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ABSTRACT

Under-resourced speech recognizers may benefit from data in
languages other than the target language. In this paper, we
boost the performance of an Afrikaans speech recognizer by
using already available data from other languages. To suc-
cessfully exploit available multilingual resources, we use pos-
terior features, estimated by multilayer perceptrons that are
trained on similar languages. For two different acoustic mod-
eling techniques, Tandem and Kullback-Leibler divergence
based HMMs, the proposed multilingual system yields more
than 10% relative improvement compared to the correspond-
ing monolingual systems only trained on Afrikaans.

Index Terms— Multilingual speech recognition, poste-
rior features, under-resourced languages, Afrikaans

1. INTRODUCTION

Previous studies have shown that Automatic Speech Recog-
nition (ASR) may benefit from data in languages other than
the target language only under certain conditions such as
there being less than one hour of data for the training lan-
guage [1, 2]. Usually, a language with large amounts of
training data was used to simulate low amounts of train-
ing data [1, 2]. For instance Niesler [3] studied the shar-
ing of resources on real under-resourced languages, including
Afrikaans, inspired by multilingual acoustic modeling tech-
niques proposed by Shultz and Waibel [4]. However, only
marginal ASR performance gains were reported.

In this paper, we focus on Afrikaans and show how to
significantly boost the performance of an Afrikaans speech
recognizer that was trained on three hours of within language
data, by using more than 100 hours of out of language data.

Standard ASR systems typically make use of phonemes
as subword units to model human speech production. A
phoneme is defined as the smallest sound unit of a lan-
guage that discriminates between a minimal word pair [5, p.
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78]. Although humans are able to produce a large variety of
acoustic sounds, we assume that all those sounds, referred
to as phones, across speakers and languages, share a com-
mon acoustic space X . Of course, no single language makes
use of all phones, and most languages only partially cover X .
However, we found in previous studies [1, 6] that the relation
between phonemes of different languages can 1) be learned
and 2) be exploited for cross-lingual acoustic model training
or adaptation. Furthermore, we found that posterior features,
estimated by multilayer perceptrons (MLPs), are particularly
well suited for such tasks.

Inspired by this work, we use posterior features, esti-
mated by MLPs that are trained on similar languages such
as English, Dutch and Swiss German to successfully exploit
available multilingual resources. According to the trees sum-
marized by Blažek [7], Afrikaans and Dutch are Istveonic
Germanic languages whereas British English and Swiss Ger-
man are also Germanic languages, but located on different
branches, namely Ingveonic and Erminonic Germanic, re-
spectively. Intuitively, we would expect that Dutch data
should provide most benefit. Previous studies [8] and a sim-
ilarity analysis of Heeringa and de Wet [9] underpin this as-
sumption.

Using two different acoustic modeling techniques for pos-
terior features, namely Tandem [10] and Kullback-Leibler di-
vergence based hidden Markov models (KL-HMM) [11], we
investigate:

• Crosslinguality: We study how out of language data
can be used to improve ASR performance of an under-
resourced language and briefly discuss if there is a re-
lation between similarity of the other language and per-
formance gain on the target language.

• Multilinguality: We combine the resources of multiple
languages in the form of posterior features by concate-
nating MLP outputs to boost ASR performance.

• Context-dependency: Since there are large amounts of
out of language data, we enrich the exploited informa-
tion by adding context dependency. More specifically,
we train the MLPs on context-dependent targets.



• Context-dependent multilinguality: Given the above
approaches, we study the combination of outputs of
multiple MLPs that were trained on context-dependent
targets.

We first give a brief description of both applied acous-
tic modeling techniques in Section 2. In Section 3, we then
present the databases that we used for the training of the
MLPs as described in Section 4, and give an overview over the
investigated systems in Section 5. Previous multi- and cross-
lingual posterior feature studies that used more than one hour
of target language data reported rather small or no improve-
ments (up to 3.5% relative) [12, 13]. We will present experi-
ments and results in Section 6 and show that the proposed sys-
tems yield more than 10% relative improvement compared to
the monolingual recognizer for both acoustic modeling tech-
niques.

2. ACOUSTIC MODELING

We study two different approaches to model posterior fea-
tures: Tandem [10], illustrated in Figure 1 and a Kullback-
Leibler divergence based HMM (KL-HMM) [11], illustrated
in Figure 2. Both approaches involve the training/estimation
of two different kind of distributions:

• Phoneme posterior features: The phoneme posterior
features are phoneme posterior probabilities given the
acoustics and estimated with an MLP that can be
trained on any auxiliary dataset. Therefore we call
it an auxiliary MLP and choose an out of language
dataset with large amounts of available data with which
to train. The language of the training data determines
the number of output units K (number of phonemes)
of the MLP. More details about the MLP training are
given in Section 4.

