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Abstract

We address the joint segmentation of regions around faces into different classes —

skin, hair, clothing and background — and the learning of their respective colour mod-

els. To this end, we adopt a Bayesian framework with two main elements. First, the

modelling and learning of prior beliefs over class colour distributions of different kinds,

viz. discrete distributions for background and clothing, and continuous distributions for

skin and hair. This component of the model allows the formulation of the colour adapta-

tion task as the computation of the posterior beliefs over class colour distributions given

the prior (general) class colour model, a colour likelihood function and observed pixel

colours. Second, a spatial prior based on probabilistic index maps enhanced with Markov

random field regularisation. The inference of the segmentation and of the adapted colour

models is solved using a variational scheme. Segmentation results on a small database

of annotated images demonstrate the impact of the different modelling choices.

1 Introduction

We address the joint segmentation of regions around faces into different classes (skin, hair,

clothing, and background) and the learning of their respective colour models. Such colour in-

formation is known to be a powerful cue for tracking, as has been demonstrated, for instance,

using the mean shift [3] and particle filtering [14] algorithms. In particular, locating skin-

coloured regions plays an important role when dealing with faces, and is useful not only

for face detection and tracking [21, 22], but also for head pose estimation when precisely

segmented and when dealing with low to mid-resolution images. Furthermore, knowing the

colour of a person’s skin, hair and clothing can aid in re-associating lost tracks in video.

Much of the existing literature on skin colour modelling is about building a general

colour model across all possible ethnicities and illumination conditions. Such a model can

still be distracted by objects that are approximately skin-toned, like wood and T-shirts. We

aim to improve skin colour modelling and segmentation by using three main elements. The

first is automatic adaptation of the colour model, either by updating some model parameters

(e.g. of a Gaussian), or by adapting a threshold, or by doing both. The second is to perform

colour segmentation, which brings two main benefits: a form of spatial regularisation and,
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importantly, the competition between several colour models for class assignment, which re-

solves the issue of setting a threshold for the skin colour model. These two elements —

adaptation and segmentation — are obviously coupled. The main challenge is to obtain ac-

curate colour models, which depends on the choice of good priors for these models and the

selection of appropriate data (pixels) for their estimation or adaptation. The third element

can mitigate this data selection issue. It consists of the exploitation of a spatial prior on the

location of each class label. The intuition is that knowing the approximate location of, for

instance, a person’s hair and clothing provides a lot of information about where his/her face

is located (and vice versa). A spatial prior also helps to avoid drift, explicitly for segmen-

tation and implicitly for colour adaptation. In this paper, we combine the three elements

above within a generative model of face images. More precisely, the main components and

novelties of our model are as follows.

• The colour model of each class (skin, hair, clothing and background) is represented

with a probability distribution over colours, which we will refer to as a palette. For

each class, we learn a prior distribution over palettes — i.e., a distribution over colour

distributions — across all people. This contrasts with the literature where a prior

model is an expected colour distribution across all people. The parameters of this

prior can then be updated online, to do adaptation. Furthermore, we use different

types of colour models for different classes — continuous models for skin and hair,

and discrete models for background and clothing.

• We use a spatial prior over classes based on probabilistic index maps (PIMs) [6].

The standard PIM model is modified by incorporating a Markov random field prior

to model correlations between neighbouring pixels.

• Inference in the full Bayesian model is done using a variational approach that com-

putes approximate Bayesian posteriors over the class of each image pixel for segmen-

tation and over the palette of each class for colour adaptation.

The impact and validity of the different components are evaluated on a small dataset.

The remainder of the paper is organised as follows. Section 2 discusses related work

on skin and hair colour modelling. The proposed Bayesian model is described in Section 3.

The data set used for training and testing is presented in Section 4. The different inference

procedures are summarised in Section 5, while Section 6 shows the experimental results.

The supplementary material accompanying this article contains derivations of the inference

procedure described here, along with additional qualitative results. Source code and data for

reproducing the results described here is available from [1].

2 Related Work

Here we briefly review the skin colour modelling literature, focusing on adaptive models,

which are more relevant to the scope of this paper. We also briefly review the more recent

work on hair segmentation.

Skin Modelling There is a strong body of literature on general skin colour modelling, but

less so for adaptation of a colour model to an individual person. Kakumanu et al. [10]

provide a recent and comprehensive survey of the field. They provide overviews of colour

spaces, parametric and non-parametric models for colour distributions, public databases, il-

lumination invariance and adaptation. However, they make no mention of adapting a general
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skin colour model to an individual person.

One of the strongest colour models for classifying pixels into skin and background with-

out adaptation is the histogram-based model of Jones and Rehg [7]. They provide a large

labelled database of skin and background images, known as the Compaq skin database, and

estimate the probability of observing each of the 2563 possible RGB triples in skin and non-

skin pixels. They then use Bayes’ rule and the likelihood ratio between the two models to

compute the probability that a given pixel is skin or not, thus avoiding having to set a skin

likelihood threshold. When comparing colour spaces, Phung et al. [15] conclude that 2563

histogram bins should be used for the general skin model (assuming that there are enough

training images) in any 3-d colour space, but not in a reduced colour space, such as a 2-d

chroma-only space. Luminance is important, as also pointed out by Kakumanu et al. [10].

Skin Adaptation Adaptation to illumination changes has been studied for both video and

single images. However, the underlying assumptions are often different from the scope of

this article — the focus is more on large and possibly abrupt illumination changes with

respect to direction, intensity and colour, e.g. [16].

Adaptation of a general skin colour model to an individual person has mainly been con-

sidered in the context of face tracking. In the large majority of cases (e.g., [11, 12, 17, 19,

21, 22]), colour adaptation is presented as first learning a general colour model in the form

of a Gaussian, Gaussian mixture or histogram, and then re-estimating the model parameters

using selected data from a new image. Surprisingly, the use of a proper Bayesian approach

as proposed here has not been considered. A typical example of the approach described

above is in [21]. A single 2-d Gaussian is used for a general colour distribution, defined in

an intensity normalised red–green colour space. The sample mean and covariance of pixels

classified as skin in a new frame are used to adapt the mean and covariance of the Gaussian

skin model using auto-regressive temporal smoothing.

