling vectors zl ∈ Z are also available,
they could be incorporated by slightly modifying the feature mapping scheme in (2).

We can now introduce the following loss function

ℓmax (X ,Z; w) =

∣∣∣∣max
z̄ /∈Z

(
ℓA∆(z̄,Z) + F(X , z̄; w)

)
− max

z∈Z
F(X , z; w)

∣∣∣∣
+

(3)

where|x|+ = max(0, x). The following proposition shows thatℓmax upper boundsℓA∆.

1For simplicity we will omit the bias term here, it can be easily added by modifying the feature mapping.
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Proposition. ℓmax (X ,Z; w) ≥ ℓA∆ (X ,Z; w) .

Proof. Defineẑ = argmax
z∈YM F(X , z; w). If ẑ ∈ Z thenℓmax (X ,Z; w) ≥ ℓA∆ (X ,Z; w) = 0.

We now consider the case in whicĥz /∈ Z. We have that

ℓA∆ (X ,Z; w) ≤ ℓA∆(ẑ,Z) + F(X , ẑ; w) − max
z∈Z

F(X , z; w)

≤ max
z̄/∈Z

(
ℓA∆(z̄,Z) + F(X , z̄; w)

)
− max

z∈Z
F(X , z; w) ≤ ℓmax (X ,Z; w) . �

The lossℓmax is non-convex, due to the secondmax(·) function inside, but in Section 3 we will
introduce an algorithm to minimize it efficiently.

2.2 A probabilistic interpretation

It is possible to gain additional intuition on the proposed loss functionℓmax through a probabilistic
interpretation of the problem. It is helpful to look at the discriminative model for supervised learning
first, where the goal is to learn the model parametersθ for the functionP (y|x; θ), from a pre-
defined modeling classΘ. Instead of directly maximizing the log-likelihood for thetraining data, an
alternative way is to maximize the log-likelihood ratio between the correct label and the most likely
incorrect one [9]. On the other hand, in the CLS setting the correct labeling vector forX is unknown,
but it is known to be a member of the candidate setZ. Hence we could maximize the log-likelihood
ratio betweenP (Z|X ; θ) and the most likely incorrect labeling vector which is not member ofZ
(denoted as̄z). However, the correlations between different vectors inZ are not known, so the
inference could be arbitrarily hard. Instead, we could approximate the problem by considering just
the most likely correct member ofZ. It can be easily verified thatmaxz∈Z P (z|X ; θ) is a lower
bound ofP (Z|X ; θ). The learning problem becomes to minimize the ratio for the bag:

− log
P (Z|X ; θ)

max
z̄/∈Z P (z̄|X ; θ)

≈ − log
maxz∈Z P (z|X ; θ)

max
z̄ /∈Z P (z̄|X ; θ)

. (4)

If we assume independence between the instances in the bag,(4) can be factorized as:

− log
maxz∈Z

∏
m P (zm|xm; θ)

max
z̄ /∈Z

∏
m P (z̄m|xm; θ)

= max
z̄/∈Z

∑

m

logP (z̄m|xm; θ) − max
z∈Z

∑

m

logP (zm|xm; θ) .

If we take the margin into account, and assume a linear model for the log-posterior-likelihood, we
obtain the loss function in (3).

3 MMS: The Maximum Margin Set Learning Algorithm

Using the square norm regularizer as in the SVM and the loss function in (3), we have the following
optimization problem for the CLS learning problem:

min
w

λ

2
‖w‖2

2 +
1

N

N∑

i=1

ℓmax (Xi,Zi; w) (5)

This optimization problem (5) is non-convex due to the non-convex loss function (3). To convexify
this problem, one could approximate the secondmax(·) in (3) with the average over all the labeling
vectors inZi. Similar strategies have been used in several analogous problems [8, 24]. However, the
approximation could be very loose if the number of labeling vectors is large. Fortunately, although
the loss function is not convex, it can be decomposed into a convex and a concave part. Thus the
problem can be solved using the constrained concave-convexprocedure (CCCP) [19, 23].