Once the MLP is trained, we consider a sequence of
T acoustic feature vectors X = {xt, . . . , xT }, namely
Perceptual Linear Prediction (PLP) features, extracted
from within language data. As seen in Figure 2, the
phoneme posterior sequence Z = {z1, . . . , zT } is then
estimated with the previously trained auxiliary MLP.
To estimate zt = (z1t , . . . , z

K
t )T, we consider a nine

frame temporal context {xt−4, . . . , xt+4}. The de-
scribed phoneme posterior estimation is identical for
both acoustic modeling techniques.

• HMM state distributions: The HMM states qd : d ∈
{1, . . . , D} are associated with the target language.
Each phoneme of the target language is modeled with
three states, thus the total number of states D is equal
to three times the number of phonemes of the target
language.

The HMM state distributions consist of emission and
transition probabilities. Based on anecdotal knowledge,

we fix the transition probabilities aij for both acous-
tic modeling techniques (see Figures 1 and 2). The
emission probabilities however are modeled differently
for Tandem and KL-HMM. As we will describe later,
Tandem (Section 2.1) uses Gaussian mixtures and KL-
HMM (Section 2.2) uses a categorical distribution. The
emission probabilities are trained from within language
data only. Here, we assume that we have access to a
limited amount of within language data.

In the remainder of this section, we briefly summarize
both acoustic modeling techniques which will be compared
to a state-of-the-art HMM/GMM system.

2.1. Tandem

The conventional Tandem approach models the emission
probabilities of the HMM states qd with mixtures of Gaus-
sians. Figure 1 illustrates the HMM associated with a three-
state-phoneme (q1, q2, q3). To model the emission proba-
bilities with Gaussians, the posterior features zt need to be
post-processed. More specifically, the log phoneme pos-
teriors are decorrelated with a principal component analy-
sis (PCA). The transformation matrix can be estimated on
within language data. Usually, the resulting feature vector
wt = (w1

t , . . . , w
L
t )T, has a reduced dimensionality L.
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Fig. 1. Tandem: the emission probabilities of the HMM states
are modeled with Gaussian mixtures and the MLP output is
post-processed. For more details, see Section 5.1.1

2.2. Kullback-Leibler divergence based HMM

As illustrated in Figure 2, a KL-HMM is a particular
form of HMM in which the emission probability of state
qd is parametrized by a categorical distribution yd =



(y1d, . . . , y
K
d )T, where K is the dimensionality of the fea-

tures. A categorical distribution is a multinomial distribu-
tion where only one sample is drawn. In contrast to Tan-
dem that uses Gaussian mixtures and therefore needs the post-
processed features wt, the categorical distributions can di-
rectly be trained from phoneme posterior probabilities zt.
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Fig. 2. KL-HMM: the emission probabilities are modeled
with categorical distributions and the MLP output can directly
be used. More details can be found in Section 5.1.2

For KL-HMM training and decoding, we use the diver-
gence of Kullback and Leibler [14], which is nowadays often
referred to as the symmetric variant of the KL divergence, as
local score:

fSKL(zt, yd) =
1

2
fKL(zt, yd) +

1

2
fKL(yd, zt) (1)

where

fKL(x, y) =

K∑
k=1

x(k) log
x(k)

y(k)
(2)

The cost function FQ(Z, Y ) between the phoneme pos-
terior sequence Z and the set of categorical distributions
Y = {y1, . . . , yD} can be written as [1]:

FQ(Z, Y ) = min
Q

T∑
t=1

[
fSKL(zt, yqt)− log aqt−1qt

]
(3)

where Q = {q1, . . . , qT } stands for all allowed state paths
and yqt is the categorical distribution associated with qt, the
state at time t. As already mentioned, the transition probabil-
ities aqt−1qt are fixed. A more detailed description of training
and decoding algorithms can be found in [1].

ID Language Number of Amount of
phonemes training data

AF Afrikaans 38 3 h
CGN Dutch 47 81 h
SZ Swiss German 59 14 h
EN British English 45 12.5 h

Table 1. Summary of the different languages with number of
phonemes and amount of available training data.

3. DATABASES

We used data from four different languages as summarized in
Table 1. In this section, we describe the different databases.

