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Abstract
Improved diarization results can be obtained through combina-
tion of multiple systems. Several combination techniques have
been proposed based on output voting, initialization and also
integrated approaches. This paper proposes and investigates a
novel approach to combine diarization systems through the use
of features. A first diarization system, based on the Informa-
tion Bottleneck, is used to generate a set of features that contain
information relevant to the clustering. Those features arelater
used in conjunction with conventional MFCC in a second di-
arization system. This method is inspired from the TANDEM
framework in ASR. While being fully integrated, the approach
does not need modifications to any of the two systems in or-
der to integrate the information. Experiments on 24 recordings
from the NIST RT06/RT07/RT09 evaluations collected in five
meeting rooms reveal that when the IB features are used to-
gether with MFCC, the total speaker error is reduced from12%
to 9.7%, i.e., by approximatively19% relative.
Index Terms: Speaker diarization, Meetings, Information Bot-
tleneck, System Combination, TANDEM features.

1. Introduction and Motivation
Speaker diarization deals with the task of identifying “who
spoke when” in a given multi-party speech recording. The task
is unsupervised as there is no knowledge of number of speakers
in the recording. Several methods have been proposed in the
literature to solve this problem [1], however, the most common
approaches are based on HMM/GMM modeling which achieve
state-of-the-art performance on several types of data [2].Re-
cently a non-parametric method based on the Information Bot-
tleneck (IB) framework has been proposed in [3]. The system,
based on a completely different objective function, provides
comparable results to state-of-the-art HMM/GMM diarization
with a significant speed-up. The current work will investigate if
and how these two approaches can be combined.

A number of studies on Broadcast data have discussed the
combination of speaker diarization outputs from differentsys-
tems to improve results. The simplest combination consistsof
voting schemes [4] between outputs of multiple systems. Also,
a system can be initialized with the output of another one, like in
case of bottom-up and top-down diarization as proposed in [5].
Finally integrated approaches [6], i.e., systems that integrate
two different diarization methods into a single one, have been
considered for broadcast data. Recently they have also been
revisited in the context of meeting recordings [7]. While com-
binations are able to outperform the individual diarization sys-
tems, each combination technique has advantages and pitfalls;
in particular the voting scheme performs only late combination,

i.e. at the output level, the initialization approaches only bene-
fit from a different starting point and the integrated approaches
require modifications to all parts of the systems.

This paper proposes and investigates a novel approach of
combination through the use offeatures. A first diarization sys-
tem is used to generate a set of features that contain informa-
tion relevant to the clustering. Those are later used in conjunc-
tion with conventional spectral features in a second diarization
system. The rationale behind this is that the new feature set
will complement the second system at each step with the in-
formation provided from the output of the first. The approach
does not need modifications to any of the two systems in order
to integrate the information. This idea is largely inspiredfrom
the TANDEM framework used in Automatic Speech Recogni-
tion (ASR) [8]. TANDEM aims at using probabilistic output
of a Multi Layer Perceptron that estimates phoneme posterior
probabilities, as features to a conventional HMM/GMM system.
Given an input speech frameX and a set of phonetic targetsY ,
the MLP estimates the posterior probabilitiesp(Y |X). After
that,p(Y |X) are first gaussianized using a logarithm and then
de-correlated with a PCA transform followed by a dimension-
ality reduction. Those are referred as TANDEM features. Af-
ter concatenation with MFCC, they are used to train a standard
HMM/GMM system. TANDEM features are able to reduce the
Word Error Rate by10 − 15% relative (see [9] for a review of
tasks and improvements) thus complementing well the standard
spectral features. However, contrary to ASR, speaker diariza-
tion is an unsupervised task thus there is no direct equivalent to
the phoneme posterior probabilitiesp(Y |X).

This work proposes to generate TANDEM-like features us-
ing the probabilistic output of the Information Bottlenecksys-
tem described in [3]. The IB diarization is based on the use
of a set of relevance variablesY on which speech segmentsX
are projected. Its output produces an assignment of each speech
segmentX to a clusterC, i.e.,p(C|X) as well as the probabil-
ity of the relevance variablesY per each clusterC, i.e.,p(Y |C).
The estimatesp(C|X) andp(Y |C) will be used to generate a
feature set representative of the clustering and to be integrated
into HMM/GMM system. The remainder of the paper is or-
ganized as follows, Section 2 presents briefly the HMM/GMM
diarization system, Section 3 describes the IB system, Section
4 introduces the TANDEM-IB features. Experiments are then
presented in Section 5 and the paper is concluded in Section 6.