3.1 Optimization using the CCCP algorithm

The CCCP solves the optimization problem using an iterativeminimization process. At each round
r, given an initialw(r), the CCCP replaces the concave part of the objective function with its first-
order Taylor expansion atw(r), and then setsw(r+1) to the solution of the relaxed optimization
problem. When this function is non-smooth, such asmaxz∈Zi

F(Xi, z; w) in our formulation, the
gradient in the Taylor expansion must be replaced by the subgradient2. Thus, at ther-th round, the

2Given a functiong, its subgradient∂g(x) atx satisfies:∀u, g(u)− g(x) ≥ ∂g(x) · (u − x). The set of
all subgradients ofg atx is called the subdifferential ofg atx.
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CCCP replacesmaxz∈Zi
F(Xi, z; w) in the loss function by

max
z∈Zi

F(Xi, z; w(r)) + (w − w(r)) · ∂

(
max
z∈Zi

F(Xi, z; w)

)
. (6)

The subgradient of a point-wise maximum functiong(x) = maxi gi(x) is the convex hull of the
union of subdifferentials of the subset of the functionsgi(x) which equalg(x) [4]. Defining by

C
(r)
i = {z ∈ Zi : F(Xi, z; w(r)) = maxz

′∈Zi
F(Xi, z

′; w(r))}, the subgradient of the function

maxz∈Zi
F(Xi, z; w) equals to

∑
l α

(r)
i,l ∂F(Xi, zi,l; w) =

∑
l α

(r)
i,l Φ(Xi, zi,l), with

∑
l α

(r)
i,l = 1,

andα(r)
i,l ≥ 0 if zi,l ∈ C

(r)
i andαi,l = 0 otherwise. Hence we have

∑

l

α
(r)
i,l w(r) · Φ(Xi, zi,l) = max

z∈Zi

(
w(r) · Φ(Xi, z)

) ∑

l:zi,l∈C
(r)
i

α
(r)
i,l = max

z∈Zi

(
w(r) · Φ(Xi, z)

)
.

We are free to choose the values of theα
(r)
i,l in the convex hull, here we choose to setα

(r)
i,l = 1/|C

(r)
i |

for ∀zi,l ∈ C
(r)
i . Using (6) the new loss function becomes

ℓ
(r)
cccp (Xi,Zi; w) =

∣∣∣∣maxz̄ /∈Zi

(
ℓA∆(z̄,Zi) + w · Φ(Xi, z̄)

)
− w · 1

|C
(r)
i

|

∑
z∈C

(r)
i

Φ(Xi, z)

∣∣∣∣
+

, (7)

Replacing the non-convex lossℓmax in (5) with (7), the relaxed convex optimization program atr-th
round of the CCCP is

min
w

λ

2
‖w‖2

2 +
1

N

N∑

i=1

ℓ(r)
cccp (Xi,Zi; w) (8)

With our choice ofα(r)
i,l , in the first round of the CCCP whenw is initialized at0, the secondmax(·)

in (3) is approximated by the average over all the labeling vectors. The CCCP algorithm is guaran-
teed to decrease the objective function and it converges to alocal minimum solution of (5) [23].

3.2 Solve the convex optimization problem using the Pegasosframework

In order to solve the relaxed convex optimization problem (8) efficiently at each round of the CCCP,
we have designed a stochastic subgradient descent algorithm, using the Pegasos framework devel-
oped in [18]. At each step the algorithm takesK random samples from the training set and calculates
an estimate of the subgradient of the objective function using these samples. Then it performs a sub-
gradient descent step with decreasing learning rate, followed by a projection of the solution into
the space where the optimal solution lives. An upper bound onthe radius of the ball in which the
optimal hyperplane lives can be calculated by considering that

λ

2
‖w∗‖2

2 ≤ min
w

λ

2
‖w‖2

2 +
1

N

N∑

i=1

ℓ(r)
cccp (Xi,Zi; w) ≤ B

wherew∗ is the optimal solution of (8), andB = maxi(ℓ
(r)
cccp(Xi, Zi;0)). If we use∆(zm, ym) =

1(zm 6=ym) in (7), B equals the maximum number of instances in the bags. The details of the Pegasos
algorithm for solving (8) are given in Algorithm 2. Using thetheorems in [18] it is easy to show that
afterÕ

(
1/(λε)) iterations Algorithm 2 converges in expectation to a solution of accuracyε.