The decision about which pixels to use for updating the skin model relies on two types of

constraints, viz. chromatic and geometric. Soriano et al. [17] argue for the use of chromatic

constraints rather than geometric constraints, and thus follow the approach of [21] sum-

marised above, except that a skin histogram model is used. However, chromatic constraints

can easily fail, either due to the lack of data for adaptation when the colour discrepancy with

the general colour model is too great, or due to model drift in the presence of nearby skin-

coloured hair, background or clothing regions. Geometric constraints have been used in a

weak fashion for data selection — e.g., by sampling the most reliable skin pixel locations

given a face bounding box as provided by a tracker or a face detector [12, 22] — and to

select background pixels when adapting a background colour model in order to apply a (de-

sirable) colour likelihood ratio test rather than using a fixed threshold. However, in the latter

case blond or red hair can often be confused with skin, since this reliability-driven geometric

constraint will avoid selecting background pixels near the face.

In this work, we use both chromatic and geometric constraints in a principled Bayesian

framework for colour distribution adaptation.

Hair Colour Segmentation More recently, a few papers have addressed the problem of

hair segmentation [9, 11, 19, 20]. Most of these use similar approaches to the skin detection

literature, but usually also exploit a segmentation algorithm, e.g. a graph-cut method in [11]

and a snake-based active contour in [9]. Although they are computationally efficient, these

methods do not have the same properties as our approach. Some use a simple colour model

or geometric prior that allow them to work with a controlled background, or assume little

variation in hair styles or pose, and they all lack a probabilistic framework for adaptation.
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Figure 1: (a) Directed graph of the class and colour models. The coherent probabilistic index

map (CPIM) prior is used to assign a discrete class label, zIxy, to each pixel in an image, I.

One palette (that is, a distribution over colours) is drawn from a colour prior, for each class

in each image. Each palette is a parametrised (by ΘIk) distribution — see Section 3.1 for

more details. Given the class of a pixel and the palette of the class, the colour of the pixel,

~cIxy, is drawn from the corresponding palette. (b) Discrete colour histogram prior and colour

likelihood. The palette for class k in image I is a normalised histogram with uniform bins,

defined by a discrete probability vector, ~π
(c)
Ik , drawn from a Dirichlet prior, D

(
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3 The Proposed Model

Fig. 1a shows an overview of the full generative model in the form of a directed graph. In

the model, each image is generated as follows:

1. A palette is generated for each class. For each of the skin and hair classes, a normal

distribution over colours in YPbPr colour space is drawn from a normal–gamma prior.

For each of the background and clothing classes, a discrete distribution over colour

bins is drawn from a Dirichlet prior.

2. Each pixel is assigned a class from the coherent probabilistic index map (CPIM) prior,

which is comprised of a PIM prior (i.e., a discrete distribution over classes at each

pixel) and a Markov random field between neighbouring pixels. This means that the

classes of pixels are not drawn independently. See Section 3.2 for details.

3. For each pixel, a colour is generated from the palette corresponding to its class.

3.1 Discrete and Continuous Palettes

Modelling a palette requires a choice of colour representation and a prior distribution over

colours using the representation. Here we motivate our choices for different palettes.

Discrete Palettes for Background and Clothing For these classes we expect colour distri-

butions to be broad and likely multi-modal since clothing and background are not constrained

in terms of illumination or chroma. Therefore we use a discrete distribution (a normalised

histogram) in RGB colour space. Formally, a discrete palette is a discrete distribution vec-

tor, ~π
(c)
Ik , over colour bins. The subscripts indicate that a palette belongs to class k in image

I. The superscript (c) indicates that this discrete probability vector is for colour modelling.

Fig. 1b shows a factor graph [4] of the discrete palette prior and colour likelihood. (Factor

graphs explicitly show the variables, factors and factorisation properties of a probabilistic

model. See Chapter 8 of [2] for a good introduction to factor graphs.) The probability that a

colour in bin b is drawn is simply the bth entry in the vector, [~π
(c)
Ik ]b, divided by the volume

of the bin in colour space, vbin, to normalise the distribution. This normalisation is important

for consistency with the continuous palette model. The notation [~a]b ≡ ab is used to index



SCHEFFLER AND ODOBEZ: ADAPTIVE COLOUR MODELLING AND SEGMENTATION 5

I

k ∈ continuous classes

x,y

~η
(c)
k

~τ
(c)
k

~α
(c)
k

~β
(c)
k

NG
(

~µ
(c)
Ik ,~λ

(c)
Ik

∣

∣~η
(c)
k ,~τ

(c)
k ,~α

(c)
k ,~β

(c)
k

)

~µ
(c)
Ik

~λ
(c)
Ik

N
(

~cIxy

∣

∣~µ
(c)
I,zIxy

,(~λ
(c)
I,zIxy

)−1
)

~cIxy

zIxy

Figure 2: Continuous colour model and likelihood. The palette for class k in image I is

a product of normal distributions over the three colour components — Y, Pb and Pr —

parametrised by means, ~µ
(c)
Ik , and precisions (inverse variances), ~λ

(c)
Ik . Each mean and in-

verse variance is drawn from a normal–gamma (NG) prior.

into a vector. The square brackets simply serve to aid legibility. The prior distribution over

palettes, which can also be interpreted as the general distribution over colours for the class,

is chosen to be the Dirichlet distribution, which is conjugate to the discrete distribution.

Continuous Palettes for Skin and Hair We model each of the skin and hair palettes using

an axis-aligned normal distribution in YPbPr colour space. This space is used in the JPEG

compression standard and was designed to separate lightness from colour. As reported in the

literature, skin tone as represented by the chroma components (Pb and Pr) is very localised

for skin in general [17] and we expect it to be even more localised for the skin of an individual

person. Fig. 2 shows a factor graph of the continuous palette prior and colour likelihood. A

continuous palette is a factored normal distribution over colour components, parametrised

by a mean vector, ~µ
(c)
k , and a precision vector,~λ

(c)
k . We use the conjugate normal–gamma

distribution as palette prior. The conjugacy makes for straightforward analytical inference

and computationally efficient update equations — see Section 5 for details.

