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Abstract
In this paper we revisit the recently proposed triphone mapping
as an alternative to decision tree state clustering. We general-
ize triphone mapping to Kullback-Leibler based hidden Markov
models for acoustic modeling and propose a modified train-
ing procedure for the Gaussian mixture model based acous-
tic modeling. We compare the triphone mapping to decision
tree state clustering on the Wall Street Journal task as well as
in the context of an under-resourced language by using Greek
data from the SpeechDat(II) corpus. Experiments reveal that
triphone mapping has the best overall performance and is ro-
bust against varying the acoustic modeling technique as well as
variable amounts of training data.
Index Terms: Speech recognition, acoustic modeling, triphone
mapping, Kullback-Leibler divergence.

1. Introduction
State-of-the-art Automatic Speech Recognition (ASR) systems
typically employ context dependent modeling in order to bet-
ter take into account the canonical-to-surface form variability
of pronunciation inherent to acoustic modeling. Such context
dependent modeling most commonly takes the form of the tri-
phone whose representation comprises a phone along with its
preceding and following phone context. In creating triphone
context models we immediately run into the problem of spar-
sity of the training data, since many triphone contexts will occur
infrequently or not at all.

To overcome this, the decision tree state clustering (DTSC)
approach [1] was introduced in which states of context depen-
dent models are tied (thereby sharing data) according to shared
properties and based on a greedy algorithm. DTSC also permits
the synthesis of contexts that were unseen in the training data.
However, DTSC needs a set of appropriate questions in order
to develop a tree. Often this is expensive since the question are
usually manually determined.

Recently, triphone mapping (TM) [2] was presented as an
alternative to DTSC. TM is a data driven technique to map rare
triphones to frequent ones and does not require manually deter-
mined questions. The mapping is based on context independent
mono-phone models, but not limited to single Gaussian models.
It was shown that TM outperforms DTSC when systems use the
same number of parameters and 4k or more HMM states [2].

In this paper, we first revisit TM for Gaussian mixture
based acoustic modeling and propose a modified training pro-
cedure that successively partitions the acoustic space. Further-
more, we show that it is easily generalizable to the recently pro-
posed Kullback-Leibler divergence based hidden Markov mod-
els (KL-HMMs). A KL-HMM is an acoustic modeling tech-

nique for ASR that uses a Kullback-Leibler divergence based
cost function and is very powerful if only small amounts of
training data are available [3, 4]. Altogether, we show that
TM can be generalized across different acoustic modeling tech-
niques and has the best overall performance when compared to
DTSC on two different databases and on different amounts of
training data.

The paper is organized as follows: Section 2 reviews TM
and Section 3 describes the two different acoustic modeling
techniques along with the acoustic distances used for TM. Sec-
tion 4 describes the experimental setup. The results are pre-
sented in Section 5 before Section 6 concludes the paper.

2. Triphone mapping
The basic concept of TM consists of creating one triphone map
per phoneme that maps the set of all triphones Ta (having the
same center phoneme) using only acoustic information in the
form of monophone models to a subset of selected triphones Ts.
The subset of selected triphones Ts is determined by applying
a simple occurrence threshold λ, i.e. a triphone t ∈ Ts if it
appears at least λ times in the training data. In this study, we
use the same threshold for all phonemes.

The mapping function Ω then maps the set of all triphones
Ta to the subset of selected triphones Ts:

Ω : Ta → Ts

ta 7→ argmin
ts∈Ts

(TD(ta, ts)) (1)

where TD is an acoustic triphone distance, ta ∈ Ta and ts ∈
Ts, i.e. each ta is mapped to its closest ts.

Figure 1: Acoustic triphone distance TD(ta, ts) calculation
based on acoustic left and right contextual distances, keeping
the same center phonemes ca = cs.



We assume that each monophone is modeled with three
states as shown in Figure 1. The acoustic triphone distance TD
can then be expressed as:

TD(ta, ts) = ADleft +ADright

ADleft = AD(l3a, l
3
s)

ADright = AD(r1a, r
1
s)

(2)

where l and r stand for monophones of the left and right context
respectively. Hence, ADleft is the acoustic distance between
the third state of the left context monophones and ADright is
the acoustic distance between the first states of the right context
monophones. Note that TD is not limited to three-state models.
It might be generalized for monophone models with more than
three states.