2. HMM/GMM Speaker Diarization
Conventional diarization systems are based on agglomerative
clustering framework using HMM/GMM where each speaker is
modeled as a HMM state and each state distribution is modelled
using a GMM. The system discussed here achieved state-of-



the-art performance in several NIST evaluations [10]. It isini-
tialized by uniformly segmenting a given audio recording into
segments treated as initial clusters (speakers). Their number is
much higher than the actual number of speakers in the record-
ing. Then at each iteration, the closest clusters obtained using
distance measures such as BIC or modified BIC are merged.
The process continues until cluster pairs are found suitable for
merging, i.e., until a stopping criterion is met. After eachmerge
speaker boundaries are realigned based on the estimated speaker
models using a Viterbi decoder. The emission probability dis-
tribution bci , corresponding to speaker clusterci is modeled as
a GMM:
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(see [11]) for a pair of clustersci andcj with respective GMM
modelsbci(.) andbcj (.) is given by
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Where bci+j

(.) represents the GMM model estimated from
combined data of clustersci andcj . The number of Gaussian
components in the modelbci+j

is equal to the sum of the Gaus-
sian components inbci andbcj .

3. IB based Speaker Diarization
This section briefly summarizes the Information Bottleneck
(IB) speaker diarization system proposed in [3]. The IB is
a distributional clustering technique introduced in [12].Con-
sider a set of input variablesX to be clustered intoC clusters.
The Information Bottleneck principle depends on a relevance
variables’ setY that carries important information about the
problem. According to IB principle, any clusteringC should
be compact with respect to the input representation (minimum
I(X,C)) and preserve as much mutual information as possible
about relevance variablesY (maximumI(C, Y )). This corre-
sponds to the maximization of:

F = I(C, Y )−
1

β
I(X,C) (3)

whereβ is a Lagrange multiplier. The IB criterion is optimized
w.r.t. the stochastic mappingp(c|x) using iterative optimization
techniques. The agglomerative Information Bottleneck (aIB)
clustering is a greedy way of optimizing the IB objective func-
tion [13]. The algorithm is initialized with each input element
x ∈ X as a separate cluster. At each step, two clusters are
merged such that the reduction in mutual information w.r.t rel-
evance variables is minimum. It can be proved that the loss in
mutual information∆F by merging any two clustersc1 andc2
is given in terms of a Jensen-Shannon divergence that can be
directly computed from the distributionp(Y |x) as:

∆F(c1, c2) = [p(c1) + p(c2)]JS[p(Y |c1), p(Y |c2)] (4)

The Jensen-Shannon divergenceJS[p(Y |c1), p(Y |c2)] is given
by:

π1Dkl [p(Y |c1)||q(Y )] + π2Dkl [p(Y |c2)||q(Y )] (5)

whereπj =
p(cj)

p(c1)+p(c2)
, q(Y ) represents the distribution of

relevance variables after the cluster merge andDkl denotes the
Kullback-Leibler divergence between two distributions. After
each merge,p(Y |c1) andp(Y |c2) are averaged to form the dis-
tribution of the new clusterp(Y |cnew). The number of clusters
is determined by using a threshold on the Normalized Mutual
Information given byI(C,Y )

I(X,Y )
(see [3] for details).

In order to apply this method to speaker diarization, the set
of relevance variablesY = {yn} is defined as the components
of a background GMM trained on the entire audio recording [3].
The input to the clustering algorithm is uniformly segmented
speech segments (X = {xj}), each composed ofD consec-
utive speech frames. The posterior probabilityp(yn|xj), i.e.,
the probability of each Gaussian component conditioned to the
speech segment can be computed using Bayes’ rule. The speech
segments with the smallest distance (the Jensen-Shannon diver-
gence) are then iteratively merged until the model selection cri-
terion is satisfied. The algorithm produces a partition of the data
(i.e. a clustering)p(C|X) as well as the distribution of rele-
vance variablesp(Y |C) for each clusterc. The partition of data
is a hard partition, i.e.,p(ci|xj) ∈ {0, 1}, meaning that each
segment is assigned to only one cluster (a speaker). The distri-
butionp(Y |ci) is obtained averaging the distributionsp(Y |xj)
for all the segmentsxj assigned to the clusteringci. Let us
briefly summarize the differences between the two systems in
Tab. 1:

Table 1: Main differences between the HMM/GMM and the IB
diarization systems.