We would like to emphasise that, to the best of our knowledge, modelling general skin

colour as a distribution over distributions has not been explored in the literature, where both

the general and adapted skin colour models are usually handled as distributions over colours.

The advantage of our approach is that estimating the adapted colour model is handled in a

principled Bayesian framework by estimating the posterior belief over, for example, a per-

son’s skin palette based on the prior (general) skin model and the colour likelihood function.

3.2 Coherent Probabilistic Index Maps (CPIM)

In this section, we first describe the probabilistic index map (PIM) of Jojic and Caspi [6],

and then our extension using a Markov random field.

Probabilistic Index Maps The main objective of the PIM model is to learn a prior over the

class of each pixel in an image. The idea is that the segmentation maps of (aligned) images

of the same object are often consistent across instances, even if the pixels of the same class

across training images are not characterised by the same colour distribution parameters —

i.e., they have different palettes. More formally, the PIM prior is defined as:

PPIM

(〈

zxy

〉 ∣

∣

〈

~π
(z)
xy

〉)

= ∏
x,y

[

~π
(z)
xy

]

zxy
(1)

where
〈

zxy

〉

denotes the set of class label variables at all pixel coordinates, and ~π
(z)
xy is a dis-

crete probability vector over classes at pixel (x,y). The PIM model assumes an independent
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Figure 3: (a) The PIM model. The distribution over classes at each (x,y) coordinate is inde-

pendent of the other coordinates. The class zIxy is drawn from a discrete latent distribution

~π
(z)
xy . (b) CPIM: the coherent PIM model. The distribution over classes at each (x,y) coordi-

nate depends on its four neighbours through a Markov random field.

prior over pixels, and hence spatial consistency is not incorporated. The prior parameters,
〈

~π
(z)
xy

〉

, are estimated from images with ground truth class labels for each pixel.

Incorporating a Markov Random Field We know that adjacent pixels in an image belong

to the same class with high probability. This knowledge is encoded in the prior over classes

by incorporating into the PIM model a coherence energy function in the form of a Markov

random field that encourages neighbouring pixels to be in the same class. The standard PIM

prior (1) is modified as follows:

PMRF

(〈

zxy

〉∣

∣

〈

~π
(z)
xy

〉

,kMRF

)

∝ PPIM

(〈

zxy
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∣

〈

~π
(z)
xy

〉)

e−EMRF(〈zxy〉) (2)

where the Markov random field (MRF) energy function is

EMRF

(〈

zxy

〉)

=−kMRF ∑
(xy,uv)∈C

I [zxy = zuv] (3)

and C denotes the set of pairwise cliques (i.e. the set of pairs of neighbouring coordinates

(x,y) and (u,v) — we use a 4-connected neighbouring system) in the image and kMRF is

a constant indicating how important it is that adjacent pixels have the same class. This

modified prior will be referred to as coherent PIM (CPIM). The factor graphs for PIM and

coherent PIM are shown in Fig. 3.

4 Data

We used the Compaq skin database [7] for all of the training and evaluation in this article.

The full database contains more than 13,000 images in two groups — skin and non-skin.

Skin images have ground truth indicating which pixels contain skin, but this labelling was

done conservatively in the sense that labels have very high precision (presumably 100%) but

low recall. Therefore we can use the labels to construct a good skin colour model, but not

to test the accuracy of skin segmentation. Non-skin images in the database were used to

learn the background colour model prior, as described in the next section. The background

prior was also used as the prior for clothing, since we expect that clothing can be any colour

and since there is not enough labelled data to estimate a good prior for clothing. To learn

the CPIM prior maps (and for testing), several images from the database containing faces

detected by the Viola–Jones face algorithm [18] as implemented in the OpenCV library [5]

were labelled for skin, hair, clothing and background. The size of a cropped image was

chosen to be twice the size of the bounding box returned by the face detector, yielding a set

of head-and-shoulder images, as illustrated in Fig. 4a.
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(a) (b) (c) (d) (e)

Figure 4: (a) Example of an annotated image with skin (yellow), hair (red), clothing (green)

and background (blue). White regions are unlabelled and usually close to boundaries where

it is difficult to discriminate between classes. Unlabelled pixels were not used for training or

testing. (b)–(e) The PIM prior that each pixel belongs to the skin, hair, clothing and back-

ground classes, respectively. Black indicates high probability and white, low probability.

5 Inference

Inference is done in two stages. Firstly, the prior parameters for CPIM and for each of

the colour palettes are estimated from training data. Secondly, using these priors and given

a test image, approximate Bayesian posterior beliefs over the class of each pixel and the

colour distribution for each class are computed. The inference procedures for these stages

are summarised below, with mathematical derivations, which are straightforward but lengthy,

relegated to the supplementary material.

PIM Prior The PIM prior parameters,
〈

~π
(z)
xy

〉

, are estimated directly from the fully labelled

images by counting the number of times that each pixel belongs to each class in the train-

ing data. Left–right symmetry is enforced by flipping and averaging the estimated priors.

Fig. 4b–e shows the resulting distribution over classes at each pixel in the image.

Discrete Palette Prior The Dirichlet prior for the discrete background palette (see Fig. 1b)

is learned from all pixels in the non-skin images of the Compaq database. The discrete

distribution for each image, ~π
(c)
Ik , can be integrated out analytically to get a Pólya distribution

over the number of times that the colours in each histogram bin appear in each image. We

estimate a regularised maximum likelihood setting of ~α
(c)
k for this distribution using the

method of Minka [13]. The regularisation simply adds a small initial count to each histogram

bin so as to avoid numerical singularities associated with zero counts. The mean of the

Dirichlet prior over the background palette is visualised in Fig. 5a.