3.1. LWAZI

We used the Afrikaans data that is available from the LWAZI
corpus provided by the Meraka Institute, CSIR, South Africa1

and described by Barnard et al. [15]. The database consists of
200 speakers, recorded over a telephone channel at 8 kHz.
Each speaker produced approximately 30 utterances, where
16 were randomly selected from a phonetically balanced cor-
pus and the remainder consists of short words and phrases.

The Afrikaans database comes with a phoneme set that
contains 38 phonemes (including silence) and a dictionary is
also available [16]. The dictionary that we used contained
1585 different words. The HLT group at Meraka provided
us with the training and test sets that will soon be released
as official benchmarking sets. In total, about three hours of
training data and 50 minutes of test data is available.

Since we did not have access to an appropriate language
model, we trained a bi-gram phoneme model on the training
set and only report phoneme accuracies in this study. The bi-
gram phoneme model learned the phonotactic constraints of
the Afrikaans language and has a phoneme perplexity of 15.

3.2. Corpus Gesproken Nederlands

Heeringa and de Wet [9] reported that standard dutch seems
to be the best language from which to borrow acoustic data
from, for the development of an Afrikaans ASR system. In
this study, we used data of the Spoken Dutch Corpus (Cor-
pus Gesproken Nederlands, CGN) [17] that contains stan-
dard Dutch pronounced by more than 4000 speakers from
the Netherlands and Flanders. The database is divided into
several subsets and we only used “Corpus o” that contains
phonetically aligned read speech data. Corpus o uses 47
phonemes and contains 81 hours of data after the deletion
of silence segments that are longer than one second. It was
recorded at 16 kHz, but since we use the data to perform ASR
on Afrikaans, we downsampled it to 8 kHz prior to feature
extraction.

1http://www.meraka.org.za/hlt



3.3. SpeechDat(II)

We also used data from the British English and the Swiss Ger-
man part of SpeechDat(II)2 data. The data is gender-balanced,
dialect-balanced according to the dialect distribution in a lan-
guage region, and age-balanced. The databases have been
recorded over the telephone at 8 kHz and are subdivided into
different corpora. We only used Corpus S, which contains
ten read sentences from each of the 2000 speakers. To split
the databases into training (1500 speakers), development (150
speakers) and testing (350 speakers) sets, we used the stan-
dard procedure that maintains the gender-, dialect- and age-
distributions of the database, as described in [18]. Only the
training and development portions were used for this study.
The British English database uses 45 phonemes and contains
12.5 hours of data and the Swiss German database uses 59
phonemes and contains 14 hours of data.

4. MULTILAYER PERCEPTRONS

For each of the four languages (Afrikaans, Dutch, Swiss Ger-
man, British English), we trained an MLP from 39 Mel-
Frequency Perceptual Linear Prediction (MF-PLP) features
(C0-C12+∆+∆∆) in a nine frame temporal context (four pre-
ceding and following frames), extracted with the HTS vari-
ant3 of the HTK toolkit. The number of parameters in each
MLP was set to 10% of the number of available training
frames, to avoid overfitting. We used Quicknet4 software to
train the MLPs.

• Afrikaans: We performed forced alignment to get the
targets for the MLP training. 90% of the training set
was used for training and 10% for cross-validation to
stop training.

• Dutch: Corpus o of the CGN database is phonetically
labeled, thus the targets for the MLP training were
available. Again 90% of the data was used for train-
ing and 10% for cross-validation.

• Swiss German and British English: We performed
forced alignment to get the targets for the MLP train-
ing. The standard training sets were used for training
and the development sets for cross-validation.

5. SYSTEMS

In this section, we will describe the systems that we in-
vestigated to study crosslingual, multilingual and context-
dependent aspects in the framework of under-resourced ASR.
We will compare the performance of the Tandem approach
with the performance of KL-HMM. Furthermore, we will also
compare the proposed systems to an HMM/GMM baseline.

2http://www.speechdat.org/SpeechDat.html
3http://hts.sp.nitech.ac.jp/
4http://www.icsi.berkeley.edu/Speech/qn.html

5.1. Monolingual and crosslingual systems

We define a monolingual system as a system where we only
use within language data for the training, i.e., the MLP for
the feature extraction as well as the HMM for decoding are
trained with Afrikaans data only.

A crosslingual system, on the other hand, is defined as a
system that uses out of language data for the training of the
auxiliary MLP. The HMM is trained from within language
data and can either be a standard HMM as used for the con-
ventional Tandem approach or a KL-HMM.