In this study, we measure the acoustic distance with the
Kullback Leibler (KL) divergence1 between the probability dis-
tributions F and G associated with the involved states. We use
the symetric KL-divergence for the acoustic distance calcula-
tion of Eq. (2), as it is a measure between two monophones,
where the two arguments are considered interchangeable. For
discrete random variables, the KL-divergence is defined as:

D(F,G)
def
=

∑
i

[F (i)−G(i)] log
F (i)

G(i)
(3)

and for continuous random variables, the KL-divergence is de-
fined as:

D(F,G)
def
=

∫
[f(x)− g(x)] log

f(x)

g(x)
dx (4)

where f(x) and g(x) are the probability density functions
(pdfs) of F and G respectively.

Originally, it was proposed to partition the acoustic space
directly from monophones to triphones [2]. We hypothesize
that a successive partition of the acoustic space (SPAS) can be
beneficial for acoustic modeling. Therefore, we propose to first
model biphones before triphones are modeled. More specifi-
cally, we determine Ts and the mapping function Ω. Then

1. Based on Ts, we determined a set of selected biphones
Bs by dropping the right context, i.e. given a selected
triphone l − c + r, the corresponding selected biphones
is l − c.

2. Instead of initializing a triphone l− c+ r with the center
model c, we first trained a model for the biphone l − c
with c as seed.

3. Then, we initialized the triphone l − c + r with the bi-
phone l − c and train it.

3. Acoustic modeling
We considered two different probability distributions for the
acoustic modeling:

1. Mixtures ofN Gaussian distributions (GMM) with prob-
ability distribution of state s, Fs:

Fs =

N∑
a=1

πaN (x;µa;σa) (5)

1Kullback and Leibler originally named divergence what nowadays
is often referred to as symmetric version of the Kullback-Leibler diver-
gence [5].

where N (x;µa;σa) stands for a Gaussian distribution
with mean µa and variance σa and πa is the weight of
the ath Gaussian. Hence we can write the associated pdf
fs as:

fs(x) =

N∑
a=1

πapa(x) (6)

where pa(x) is the pdf of the ath Gaussian.
2. Categorical distributions with the probability distribution

of state s, Fs:
Fs = ys (7)

where ys is a categorical distribution withK dimensions
and ys(k) stands for the probability of the class k (while
being in states s).

Since the categorical distribution is discrete, the KL di-
vergence can directly be computed as given in (3). The KL-
divergence between two Gaussian distributions could be calcu-
lated according to (4). However, the KL-divergence between
two GMMs has no closed form solution.

In this study, we compare two different acoustic distances.
1) A simplified distance metric between two Gaussians as used
by Young and Woodland [6]. 2) An approximation of the rela-
tive entropy between two GMMs as proposed by Hershey and
Olsen [7].

1. Young and Woodland used the square root of the KL-
divergence as interstate distance [6]. They also tried a related
but much simpler distance metric which gave similar perfor-
mance. That metric is still used by the HTK2 toolkit. We imple-
mented the same simplified distance metric between two states
s1 and s2:

ADHTK(s1, s2) =

√√√√ 1

Vx

Vx∑
k=1

(µs1,k − µs2,k)2

σs1,kσs2,k
(8)

where Vx is the dimensionality of feature vector x, and µs and
σs are means and variances from the Gaussian associated to
state s, respectively.

2. As already mentioned, the KL-divergence has no closed
form solution for GMMs. The KL-divergence as defined by
Kullback and Leibler is the sum of two relative entropies.

D(F,G) = D(F ‖ G) +D(G ‖ F )

The second acoustic distance that we use was proposed by
Hershey and Olsen [7]. They used the Monte Carlo simulation
to approximate the relative entropy between two GMMs asso-
ciated to states s1 and s2 respectively, with pdfs fs1(x) and
fs2(x). They drew a sample xi from the pdf fs1 such that:

Efs1
[log fs1(xi)/fs2(xi)] = D(F ‖ G)

Hence:

ADKL(s1, s2) =
1

n

n∑
i=1

log fs1(xi)/fs2(xi) (9)

and using n i.i.d samples {xi}ni=1

ADKL(s1, s2)→ D(F ‖ G) (10)

as n → ∞. To draw a sample xi from a GMM with pdf f ,
we first draw a discrete sample ai according to the weights πa

(see Equation 6). Then, we draw a continuous sample from the
corresponding pdf pa.