Due to a lack of labelled training data for clothing pixels, the prior distribution estimated

for the background palette is also used as the prior for the clothing palette.

Continuous Palette Prior The prior parameters for continuous colour distributions are also

estimated using a regularised maximum likelihood procedure. In this case the data likelihood

is a bit more complex than for discrete distributions. First, we compute the maximum like-

lihood estimate for the normal distribution over colours in each image in the training data.

Next, the maximum likelihood fit of the palette prior parameters is computed by numeri-

cal optimisation. The prior parameters (~η , ~τ , ~α and ~β ) were introduced in Fig. 2. Each

parameter vector has 3 entries for the 3 colour components. Since colour distributions are

axis-aligned, we optimise one entry from each of these vectors (i.e., 4 parameters) at a time.

The skin palette prior is estimated from the skin pixels in the face region of each Compaq

image in which a face was detected. The hair palette prior is estimated from the much smaller

set of fully labelled images from the same database. The marginals over colours from the
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(a) (b) (c)

Figure 5: Marginal prior distribution over colours for the (a) background, (b) skin and (c)

hair palettes. Each image represents a distribution over colours where the area devoted to

the colour represents the probability mass of that colour. Colours are ordered in descending

order of probability from top–left to bottom–right.

skin and hair prior palettes are shown in Fig. 5b and 5c, respectively.

Adaptation and Segmentation in a Test Image In a test image we compute approximate

posterior beliefs over the class of each pixel,
〈

zxy

〉

, and the palette of each class using vari-

ational inference [8]. The main idea is to minimise the KL-divergence between the full

joint posterior, which is difficult to compute, and a factorised belief over pixel classes and

palettes, which is easy to compute. In our case the approximate posterior belief over the class

of each pixel is another discrete distribution; the posterior belief over a discrete palette is a

Dirichlet distribution; and the posterior belief over a continuous palette is a normal–gamma

distribution. The approximate posterior is improved iteratively by updating one factor in the

posterior belief at a time while keeping all other factors fixed. Using the implementation of

[1] and with 20 variational iterations, running the inference procedure on a test image takes

approximately 250ms.

6 Experiments

We conducted numerical experiments to validate the different elements of our model. The

experimental setup is described below along with qualitative and quantitative results.

Experimental Protocol We compare methods based on accuracy (accu), i.e. the number of

labelled pixels that were classified correctly, and also the precision (prec) and recall (rec) for

each class, defined as:

accu =
∑c∈class tp(c)

∑c∈class [tp(c)+ fn(c)]
, prec(c) =

tp(c)

tp(c)+ fp(c)
, rec(c) =

tp(c)

tp(c)+ fn(c)
(4)

where tp, fp and fn are the true positive, false positive and false negative counts respectively.

These measures are computed using all labelled pixels in the test set.

Since we have only 60 fully labelled images, experimental results are computed using

cross-validation with 5 folds. In each fold, a fifth of the labelled data is held out as the test

set and the other 4 fifths are used to learn the hair palette and PIM priors. Recall that the

skin and background palette priors are learned using the large amount of skin and non-skin

labelled data in the Compaq database, and that the clothing palette prior is set equal to the

background palette prior. Discrete palettes have 163 = 4096 bins.

Markov Random Field Results We tested the importance of the Markov random field for

improving the system. Turning off the MRF corresponds to setting kMRF = 0 and increasing
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Figure 6: Markov random field experiments. (a) Overall accuracy as a function of the field

strength, kMRF. Blue circles show the results when using continuous skin and hair palettes,

and red triangles when using discrete palettes. (b) Precision and recall values at kMRF = 3 for

each class (skin, hair, clothing, background) under both conditions (continuous and discrete).

this constant corresponds to strengthening the MRF, meaning that neighbouring pixels are

more likely to belong to the same class. Fig. 6 summarises the results of the experiment.

The accuracy jumps by about 4% when the Markov random field is turned on (kMRF = 1),

but then saturates quickly for larger values of the field strength. The maximum was found to

be at kMRF = 3. This shows that the MRF is an important part of the model.

Continuous vs Discrete Palettes To test the value of using continuous palettes, we also ran

the above experiment with discrete palettes for the skin and hair classes, keeping the other

experimental conditions the same as before. In this case the predictive accuracy is about the

same, but the same dependence on the presence of the MRF is observed, as shown in Fig. 6a.

The main difference lies in the precision and recall for each type of colour distribution. Note

from Fig. 6b that recall for skin classification improves when using the discrete palette, but at

the cost of precision. It appears that since the discrete palette is a more flexible representation

than the continuous one, it adapts to cover more skin-coloured pixels, but that same flexibility

also causes it to cover non-skin pixels. One should prefer one model type over the other based

on the application of the overall model.

7 Conclusion

This paper addressed the joint segmentation and colour adaptation task. Our contributions

are: a Bayesian method for computing and adapting hyper-beliefs over skin palettes (i.e.,

distributions over distributions rather than expected distributions), the mixing of discrete and

continuous palettes, the combination of a Markov random field prior with the probabilistic

index map model, and a variational inference procedure. Numerical results demonstrated

the validity of the approach. Future work includes the use of this model for head pose

estimation and tracking. One limitation of our approach is the single spatial prior, which

could be improved by considering mixture models, e.g. of different hair styles [11].

This work was supported by the European Community’s Seventh Framework Program (FP7/2007-2013) un-

der the TA2 project (Together Anywhere, Together Anytime), grant agreement no. ICT-2007-214793, and the

HUMAVIPS project (Humanoids with Auditory and Visual Abilities in Populated Spaces), grant agreement no.

ICT-2009.2.1-247525.
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(a) (b) (c) (d)
Figure 7: Results of segmenting two challenging images into skin (yellow), hair (red), cloth-

ing (green), and background (blue) regions. Pixels for which the class posterior probability

was below 95% were left white. (a) Original image. (b) Segmentation with full model, using

continuous skin and hair palettes. (c) Segmentation without the MRF. (d) Segmentation us-

ing discrete palettes. In the first image both the background and the face are skin-coloured,

but the model is able to separate them well. In the second image the person has no hair and

the shadow in the background forms a region that can be interpreted as hair. This fools the

method into fitting the hair palette to this region.
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1 Introduction

This document contains the supplementary material for the main conference article by the

same title. The main purposes of this material are to show the derivations of key equations

for probabilistic inference and to present more qualitative experimental results. Note that this

document is not self-contained in that it references the main article in a number of places.