HMM/GMM IB

Modeling a separate GMM relevance variablesY
for each speakerc from a background GMM

Distance Modified BIC (Eqn. 2) JS divergence (Eqn. 5)
Output mappingX → C mappingX → C

andp(Y |C)

4. Information Bottleneck features
The HMM/GMM and IB system differ in a number of imple-
mentation issues (see Tab. 1) thus we could expect complemen-
tarity between them. This section describes how the output
of IB system can be used as features in HMM/GMM diariza-
tion. Let us consider MFCC feature vectorsS = {s1, . . . , sT }
wherest denotes the feature vector at timet; those are then
segmented inX = {xj} chunks each containingD consecu-
tive speech frames (feature vectors). The feature vectorsS can
be re-designated asS = {sjt}, where the superscriptj denotes
to which segment the feature vector belongs to. The output of
the IB diarization is a hard partition of speech segmentsxj ∈ X

into C clusters, i.e.,p(ci|xj) ∈ {0, 1}, meaning that each seg-
mentxj is assigned to only one cluster. For each cluster, the
associated relevance variable distributionp(Y |ci) is available
(see previous section).

Thus each feature vectorsjt belonging to segmentxj (given
by the initial segmentation) can be associated to a clusterzt
obtained from the diarization output, i.e.,

zt = {ci|s
j
t ∈ xj , p(ci|xj) = 1}, t = 1, ..., T. (6)

Let us denote withF a matrix that contains the relevance vari-
able distributionsp(Y |zt) associated with eachzt, i.e.,

F = [p(Y |z1), ..., p(Y |zT )], t = 1, ..., T. (7)



Feature Extraction
     (MFCC)

  

 IB diarization p(Y|C) Transformation
   (log + PCA)

   diarization
  HMM/GMM

Meeting

recording

diarization

 MFCC

output

Figure 1:Block diagram of the proposed method.

F is a|Y | × T matrix whereT is the number of speech frames
and|Y | is the cardinality of the relevance variable space.

F contains both information on the clustering output (if
two feature vectorsst andst′ belong to the same cluster), and
characterizes each cluster with the distributionp(Y |zt) (dif-
ferent clusters will have differentp(Y |zt)). Thus TANDEM
processing [8] can be applied, probabilitiesp(Y |zt) are gaus-
sianized by a logarithm on their individual elements and then
de-correlated using Principal Component Analysis (PCA). The
PCA is also used to reduce initial dimensionality, equal to the
relevance variable space cardinality (|Y |). The resulting matrix,
designated asFIB and referred as Information Bottleneck (IB)
features can be used as input to a conventional diarization sys-
tem where the GMM speaker models can be learnt from these
features. The integration with MFCC can happen in two possi-
ble ways:

1 by concatenating IB features with MFCC features (as
done in ASR) thus forming a single input vector to
HMM/GMM system. This approach will be referred as
IB aug (the IB feature stream is augmented with MFCC
features).

2 by multi-stream modeling, i.e., estimating a separate
GMM model for each feature stream and combining
their log-likelihoods [14]. This approach is used for in-
stance in diarizing with features having very different
statistics (like MFCC and Time Delay of Arrival fea-
tures) and will be referred as IBmultistr. In this case,
the clustering is based on the combined log-likelihood:

wmfcc log b
mfcc
c +wFIB

log b
FIB
c (8)

wherebmfcc
c andbFIB

c are GMMs trained on MFCC and
FIB features and(wmfcc, wFIB

) are the combination
weights.

The overall method can be summarized in three main steps
given below and a block diagram of the proposed approach is
shown in Fig. 1:

1 Perform IB diarization and estimatep(C|X) and
p(Y |C).

2 Map p(Y |C) to input framesS and apply TANDEM
processing to obtain IB features (FIB)

3 UseFIB as complementary features to MFCC in a con-
ventional HMM/GMM system.

5. Experiments and Results
The experiments are conducted on 24 meetings recorded at dif-
ferent meeting room environments (CMU,EDI,NIST,VT,TNO)
which were collected for the purpose of NIST RT06, RT07,
RT09 evaluations [15]. The audio from multiple distant micro-
phone channels of each meeting is beamformed usingBeam-
formIt toolkit [16]. The beamformed output of each meeting
is used for speech, non-speech detection and feature extraction.
Acoustic features consist of 19 MFCC. The speech/non-speech

detection is based on the AMIDA system and evaluated in terms
of missed speech rate (Miss) and false alarm rate (FA) sum-
ming into the speech/non-speech error rate (SpNsp) (see Tab. 2).
The performance is evaluated in terms of Diarization Error Rate

Table 2: Speech/non-speech error rate in the evaluation data
set.

meeting Miss FA SpNsp

ALL 7.3 0.4 7.7

(DER) which is the sum of speech/non-speech error and speaker
error. For the purpose of comparison, only speaker error is re-
ported here as same speech/non-speech is used for all the sys-
tems.