5.1.1. Tandem

As already discussed earlier (see Figure 1), each context-
dependent phoneme is modeled with three states (qi, qj , qk).
As usually done, we first train context independent mono-
phone models that serve as seed models for the context-
dependent phoneme models. We use eight Gaussians per state
to model the emission probabilities and use PCA for decorre-
lation. PCA can also be used to reduce the dimensionality to,
for example, 30, as it is typically done [2, 13].

To balance the number of parameters with the amount
of available training data, we apply conventional state tying
with a decision tree that is based on the minimum descrip-
tion length principle [19]. Tandem training and decoding is
performed with HTS.

5.1.2. KL-HMM

As for Tandem, for the KL-HMM system, we train context
independent monophone models that serve as seed models for
the three-state context-dependent phoneme models.

Since the KL-HMM system is handicapped by a low num-
ber of parameters [1] (only one K dimensional vector per
state instead of eight Gaussians), we do not perform state ty-
ing, but build a decision tree to model unseen contexts dur-
ing decoding. The decision tree is a modified version of the
conventional approach proposed by Young et al. [20] but is
based on minimum KL divergence instead of maximum like-
lihood [21].

5.2. Multilingual systems

As already proposed earlier [13], we can concatenate the out-
put of several MLPs together. We refer to this kind of sys-
tem to as multilingual. More specifically, we concatenate the
output of multiple MLPs and renormalize the resulting vec-
tor to guarantee that the feature vectors can be interpreted as
posterior distributions, as assumed by the KL-HMM. For the
Tandem systems, we post-process the normalized vectors as
already described Section 5.1.1.



5.3. Context-dependent MLP output systems

The concatenated MLP outputs of the multilingual systems
have a higher dimensionality than the single MLP outputs of
the mono- and cross-lingual systems and therefore can carry
more information. To enrich the exploited information of the
mono- and cross-lingual systems, we also explore MLPs that
are trained on context-dependent targets instead of context
independent targets [22]. Usually, the MLPs are trained on
tied triphone states which are determined with the standard
decision tree approach. However, we do not have acoustic
models that are necessary to build such decision trees for all
the languages. For the CGN database, for example, we have
phoneme alignments only, but no acoustic models. Therefore,
we limit ourselves to a simpler strategy in this study by set-
ting an occupancy threshold. If a triphone does appear fewer
times than a threshold, we simply back off to the monophone
model. In our case, we adjusted the occupancy threshold such
that the number of MLP outputs is equal to the dimensionality
of the multilingual feature vector (which is 189).

6. EXPERIMENTS AND RESULTS

In this section, we analyze the performance of the different
systems. For all the significance tests, we used the bootstrap
estimation method [23] and a confidence interval of 95%.

6.1. HMM/GMM baseline

As shown in Table 2, we run a standard HMM/GMM sys-
tem that was directly trained on the PLP features, as a base-
line. Note that the results reported by van Heerden et al. [24],
63.1% phoneme accuracy, were the first set of results obtained
for the data and the official train and test set were compiled
after the official database release. Personal communication
with HLT group at Meraka confirmed that the lower perfor-
mance of our baseline can be attributed to the different data
partitioning.

6.2. Monolingual and crosslingual systems

First, we analyze the performance of the mono- and cross-
lingual systems. Despite the relatively low amount of
Afrikaans training data (3 hours), but based on previous
work [1], we expected the monolingual system to perform
best. As discussed above, we expected the Dutch system to
perform second.

As illustrated in Table 2, we trained the auxiliary MLP
on one of the four languages, namely Afrikaans (AF), Dutch
(CGN), Swiss German (SZ) and British English (EN), with
context-independent targets (monophones). The HMM pa-
rameters of the Tandem systems as well as the KL-HMM pa-
rameters were always trained on the same Afrikaans data.

In all result tables, bold numbers are significantly better
than the other results for a given modeling technique. For the

System Model Feature Phoneme
dimension accuracy

Baseline HMM/GMM 39 61.2 %
AF-mono

KL-HMM

38 58.7 %
CGN-mono 47 58.0 %
SZ-mono 59 55.3 %
EN-mono 45 52.2 %
AF-mono

Tandem

30 61.2 %
CGN-mono 30 62.5 %
SZ-mono 30 60.4 %
EN-mono 30 60.4 %

Table 2. Afrikaans phoneme accuracy obtained from mono-
lingual (AF) and cross-lingual (CGN, SZ, EN) systems. The
system extension -mono stands for the context-independent
MLP targets (monophones). The baseline uses PLP features,
the KL-HMM systems raw posteriors and the Tandem sys-
tems processed posteriors.