2 Variational Inference

Variational inference [5] is an approximate Bayesian inference scheme. The main idea is to

minimise the Kullback–Leibler divergence between the full joint distribution over all latent

variables in a model (which is difficult to compute) and an approximating distribution over

the model variables (which is easy to compute). The approximating distribution usually

factorises at least partially in the variables of the model. In this case it can be shown that

updating (optimising) each factor while keeping the other factors fixed strictly improves an

upper bound on the divergence between the true and approximating distributions.

In this section we derive the update equations used to infer posterior beliefs over the class

of each pixel in an image, and over the discrete and continuous palettes associated with each

class in an image.

2.1 Full Generative Model

In an image, I, each pixel belongs to a discrete class, zIxy, which determines the colour

model used to generate the colour of the pixel, ~cxy. The classes are skin, hair, clothing and

background. The x and y subscripts are the coordinates of the pixel. The class of a pixel is

generated from a discrete distribution with parameters ~π
(z)
xy .

There is also a Markov random field (MRF) dependence between neighbouring class

pixels. The neighbours of a pixel are the 4 pixels to the north, south, east and west of it. A

pixel is conditionally independent of all other pixels given its neighbours.

The model described above is referred to as a coherent probabilistic index map (CPIM) in

the main article. According to the CPIM model, the class labels in each image are generated

according to

PCPIM

(

〈

zIxy

〉

∣

∣

∣

〈

~π
(z)
xy

〉

,kMRF

)

=

[

∏
x,y

[

~π
(z)
xy

]

zIxy

]

exp

(

kMRF ∑
(xy,uv)∈C

I [zIxy = zIuv]

)

(1)

C denotes the set of pairwise cliques — i.e. the set of neighbours. The square bracket

notation [~π]a is used to refer to the value in vector ~π at index a. This is equivalent to writing

πa; the square bracket notation is used to aid legibility.
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There are two types of palettes (colour models), viz. discrete and continuous. Each dis-

crete palette is represented by a discrete probability vector, ~π
(c)
Ik , and is generated from a

Dirichlet prior with parameter ~αk. The discrete palette for class k in image I is generated

according to

Ppal:disc

(

~π
(c)
Ik

∣

∣

∣

~α
(c)
k

)

= Dirichlet
(

~π
(c)
Ik

∣

∣

∣

~α
(c)
k

)

(2)

For a pixel at coordinates (x,y) that belongs to class zIxy = k, its colour, ~cIxy, is drawn

from the discrete probability vector ~π
(c)
Ik .

Pcol:disc

(

~cIxy

∣

∣

∣

~π
(c)
Ik

)

= v−1
bin

[

~π
(c)
Ik

]

bin(~cIxy)
(3)

Here bin(·) is the function that maps a colour vector to its bin in the colour histogram and

vbin is the volume of each bin in colour space. Dividing by the volume ensures that the distri-

bution over colour vectors is normalised. Each colour vector is a RGB triple (see Section 6

for details on colour spaces). The colour space is discretised into uniformly distributed cubes

in RGB space. In this work 16 bins are used per colour dimension, for a total of 163 = 4096

bins.

Each continuous palette is represented by a normal distribution over colour components

in YPbPr colour space (see Section 6). This 3-dimensional normal distribution has inde-

pendent components, where each component is parametrised by its mean, µ j, and precision

(inverse variance), λ j. The continuous palette for class k in image I is generated according

to

Ppal:cont

(

~µ
(c)
Ik ,~λ

(c)
Ik

∣

∣

∣

~η
(c)
k ,~τ

(c)
k ,~α

(c)
k ,~β

(c)
k

)

=
3

∏
j=1

Normal
(

µ
(c)
Ik j

∣

∣

∣
η
(c)
k j ,(τ

(c)
k j λ

(c)
Ik j )

−1
)

Gamma
(

λ
(c)
Ik j

∣

∣

∣
α
(c)
k j ,β

(c)
k j

)

(4)

where the gamma distribution is parametrised by its shape, α , and inverse length scale, β .1

For a pixel at coordinates (x,y) that belongs to class zIxy = k, its colour, ~cIxy, is drawn

from the normal distribution defined by ~µ
(c)
Ik and~λ

(c)
Ik .

Pcol:cont

(

~cIxy

∣

∣

∣

~µ
(c)
Ik ,~λ

(c)
Ik

)

=
3

∏
j=1

Normal
(

cIxy j

∣

∣

∣
µ
(c)
Ik j ,(λ

(c)
Ik j )

−1
)

(5)

where~cIxy is a vector in YPbPr colour space.

1Note that the gamma distribution is often parametrised by shape, k = α , and length scale, θ = β−1, parameters

instead.
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Given equations (1)–(5), the full generative model for a set of images is

∏
I∈images

[

PCPIM

(

〈

zIxy

〉

∣

∣

∣

〈

~π
(z)
xy

〉

,kMRF

)

Ppal:disc

(

~π
(c)
I,cloth

∣

∣

∣

~α
(c)
cloth

)

Ppal:disc

(

~π
(c)
I,back

∣

∣

∣

~α
(c)
back

)

Ppal:cont

(

~µ
(c)
I,skin,

~λ
(c)
I,skin

∣

∣

∣

~η
(c)
skin,~τ

(c)
skin,~α

(c)
skin,

~β
(c)
skin

)

Ppal:cont

(

~µ
(c)
I,hair,

~λ
(c)
I,hair

∣

∣

∣

~η
(c)
hair,~τ

(c)
hair,~α

(c)
hair,

~β
(c)
hair

)

∏
x,y

[

Pcol:disc

(

~cIxy

∣

∣

∣
zIxy = cloth,~π

(c)
I,cloth

)I[zIxy=cloth]

Pcol:disc

(

~cIxy

∣

∣

∣
zIxy = back,~π

(c)
I,back

)I[zIxy=back]

Pcol:cont

(

~cIxy

∣

∣

∣
zIxy = skin,~µ

(c)
I,skin,

~λ
(c)
I,skin

)I[zIxy=skin]

Pcol:cont

(

~cIxy

∣

∣

∣
zIxy = hair,~µ

(c)
I,hair,

~λ
(c)
I,hair

)I[zIxy=hair]
]]

(6)

I[·] is the indicator function, which evaluates to 1 if its argument is true and 0 if it is false.