The number of principal components to be kept after PCA
and the weights(wmfcc, wFIB

) are selected as the ones that
minimize the speaker error on a separate development data set.
The optimal number of principal components is found to be
equal to two, covering more than80% of the PCA variability.
The feature weights(wmfcc, wFIB

) are found to be equal to
(0.9, 0.1). These values are then used for evaluation on RT06,
RT07, RT09 meetings. Tab. 3 reports speaker error for the base-
line system as well as the IBaug and IBmultistr approaches.
The meeting-wise performance is reported in Fig. 2. The base-

Table 3: Total speaker error with relative improvement over
baseline in parenthesis on the evaluation data sets (RT06, RT07,
RT09 combined) for various diarization systems.

system Baseline IB aug IB multistr

spkr err 12.0 (-) 13.5 (-12.5%) 9.7 (+19%)

line HMM/GMM system achieves a speaker error equal to12%.
The first approach IBaug, which concatenates MFCC andFIB

features, degrades the performance producing an error equal to
13.5%. On the other hand, the second approach IBmultistr
which estimates separate GMM models for MFCC andFIB

features, reduces speaker error to9.7%, i.e., an improvement
of approximatively19% relative compared to the baseline. The
degradation in performance produced by concatenation can be
explained by the very different statistical properties of MFCC
andFIB features. In fact,FIB features have smaller dimen-
sionality compared to MFCC and are compact representation of
IB diarization output, thus they do not share the same distribu-
tion of MFCC. Therefore, whenever the modeling is done using
separate GMMs, speaker error decreases from13.5% (IB aug)
to 9.7% (IB multistr). This is similar to what was observed
in case of TDOA features, as they also become affective only
through multistream modeling [14].

It can be noticed from Fig. 2 that the IBmultistr shows sig-
nificant improvement upon the baseline system in meetings with
high error (over15%). It is observed that the IB features have an
effect on purity of clusters, i.e., assignment of segments uttered
by different speakers to the same clusters is reduced thus pro-
ducing much purer clusters compared to MFCC only (baseline).
Reversely IBaug often degrades the performances.

Let us investigate the effect of theFIB features at dif-
ferent stages of the clustering. Fig. 3 plots speaker error for
the baseline and IBmultistr after each merge, for the meeting
EDI 20061113-1500. It can be noticed that both the systems
have similar error rates in initial iterations but after fewiter-
ations, theFIB features avoid wrong cluster merges, which
increase error rate and produce a smooth and decreasing er-
ror curve. Similar trends are verified for other meetings where
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Figure 2:Meeting wise speaker error values for baseline HMM/GMM diarization system and IB multistr.
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Figure 3: Speaker error after each merge for baseline and
IB multistr systems for meeting EDI 20061113-1500

IB multistr achieves improvements over baseline.

6. Discussions and Conclusions
This paper proposes and investigates a novel approach to com-
bine diarization systems through the use offeatures. The Infor-
mation Bottleneck system is used to generate a set of features
that contain information relevant to the clustering and character-
ize each speaker in terms of probabilities; these features are later
used to complement MFCC in a conventional HMM/GMM sys-
tem. The approach is largely inspired from TANDEM frame-
work used in ASR and has the advantage of being fully inte-
grated (features are used at all steps of agglomerative cluster-
ing) while it does not require any change to individual diariza-
tion components.

The combination with MFCC features is investigated us-
ing simple concatenation and using multi-stream modeling.Re-
sults on 24 meetings from the NIST RT06/RT07/RT09 evalua-
tion campaigns reveal that the Information Bottleneck features
reduce the speaker error from12% to 9.7%, i.e., a19% rela-
tive improvement when they are used together with MFCC in
multi-stream fashion. The approach is particularly effective in
meetings where the baseline system has speaker error higher
than 15%. On the other hand, simple concatenation increases
speaker error to13.5% asFIB and MFCC have very differ-
ent statistical distributions to be modeled using same GMM.In
summary the IB system provides complementary information

to the HMM/GMM whenever the integration happens by multi-
stream modeling.1
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