2http://htk.eng.cam.ac.uk/



4. Experimental setup
For the experiments, we used GMMs as well as categorical dis-
tributions. The GMMs were used in the standard HMM/GMM
framework as described in Section 4.1. The HMM/GMM ex-
periments investigated DTSC and TM on Wall Street Journal
(WSJ) data. Since we already showed that KL-HMMs are
very powerful if only a small amount of training data is avail-
able [3, 4], we explored TM for KL-HMMs as described in Sec-
tion 4.2 on limited amounts of SpeechDat(II) Greek data.

4.1. HMM/GMM system

We developed HMM/GMM systems using WSJ0 and WSJ1
continuous speech recognition corpuses [8]. All systems used
three-state, cross-word triphone models, trained from 39 di-
mensional MFCCs (12 cepstral plus energy coef.) including
delta and delta-delta features, with cepstral mean normaliza-
tion. Training was performed with the HTS [9] variant of the
HTK toolkit on the si tr s 284 set of 37,514 utterances.

The pronunciation dictionary was based on the CMU pro-
nunciation dictionary. We used the standard bigram and trigram
backed-off language models tcb20onp.z from WSJ1 database,
pruned to 20k target words defined by wlist20o.nvp from WSJ0
database. The standard test set st et 20 consisted of 303 utter-
ances.

4.1.1. DTSC

As a baseline, we tied triphone models with DTSC based on the
minimum description length (MDL) criterion [10]. The MDL
criterion allows an unsupervised determination of the number
of states. In this study, we obtained 12,685 states and modeled
each state with a GMM consisting of 16 Gaussians.

4.1.2. TM

For the TM training we set the threshold λ = 119 to obtain
4226 selected triphones and a total of 12,678 states. Again,
we modeled each state with a mixture of 16 Gaussians. The
TM training used the same number of re-estimation iterations
as DTSC training.

4.1.3. Successive Partitioning of Acoustic Space (SPAS)

As described in Section 2, we also implemented a slightly mod-
ified training procedure that successively partitions the acoustic
space. Note that the SPAS does not consider all biphones that
are present in the training data, but only the set of selected bi-
phones Bs that constitute the set of selected triphones Ts. We
observed that the number of biphones in Bs is roughly one half
of all biphones (i.e. the successive partitioning increased model
complexity from 41 monophones, to 765 selected biphones and
then 4226 selected triphones).

Since SPAS training first re-estimates biphone and then tri-
phone models, we adapted the number of re-estimation itera-
tions to ensure that the total number of iterations is the same for
DTSC, TM and SPAS.

4.2. KL-HMM system

A KL-HMM is an HMM that uses a categorical distribution as
its output distribution. The name is taken from the Kullback-
Leibler divergence distance measure that is employed. More
specifically, each state of the HMM is modeled with a categor-
ical distribution and phoneme posterior probabilities given the

acoustics serve as features. The categorical distributions can be
trained with a Viterbi segmentation optimization algorithm.

The idea is to estimate posterior probabilities with a Multi-
layer Perceptron (MLP) that can be trained on large amounts of
out of language data. The KL-HMM parameters can then be es-
timated with only low amounts of within language data (target
language).

As we did earlier [3], we used data from the SpeechDat(II)
databases (corpus S). We used 63 hours of data in five Euro-
pean languages, namely British English, Italian, Spanish, Swiss
French and Swiss German to train the MLP.

Greek was the target language. To simulate limited re-
sources, the amount of training data varied from 5 hours to 5
minutes. For evaluation, we used a test set with 10k differ-
ent words. Since we had no access to an appropriate language
model, we simply built a language model with all the sentences
from the test set. The language model had a perplexity of 44. In
this sense, results should be considered as optimistic.

4.2.1. KL-HMM BO

The standard KL-HMM system was based on triphones. With-
out state tying, we limited ourselves to word-internal triphones
only (as opposed to cross-word triphones for all the other sys-
tems). During decoding, we backed off (BO) to the context
independent model of the center phoneme if a triphone was not
seen during training. Each triphone was modeled with three
states.

4.2.2. KL-HMM DTSC

The second KL-HMM system used an adapted version of a deci-
sion tree [11] and was therefore based on cross-word triphones.
For the adapted version of the decision tree clustering, it was
not obvious how to use the MDL criterion for the automatic
determination of the number of states. Therefore, the optimal
number of states was determined on a development set. The
size of the development set varied depending on the amount of
available data.