Efficient implementation. Note that even if we solve the problem in the primal, we can still use
nonlinear kernels without computing the nonlinear mappingφ(x) explicitly. Since the implementa-
tion method is similar to the one described in [18, Section 4]for lack of space we omit the details.

Greedily searching for the most violating labeling vectorẑk in line 4 of Algorithm 2 can be com-
putational expensive. Dynamic programming can be carried out to reduce the computational cost
since the contribution of each instance is additive over different labels. Moreover, by looking into
the structure ofZi, the computational time can be further reduced. In the general situation, the
worst case complexity of searching the maximum ofz̄ /∈ Zi is O(

∏Mi

m=1 Ci,m), whereCi,m is the
number of unique possible labels forxi,m in Zi (usuallyCi,m ≪ Li). This complexity can be
greatly reduced when there are special structures such as graphs and trees in the labeling set. See
for example [20, Section 4] for a discussion on some specific problems and special cases.
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Algorithm 1 The CCCP algorithm for solving MMS

1: initialize: w(1) = 0

2: repeat
3: SetC(r)

i = {z ∈ Zi : F(Xi, z; w(r)) = maxz
′∈Zi

F(Xi, z
′; w(r))}

4: Setw(r+1) as the solution of the convex optimization problem (8)
5: until convergence to a local minimum
6: output:w(r+1)

Algorithm 2 Pegasos Algorithm for Solving Relaxed-MMS (8)

1: Input: w0, {Xi,Zi, C
(r)
i }N

i=1, λ, T ,K,B
2: for t = 1, 2, . . . , T do
3: Draw at randomAt ⊆ {1, . . . , N}, with |At| = K
4: Computeẑk = arg max

z̄/∈Zk

(
ℓA∆(z̄,Zk) + wt · Φ(Xk, z̄)

)
∀k ∈ At

5: SetA+
t = {k ∈ At : ℓ

(r)
cccp(Xk,Zk; wt) > 0}

6: Setwt+ 1
2

= (1 − 1
t )wt + 1

λKt

∑
k∈A+

t

(∑
z∈C

(r)
i

Φ(Xk, z)/|C
(r)
i | − Φ(Xk, ẑk)

)

7: wt+1 = min
(
1,

√
2B/λ/‖wt+ 1

2
‖
)

wt+ 1
2

8: end for
9: Output: wT+1

4 Experiments

In order to evaluate the proposed algorithm, we first performexperiments on several artificial
datasets created from standard machine learning databases. Finally, we test our algorithm on one of
the examples motivating our study — learning a face recognition system from news images weakly
annotated by their associated captions. We benchmark MMS against the following baselines:

• SVM: we train a fully-supervised SVM classifier using the ground-truth labels by consid-
ering every instance separately while ignoring the other candidate labels. Its performance
can be considered as an upper bound for the performance usingcandidate labels. In all our
experiments, we use the LIBLINEAR [11] package and test two different multiple-class
extensions, the 1-vs-All method using L1-loss (1vA-SVM) and the method by Crammer
and Singer [9] (MC-SVM).

• CL-SVM : the Candidate Labeling SVM (CL-SVM) is a naive approach which transforms
the ambiguous labeled data into a standard supervised representation by treating all possi-
ble labels of each instance as true labels. Then it learns 1-vs-All SVM classifiers from the
resulting dataset, where the negative examples are instances which do not have the corre-
sponding label in their candidate labeling set. A similar baseline has been used in binary
MIL literature [5].