KL-HMM systems, our hypothesis that the Afrikaans MLP
performs best is confirmed. We believe that the Swiss Ger-
man system (SZ-mono) is performing better than the British
English system (EN-mono) in the case of KL-HMM because
the dimensionality of the German posterior vectors is higher
(59) than the English posterior vectors (45) and therefore sys-
tem SZ-mono has more parameters.

For the Tandem technique, however, the Dutch system
(CGN-mono) performs best. We believe that this is due to
the PCA that transforms the phoneme posteriors and that the
Dutch system performs best because it has the most training
data available. We note that the Tandem performance corre-
lates with the amount of available training data, whereas the
KL-HMM performance tends to correlate with the language
similarity.

In general, we observe that the Tandem systems outper-
form the KL-HMM systems by at least 2.5% absolute. This
might be due to the fact that the employed Tandem system
has received more attention than the recently proposed KL-
HMM system. We observed earlier [1] that the KL-HMM sys-
tem outperforms the Tandem system in scenarios with small
amounts of data (less than one hour). The best Tandem system
yields improvement compared to the HMM/GMM baseline,
whereas the best KL-HMM system does not.

6.3. Multilingual systems

Although it has not been explicitly confirmed in the litera-
ture [3], we believed that the Afrikaans ASR performance
could be boosted by properly combining acoustic information
from multiple similar languages.

In this study, we investigate a normalized concatenation
of MLP outputs. More specifically, we take different MLP
outputs, concatenate them and then normalize the resulting
feature vector. As shown in Table 2, during the mono- and



System Model Feature Phoneme
dimension accuracy

AF-mono 38 58.7 %
AF-CGN KL- 85 62.4 %
AF-CGN-SZ HMM 144 64.0 %
AF-CGN-SZ-EN 189 64.4 %
AF-mono

Tandem

30 61.2 %
AF-CGN 30 62.2 %
AF-CGN-SZ 30 62.0 %
AF-CGN-SZ-EN 30 62.1 %
AF-CGN-SZ-EN 189 66.2 %

Table 3. Afrikaans phoneme accuracy obtained from mul-
tilingual systems. We concatenated different MLP outputs.
The Tandem systems suffer from the dimensionality reduc-
tion that removes significant information.

cross-lingual experiments, for KL-HMM, system AF-mono
performed best, then CGN-mono, SZ-mono and EN-mono.
Therefore, we concatenate the MLPs one by one in that order.

As shown in Table 3, we get significant improvements for
both acoustic modeling techniques, by concatenating MLP
outputs.

However, we observe relatively small improvements for
the Tandem systems. Grézl et al. [13] did not observe im-
provements at all if they concatenated MLP outputs. As we
are going to discuss in more detail in Section 6.4, a dimen-
sionality reduction during PCA removes some information.
A reduction to 30 dimensions for example keeps only 91% of
the data variance for system AF-CGN-SZ-EN as displayed
in Figure 3. The monolingual system keeps 99% and the
crosslingual systems between 97% and 98%. Tòth. et al. [12]
reported significant decrease in performance if 95% of the
variance is kept. Therefore, we trained a Tandem system
without reducing the dimensionality (keeping the full decor-
related vector). Indeed, that system performs significantly
better than all other Tandem systems.

6.4. Context-dependent MLP outputs

In Table 3 we showed that the multilingual systems outper-
formed the mono- and cross-lingual systems. However, it
is not clear whether the improvement comes from the larger
number of parameters or the multilingual information. There-
fore, we increased the number of parameters of the mono- and
cross-lingual systems by training MLPs on context-dependent
outputs. For the sake of comparison, we used 189 triphone
outputs for each MLP as described in Section 5.3. We ex-
pect the context-dependent MLP systems to perform better
than the mono- and cross-lingual systems that were trained
on monophone targets.