The indicator function is used to switch on exactly one of the Pcol distributions, depending

on the value of zIxy.

Note that in this model skin and hair palettes are continuous, while clothing and back-

ground palettes are discrete. For experiments where skin and hair also have discrete palettes,

their factors should be adjusted appropriately in (6).

The prior hyper-parameters of this model are
〈

~π
(z)
xy

〉

, kMRF, ~α
(c)
cloth, ~α

(c)
back, ~η

(c)
skin, ~τ

(c)
skin,

~α
(c)
skin, ~β

(c)
skin, ~η

(c)
hair,~τ

(c)
hair, ~α

(c)
hair,

~β
(c)
hair. Section 3 describes how their values were determined.

2.2 Approximating Distribution

The approximating distribution over the latent variables — which will be used in the varia-

tional inference framework, to produce an approximate posterior distribution — is

∏
I∈images

[[

∏
x,y

qclass (zIxy)

]

qcloth

(

~π
(c)
I,cloth

)

qback

(

~π
(c)
I,back

)

qskin

(

~µ
(c)
I,skin,

~λ
(c)
I,skin

)

qhair

(

~µ
(c)
I,hair,

~λ
(c)
I,hair

)

]

(7)

with

qclass(zIxy) = Discrete
(

zIxy

∣

∣

∣

~γ
(z)
Ixy

)

= ∏
k∈classes

[

~γ
(z)
Ixy

]I[zIxy=k]

k
(8)
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and

qk

(

~π
(c)
Ik

)

= Dirichlet
(

~π
(c)
Ik

∣

∣

∣

~γ
(c)
Ik

)

(9)

for k ∈ {cloth,back}, and

qk

(

~µ
(c)
Ik ,~λ

(c)
Ik

)

=
3

∏
j=1

Normal
(

µ
(c)
Ik j

∣

∣

∣
η ′

Ik j,(τ
′
Ik jλ

(c)
Ik j )

−1
)

Gamma
(

λ
(c)
Ik j

∣

∣

∣
α ′

Ik j,β
′
Ik j

)

(10)

for k ∈ {skin,hair}. The prime notation in the last equation is used to distinguish between

the variational inference parameters and the prior hyper-parameters for continuous palettes.

2.3 Variational Update Equations

To derive the update equations for each approximating factor in (7), we compute the expec-

tation of the log generative model under the variational beliefs over all other latent variables.

See Chapter 8 of [2] for a proof of the validity of this procedure in general.

2.3.1 Update for Class Variables

In all of the equations in this sub-section, const refers to a term independent of k, and Θ
(c)
Ik

is a placeholder for either discrete (9) or continuous (10) palette parameters. For each I, x, y

and k,

log
[

~γ
(z)
Ixy

]

k

= const+ log
[

~π
(z)
xy

]

k
+
∫

Θ
(c)
Ik

qk

(

Θ
(c)
Ik

)

logPcol

(

~cIxy

∣

∣

∣
Θ

(c)
Ik

)

+ ∑
zI,x−1,y

qclass(zI,x−1,y) ∑
zI,x+1,y

qclass(zI,x+1,y)

{

∑
zI,x,y−1

qclass(zI,x,y−1) ∑
zI,x,y+1

qclass(zI,x,y+1) kMRF ∑
(xy,uv)∈C

I [zIuv = k]

}

= const+ log
[

~π
(z)
xy

]

k
+
∫

Θ
(c)
Ik

qk

(

Θ
(c)
Ik

)

logPcol

(

~cIxy

∣

∣

∣
Θ

(c)
Ik

)

+ kMRF ∑
(u,v)∈Cxy

[

~γ
(z)
Iuv

]

k

(11)

where Cxy = {(x−1,y),(x+1,y),(x,y−1),(x,y+1)} is the set of neighbouring locations

to (x,y). For discrete palettes, k ∈ {cloth,back},

∫

Θ
(c)
Ik

qk

(

Θ
(c)
Ik

)

logPcol:disc

(

~cIxy

∣

∣

∣
Θ

(c)
Ik

)

=
∫

~π
(c)
Ik

qk

(

~π
(c)
Ik

)

[

log
[

~π
(c)
Ik

]

bin(~cIxy)
− logvbin

]

= Ψ

(

[

~γ
(c)
Ik

]

bin(~cIxy)

)

−Ψ

(

∑
j

[

~γ
(c)
Ik

]

j

)

− logvbin (12)
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For continuous palettes, k ∈ {skin,hair},

∫

Θ
(c)
Ik

q
(

Θ
(c)
Ik

)

logPcol:cont

(

~cIxy

∣

∣

∣
Θ

(c)
Ik

)

=
∫

~µ
(c)
Ik

∫

~λ
(c)
Ik

qk

(

~µ
(c)
Ik ,~λ

(c)
Ik

)

(

3

∑
j=1

logNormal
(

cIxy j

∣

∣

∣
µ
(c)
Ik j ,(λ

(c)
Ik j )

−1
)

)

= −1

2

3

∑
j=1

∫

µ j

∫

λ j

Normal
(

µ j

∣

∣η ′
Ik j,(τ

′
Ik jλ j)

−1
)

Gamma
(

λ j

∣

∣α ′
Ik j,β

′
Ik j

)

(

log2π − logλ j +λ j(cIxy j −µ j)
2
)

= −1

2

3

∑
j=1

∫

λ j

Gamma
(

λ j

∣

∣α ′
Ik j,β

′
Ik j

)

(

log2π − logλ j +λ j((τ
′
Ik jλ j)

−1 +(cIxy j −η ′
Ik j)

2)
)

= −1

2

3

∑
j=1

∫

λ j

Gamma
(

λ j

∣

∣α ′
Ik j,β

′
Ik j

)

(

log2π − logλ j + τ ′Ik j
−1

+λ j(cIxy j −η ′
Ik j)

2
)

= −1

2

3

∑
j=1

(

log2π − (Ψ(α ′
Ik j)− logβ ′

Ik j)+ τ ′Ik j
−1

+
α ′

Ik j

β ′
Ik j

(cIxy j −η ′
Ik j)

2

)

(13)

Ψ(·) is the digamma function.