• MIML : we also compared with two SVM-based MIML algorithms3: MIMLSVM [25] and
M3MIML [24]. We train the MIML algorithms by treating the labels in Zi as a label for
the bag. During the test phase, we consider each instance separately and predict the labels
as: y = argmaxy∈Y Fmiml(x, y), whereFmiml is the obtained classifier, andFmiml(x, y)
can be interpreted as the confidence of the classifier in assigning the instancex to the class
y. We would like to underline that although some of the experimental setups may favor our
algorithm, we include the comparison between MMS and MIML algorithms because to the
best of our knowledge it is the only existing principle framework for modeling instance bags
with multiple labels. MIML algorithms may still have their own advantage in scenarios
when no prior knowledge is available about the instances within a bag.

3We used the original implementation athttp://lamda.nju.edu.cn/data.ashx#code . We did
not compare against MIMLBOOST [25], because it does not scale to all the experiments we conducted. Be-
sides, MIMLSVM [25] does not scale to data with high dimensional feature vectors (e.g., news20 which has
a 62,061-dimensions features). Running the MATLAB implementation of M3MIML [24] on problems with
more than a few thousand samples is computational infeasible. Thus, we will only report results using this two
baseline methods on small size problems, where they can be finished in a reasonable amount of time.
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Figure 1:(Best seen in colors) Classification performance of different algorithms on artificial datasets.

We implemented our MMS algorithm in MATLAB4, and used a value of the1/N for the regular-
ization parameterλ in all our experiments. In (1) we used∆(zm, ym) = 1(zm 6=ym). For a fair
comparison, we used linear kernel for all the methods. The cost parameter for SVM algorithms is
selected from the rangeC ∈ {0.1, 1, 10, 100, 1000}. The bias term is used in all the algorithms.

4.1 Experiments on artificial data

We create several artificial datasets using four widely usedmulti-class datasets (usps, letter, news20
and covtype) from the LIBSVM [6] website. The artificial training sets are created as follows: we
first set at random pairs of classes as “correlated classes”,and as “ambiguous classes”, where the
ambiguous classes can be different from the correlated classes. Following that, instances are grouped
randomly into bags of fixed sizeB with probability at leastPc that two instances from correlated
classes will appear in the same bag. ThenL ambiguous labeling vectors are created for each bag,
by modifying a few elements of the correct labeling vector. The number of the modified element is
randomly chosen from{1, . . . , B}, and the new labels are chosen among a predefined ambiguous
set. The ambiguous set is composed by the other correct labels from the same bag (except the true
one) and a subset of the ambiguous pairs of all the correct labels from the bag. The probability of
whether the ambiguous pair of a label is present equalsPa. For testing, we use the original test set,
and each instance is considered separately.

Varying Pc, Pa, andL we generate different dataset difficulty levels to evaluatethe behaviour of
the algorithms. For example, whenPa > 0, noisy labels are likely to be present in the labeling
set. Meanwhile,Pc controls the ambiguity within the same bags. IfPc is large, instances from
two correlated classes are likely to be grouped into the samebag, thus it becomes more difficult to
distinguish between these two classes. The parametersPc andPa are chosen from{0, 0.25, 0.5}.
For each difficulty level, we run three different training/test splits.

In figure 1, we plot the average classification accuracy. Several observations can be made: first,
MMS achieves results close to the supervised SVM methods, and better than all other baselines.
As MMS uses a similar multi-class loss as MC-SVM, it even outperforms 1vA-SVM when the
loss has its advantage (e.g., on the ‘letter’ dataset). For the ‘covtype’ dataset, the performance
gap between MMS and SVM is more visible. It may because ‘covtype’ has a class unbalance,
where the two largest classes (among seven) dominate the whole dataset (more than 85% of the
total number of samples). Second, the change on performanceof MMS is small when the size of the
candidate labeling set grows. Moreover, when correlated instances and extra noisy labels are present
in the dataset, the baseline methods’ performance drops by several percentages, while MMS is less
affected. The CCCP algorithm usually converges in 3 – 5 rounds, and the final performance is about
5% – 40% higher compared to the results obtained after the first round, especially whenL is large.
This behavior also proves that approximating the secondmax(·) function in the loss function (3)
with the average over all the possible labeling vectors can lead to poor performance.