4.2.3. KL-HMM TM

The third KL-HMM system used the TM approach with the KL-
divergence as given in (3) and was therefore also based on cross-
word triphones. We adjusted the threshold λ to obtain similar
number of states as for system KL-HMM DTSC. Note that we
did not investigate SPAS training for KL-HMM systems yet.

5. Results
In this section, we first present the results of the HMM/GMM
systems on WSJ data and then the results of the KL-HMM sys-
tems on SpechDat(II) Greek data. For the significance test, we
used the bootstrap estimation method [12] and a confidence in-
terval of 90%.

5.1. HMM/GMM system

We compared the DTSC to the TM systems using both acoustic
distances ADHTK and ADKL, given in (8) and (9) respec-
tively (1 milion samples were used in (9)). We hypothesize that
ADKL improves over ADHTK and expect that TM performs
better than DTSC and SPAS better than TM. Table 1 shows the
results. Since DTSC uses a phonetic decision tree for state clus-
tering instead of an acoustic distance as in TM-based system,
the acoustic distance field of DTSC entry is empty.



Table 1: Sentence (SRA) and word (WRA) recognition accura-
cies for WSJ task. The systems DTSC, TM and SPAS are de-
scribed in Section 4.1.

Method Acoustic distance SRA [%] WRA [%]
DTSC – 25.5 90.3
TM ADHTK 27.0 89.9
TM ADKL 28.2 90.4
SPAS ADHTK 27.3 90.1
SPAS ADKL 28.8 90.5

For WRA, all the systems perform similar (bold numbers
are the best numbers in a column and italic numbers are not sig-
nificantly different comparing to the best numbers). However,
the test set contained 4.3% out-of-vocabulary (OOV) words.
Since all systems perform around 90% WRA, the OOV rate
might be responsible for the marginal improvement in WRA.
Therefore, we run a McNemar test with a 90% confidence inter-
val on SRA results. Indeed, this test revealed that both TM and
SPAS (with ADKL) significantly outperforms DTSC. While
both systems produced almost identical number of substitutions
and deletions, the number of insertions considerably decreased
in SPAS recognition results. SPAS outperforms TM in sentence
recognition accuracy, even thought the improvement was not
significant.

Comparing different acoustic distances, there seems to be a
tendency that ADKL performs better than ADHTK . However,
the effect is not very pronounced. Altogether, SPAS with the
KL-divergence based acoustic distance given in (9) performs
best and significantly outperforms DTSC in SRA.

5.2. KL-HMM system

For KL-HMM, we compared systems KL-HMM BO, DTSC
and TM. We hypothesize, that for very low amounts of data
(5 minutes), KL-HMM DTSC and TM both outperform KL-
HMM BO, because of data sparsity. For larger amounts of data
however, we expect that system KL-HMM TM and BO perform
equally well because there is enough data. However, KL-HMM
DTSC might perform worse because there is a mismatch be-
tween the cost function used for decoding and DTSC. For de-
coding, we used the Kullback-Leibler divergence, but the DTSC
algorithm adapted to KL-HMM used the relative entropy, be-
cause there is no closed form solution for the Kullback-Leibler
divergence [11].

The results in Table 2 are consistent with both hypotheses.
Bold numbers are the best numbers (given an amount of training
data) and italic numbers are not significantly different.

6. Conclusions
We successfully generalized TM to KL-HMM based acoustic
modeling and improved TM for GMM based acoustic model-
ing by introducing successive partitioning of the acoustic space
during the training procedure.

Experiments on WSJ and Greek SpeechDat(II) data re-
vealed that TM is robust and has the best overall performance.
On the WSJ task, TM significantly outperforms DTSC. On
Greek SpechDat(II) data, TM significantly outperforms DTSC
if five hours of training data are available and performs similar
to DTSC if only five minutes of data are available.

Table 2: Word recognition accuracies (WRA) on Greek Speech-
Dat(II) for variable amounts of training data. The systems KL-
HMM BO, DTSC and TM are described in Section 4.2.

Amount of System WRA
training data [%]

5 min
KL-HMM BO 76.6
KL-HMM DTSC 81.5
KL-HMM TM 80.6

75 min
KL-HMM BO 83.2
KL-HMM DTSC 83.6
KL-HMM TM 83.8

300 min
KL-HMM BO 84.1
KL-HMM DTSC 83.0
KL-HMM TM 84.2
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