2.3.2 Update for Discrete Palettes

The distributions over palettes are independent in both the generative model and the approx-

imating distribution, when conditioned on the observed colours,
〈

~cIxy

〉

and the class labels,
〈

zIxy

〉

. Because of this independence most factors in the log generative distribution (6) fold

into an additive constant. For each I and each k referring to a class with a discrete palette,

logqk

(

~π
(c)
Ik

)

= const+∑
zI11

· · · ∑
zIMN

[

∏
x,y

qclass (zIxy)

]

[

logDirichlet
(

~π
(c)
Ik

∣

∣

∣

~α
(c)
k

)

+∑
x,y

log
[

~π
(c)
I,zIxy

]

bin(~cIxy)

]

= const+ ∑
b∈bins







[

~α
(c)
k

]

b
+ ∑

x,y:

bin(~cIxy)=b

[

~γ
(z)
Ixy

]

k






log
[

~π
(c)
Ik

]

b
(14)
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The last step follows from rearranging sums. Since (14) has the same parametric form as the

log of a Dirichlet distribution, qk

(

~π
(c)
Ik

)

is a Dirichlet distribution with parameter

[

~γ
(c)
Ik

]

b
=
[

~α
(c)
k

]

b
+ ∑

x,y:

bin(~cIxy)=b

[

~γ
(z)
Ixy

]

k
(15)

This update rule states that we add the expected counts for each colour in the class being

updated to the vector of prior Dirichlet counts.

2.3.3 Update for Continuous Palettes

Since the three colour dimensions are independent, we consider them one at a time indexed

by j = 1,2,3. For each I and each k referring to a class with a continuous palette,

logqk

(

µ
(c)
Ik j ,λ

(c)
Ik j

)

= const+∑
zI11

· · · ∑
zIMN

[

∏
x,y

qclass (zIxy)

]

[

logNormalGamma
(

µ
(c)
Ik j ,λ

(c)
Ik j

∣

∣

∣
η
(c)
k j ,τ

(c)
k j ,α

(c)
k j ,β

(c)
k j

)

+

∑
x,y

logNormal
(

cIxy j

∣

∣

∣
µ
(c)
Ik j ,(λ

(c)
Ik j )

−1
)

]

= const−
τ
(c)
k j λ

(c)
Ik j

2

(

µ
(c)
Ik j −η

(c)
k j

)2

−β
(c)
k j λ

(c)
Ik j +

(

α
(c)
k j − 1

2

)

logλ
(c)
Ik j

+
S
(0)
Ik

2
logλ

(c)
Ik j −

λ
(c)
Ik j

2

(

S
(0)
Ik (µ

(c)
Ik j)

2 −2S
(1)
Ik jµ

(c)
Ik j +S

(2)
Ik j

)

(16)

where

S
(0)
Ik = ∑

x,y

[~γ
(z)
Ixy]k

S
(1)
Ik j = ∑

x,y

[~γ
(z)
Ixy]k cIxy j (17)

S
(2)
Ik j = ∑

x,y

[~γ
(z)
Ixy]k c2

Ixy j

Since (16) has the same parametric form as logqk

(

µ
(c)
Ik j ,λ

(c)
Ik j

)

, the update equations can be

written down directly.

τ ′Ik j = τk j +S
(0)
Ik

α ′
Ik j = αk j +S

(0)
Ik /2

η ′
Ik j =

ηk jτk j +S
(1)
Ik j

τ ′Ik j

(18)

β ′
Ik j = βk j +

1

2

(

S
(2)
Ik j +η2

k jτk j −η ′
Ik j

2
τ ′Ik j

)
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2.3.4 Summary

Using the update equations above in an iterative scheme, marginal beliefs are computed over

the following variables.

• The class of each pixel, zIxy, with posterior

Discrete
(

zIxy

∣

∣

∣

~γ
(z)
Ixy

)

.

• The discrete palette (i.e. normalised histogram) for each discrete class, ~π
(c)
Ik with pos-

terior

Dirichlet
(

~π
(c)
Ik

∣

∣

∣

~γ
(c)
Ik

)

.

• The continuous palette for each continuous class, a normal distribution parameterised

by ~µ
(c)
Ik and (~λ

(c)
Ik )−1, with posterior

3

∏
j=1

NormalGamma
(

µ
(c)
Ik j ,λ

(c)
Ik j

∣

∣

∣
η ′

Ik j,τ
′
Ik j,α

′
Ik j,β

′
Ik j

)

.

3 Setting the Prior Parameters

3.1 Class Variables

The discrete prior probability vector representing the belief that the pixel at coordinates (x,y)
in the window around a face detection belongs to a particular class

~π
(z)
xy (19)

is computed as the posterior when taking a Dirichlet hyper-prior of

Dirichlet
(

~π
(z)
xy

∣

∣

∣
C−1~1

)

(20)

where C = 4 is the number of classes and ~1 is a length-C vector of ones. Computing the

likelihood simply involves counting the number of times that the pixel appears in each class

in the labelled training data. This gives

π
(z)
xyz =

Nxyz +C−1

∑z′ Nxyz′ +1
(21)

where Nxyz is the number of times that the pixel at coordinate (x,y) appeared in class z in the

training data.