4.2 Applications to learning from images & captions

A huge amount of images with accompanying text captions are available on the web. This cheap
source of information has been used, e.g., to name faces in images using captions [3, 13]. Thanks
to the recent developments in the computer vision and natural language processing fields, faces in
the images can be detected by a face detector and names in the captions can be identified using a
language parser. The gathered data can then be used to train visual classifiers, without human’s

4Code available athttp://dogma.sourceforge.net/

7



PresidentBarack Obama and first lady

Michelle Obama wave from the steps of

Air Force One as they arrive in Prague,

Czech Republic.

z1 z2 z3 z4 z5 z6

Z :

»

na na ◦ nb ◦ nb

nb ◦ nb na na ◦

–

← facea
← faceb

Figure 2:(Left ): An example image and its associated caption. There are twodetected facesfacea andfaceb
and two names Barack Obama (na) and Michelle Obama (nb) from the caption. (Right): The candidate labeling
set for this image-captions pairs. The labeling vectors aregenerated using the following constrains:i). a face
in the image can either be assigned with a name from its caption, or it possibly corresponds to none of them (a
NULL class, denoted as◦); ii) a face can be assigned to at most one name;iii) a name can be assigned to at most
a face. Differently from previous methods, we do not allow the labeling vector with all the faces assigned to
theNULL class, because it would lead to the trivial solution with0 loss by classifying every instance asNULL.

Table 1: Overall face recognition accuracy
Dataset 1vA-SVM MC-SVM CL-SVM MIMLSVM MMS
Yahoo! 81.6% ± 0.6 87.2% ± 0.3 76.9% ± 0.2 74.7% ± 0.9 85.7% ± 0.5

effort in labeling the data. This task is difficult due to the so called “correspondence ambiguity”
problem: there could be more than one face and name appearingin the image-caption pairs, and not
all the names in the caption appear in the image, and vice versa. Nevertheless, this problem can be
naturally formulated as a CLS problem. Since the names of thekey persons in the image typically
appear in the captions, combined with other common assumptions [3, 13], we can easily generate
the candidate labeling sets (see Figure 2 for a practical example).

We conducted experiments on the Labeled Yahoo! News dataset5 [3, 13]. The dataset is fully an-
notated for association of faces in the image with names in the caption, precomputed facial features
were also available with the dataset. After preprocessing,the dataset contains 20071 images and
31147 faces. There are more than 10000 different names from the captions. We retain the 214 most
frequent ones which occur at least 20 times, and treat the other names asNULL. The experiments
are performed over 5 different permutations, sampling 80% images and captions as training set, and
using the rest for testing. During splitting we also maintain the ratio between the number of samples
from each class in the training and test set. For all algorithms,NULL names are considered as an
additional class, except for MIML algorithms where unknownfaces can be automatically consid-
ered as negative instances. The performance of the algorithms is measured by how many faces in
the test set are correctly labeled with their name. Table 1 summarizes the results. Similar observa-
tions can also be made here: MMS achieves performance comparable to the fully-supervised SVM
algorithms (4.1% higher than 1vA-SVM on Yahoo! data), whileoutperforming the other baselines
for ambiguously labeled data.

5 Conclusion

In this paper, we introduce the “Candidate Labeling Set” problem where training samples contain
multiple instances and a set of possible labeling vectors. We also propose a large margin formulation
of the learning problem and an efficient algorithm for solving it. Although there are other similar
frameworks, such as MIML, which also investigate learning from instance bags with multiple labels,
our framework is different since it makes an explicit effortto label and to consider each instance in
the bag during the learning process, and allows noisy labelsin the training data. In particular,
our framework provides a principled way to encode prior knowledge about relationships between
instances and labels, and these constraints are explicitlytaken into account into the loss function
by the algorithm. The use of this framework does not have to belimited to data which is naturally
grouped in multi-instance bags. It could be also possible togroup separate instances into bags and
solve the learning problem using MMS, when there are labeling constraints between these instances
(e.g., a clustering problem with linkage constraints).
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5Dataset available athttp://lear.inrialpes.fr/data/
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