3.2 Discrete Palettes

Referring to Figure 1 in the main article, we want to estimate the Dirichlet hyper-parameter

~α
(c)
k based on pixels from the palette under consideration. Firstly, note that there is a la-

tent vector for each image, ~π
(c)
Ik , which can be integrated out analytically. The resulting
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distribution (over counts of the number of times that each discrete colour appears in an

image) is known as the Pólya distribution or the Dirichlet–multinomial distribution. See

[6] for details on the derivation of the Pólya distribution and the procedure for estimat-

ing ~α
(c)
k from observed counts. The parameter estimation was modified slightly to deal

with the large dimensionality of the colour space (it has 163 = 4096 dimensions). See the

polya_distribution.py file in the source code [1] for a Python implementation.

3.3 Continuous Palettes

To set the prior parameters over continuous colour distributions we do a maximum likelihood

fit to training data. For each of the N skin colour images in the Compaq database [4], compute

the sample mean, µn j, and inverse variance, λn j, of the skin pixels in the image for all 3

colour dimensions. Images are indexed by n and colour dimensions by j. Then take all

sample means and inverse variances across the database as samples from the prior (4) and fit

the prior parameters, ~η ,~τ,~α,~β , using maximum likelihood. By setting the derivatives of the

log prior distribution to zero, the maximum likelihood setting can be found as

η j =
1

S
(λ )
j

∑
n

λn jµn j (22)

τ j =
N

∑n λn j(µn j −η j)2
(23)

logα j −Ψ(α j) = log(S
(λ )
j /N)− 1

N
∑
n

logλn j (24)

β j = Nα j/S
(λ )
j (25)

where

S
(λ )
j = ∑

n

λn j. (26)

Note that (24) is an implicit equation in α j, which is solved using a numerical root finder.

4 More Experimental Results

The figure on page 10 show some more face colour segmentation results, which were not

included in the main article due to space constraints. These results are provided here without

comment, to give a qualitative overview of the reliability of the model output. In each row,

the first column shows the input face image (as located by the face detector [3]); the second

column shows the segmentation result when the Markov random field (MRF) is off (kMRF =
0); the third column when the MRF is on (kMRF = 3) and continuous palettes are used for

skin and hair; the final column when the MRF is on and discrete palettes are used for skin and

hair. Red represents hair pixels, yellow skin, green clothing, and blue background. White

pixels remained unclassified. Pixels were classified only if the posterior probability of the

pixel belonging to a class was at least 0.75.

The figure on page 11 shows a visualisation of the prior belief over skin palettes. The

figure on page 12 shows a visualisation of the prior belief over hair palettes. Note that the

individual samples from each of these two distributions are quite distinct. Contrast this with

the figure on page 13, showing samples from the posterior distributions, where the samples

are all very similar.
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Y Pb

0 1

µ

9

426
λ

0 1

µ

162

12871

λ

Pr

0 1

µ

114

8064

λ

The prior belief over skin palettes. Each plot shows a probability distribution (belief) over

the mean (µ) and inverse variance (λ ) of the normal distribution over a colour component.

The three colour components are luminance (Y), blue (Pb) and red (Pr).

Samples from the prior skin distribution. Each sample is a distribution over colours, repre-

sented here by a plot where the area devoted to each colour is proportional to its probability

of being observed.
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Y Pb

0 1

µ

1

1807

λ

0 1

µ

24

32509

λ

Pr

0 1

µ

17

25789

λ

The prior belief over hair palettes. Each plot shows a probability distribution (belief) over

the mean (µ) and inverse variance (λ ) of the normal distribution over a colour component.

The three colour components are luminance (Y), blue (Pb) and red (Pr).

Samples from the prior hair distribution. Each sample is a distribution over colours, repre-

sented here by a plot where the area devoted to each colour is proportional to its probability

of being observed.
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The test image.

Samples from the posterior skin distribution.

Samples from the posterior hair distribution.

Samples from the posterior clothing distribution.

Samples from the posterior background distribution.
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5 Probability Distributions

The following probability distributions are used in this article. They are stated here for

completeness and to make their parametric forms explicit. Note that in the equations below,

Γ(·) is the gamma function.

Normal
(

x
∣

∣µ,σ2
)

=
1√

2πσ
exp

(

− (x−µ)2

2σ2

)

with x,µ ∈ R and σ ∈ R
+ (27)

Gamma(x |α,β ) =
β α

Γ(α)
xα−1e−βx with x,α,β ∈ R

+ (28)

NormalGamma(µ,λ |η ,τ,α,β ) = Normal
(

µ
∣

∣η ,(τλ )−1
)

Gamma(λ |α,β ) (29)

Dirichlet(~x |~α) =
Γ(∑d

i=1 αi)

∏
d
i=1 Γ(αi)

d

∏
i=1

x
αi−1
i

with xi,αi ∈ R
+ ∀i = 1, . . . ,d

and
d

∑
i=1

xi = 1 (30)

Pólya(~n |~α) =
Γ(∑d

i=1 αi)

Γ
(

∑
d
i=1(ni +αi)

)

d

∏
i=1

Γ(ni +αi)

Γ(αi)

with ni ∈ N0 and αi ∈ R
+ ∀i = 1, . . . ,d (31)

6 Colour Spaces

6.1 RGB

This is the standard colour space used for computer displays, rescaled linearly from the range

[0,255] such that

R,G,B ∈ [0,1] (32)

In this article, the RGB colour space is used for discrete colour models.

6.2 YCbCr / YPbPr

These two colour spaces are simply scaled differently. YCbCr is used in the JPEG compres-

sion scheme.

Y,Cb,Cr ∈ [0,255] (33)

Y,Pb,Pr ∈ [0,1] (34)





Y

Pb

Pr



=





0.299 0.587 0.114

−0.168736 −0.331264 0.5
0.5 −0.418688 −0.081312









R

G

B



+





0

0.5
0.5



 (35)

In this article, the YPbPr colour space is used for continuous colour models.
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