The results are reported in Table 4. For KL-HMM we
observe an improvement of about 2% absolute for each sys-
tem compared to Table 2. We observe that the multilingual

System Model Feat PCA Phoneme
dim %-Var accuracy

AF-dep

KL-HMM

189 - 59.9 %
CGN-dep 189 - 60.2 %
SZ-dep 189 - 58.2 %
EN-dep 189 - 54.8 %
AF-dep

Tandem

30 98% 62.0 %
CGN-dep 30 93% 63.0 %
SZ-dep 30 96% 61.8 %
EN-dep 30 95% 61.7 %
AF-dep 189 100% 64.1 %
CGN-dep 189 100% 66.5 %
SZ-dep 189 100% 65.8 %
EN-dep 189 100% 65.2 %

Table 4. Afrikaans phoneme accuracy obtained from mono-
lingual and cross-lingual systems. The system extension -dep
stands for the context-dependent MLP targets (triphones). For
the Tandem systems, also the percentage of the variance that
is kept by the PCA is given.

system AF-CGN-SZ-EN (Table 3) that has a similar number
of parameters (feature vectors have the same dimensionality)
performs significantly better than all mono- and cross-lingual
systems presented in Table 4. Hence, we conclude that in the
case of KL-HMM the multilingual information is exploited.
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data and the number of different languages have influence.

For Tandem, we first reduced the dimensionality to 30 as
we have done for the mono- and cross-lingual systems. Inter-
estingly, we observe statistically similar performance for all
languages except Dutch.

Table 4 also shows how much of the variance is kept with
30 dimensions for each language. Furthermore, Figure 3 plots
the amount of variance that is kept for the Afrikaans and
Dutch systems as a function of the number of retained di-



System Model Feat PCA Phon.
(cont. dep.) dim %-Var acc.
AF-dep 189 - 59.9 %
AF-CGN KL- 378 - 64.9 %
AF-CGN-SZ HMM 567 - 65.4 %
AF-CGN-SZ-EN 756 - 65.3 %
AF-dep

Tandem

189 100% 64.1 %
AF-CGN 189 99.6% 67.5 %
AF-CGN-SZ 189 98.9% 67.5 %
AF-CGN-SZ-EN 189 98.6% 67.8 %
AF-CGN-SZ-EN 756 100% 63.7 %

Table 5. Afrikaans phoneme accuracy obtained from context
dependent multilingual systems. We concatenated the outputs
of different MLPs, trained on context-dependent targets.

mensions. We observe that the MLPs trained on monophones
have the steepest curves. The more available training data,
the higher variance and the more languages contained in the
training data, the higher the variance, thus, the more dimen-
sions we need to keep.

Using all the dimensions of the decorrelated feature vector
yields significant improvement for all systems. The best per-
forming system is CGN-dep, with the MLP that was trained
on 81 hours of Dutch data. Hence, for Tandem, the cross-
lingual systems that use MLPs trained on context-dependent
targets, perform similar to the multilingual systems.

In this study, we fixed the number of context dependent
output units to 189 (by using a simple occupancy threshold).
The performance might further be increased if we use MLPs
with more output units, which should be determined with an
unsupervised data-driven technique.

6.5. Context-dependent multilingual systems

Since we observed improvement for the multilingual systems
as well as for the context dependent systems, we also con-
catenate multiple outputs of the context-dependent MLPs. We
expect the improvements to be cumulative.

As reported in Table 5, the KL-HMM based systems show
the same behavior as in Table 3, but all the systems perform
better. Hence the hypothesis that we can exploit cumulative
performance gains is confirmed for KL-HMM systems.

Also for Tandem systems, the performance gains are cu-
mulative. In contrast to the results in Table 3, using the
full decorrelated vector for system AF-CGN-SZ-EN yields
a lower performance for the context dependent MLP output
concatenation. However, the 189 dimensions already contain
98.6% of the variance. Furthermore, we believe that the de-
crease in performance might be due to the high dimensional-
ity (756) that the Tandem system is not able to handle any-
more, i.e., 3 hours of Afrikaans data are not sufficient to train
the high number of HMM parameters.

KL-HMM Phoneme accuracy rel. change
AF-mono 58.7% -
+multilingual 64.4% +9.7 %
+context 60.2% +2.6 %
+multilingual+context 65.4% +11.4 %
Tandem Phoneme accuracy rel. change
AF-mono 61.2% -
+multilingual 66.2% +8.2 %
+context 66.5% +8.7 %
+multilingual+context 67.8% +10.8 %

Table 6. Summary of the experimental results. KL-HMM
gains more from multilinguality and Tandem from context-
dependency. In both cases, the gains are additive.

Table 6 summarizes the gains that result from multilin-
guality, context dependency and both. We observe that mul-
tilingual information yields more improvement for the KL-
HMM system. For the context dependency it is vice versa,
there is more improvement for the Tandem systems. The rela-
tive performance gains of about 11% are higher then expected
and we have shown that the ASR performance can be boosted
with out of language data even if there are already three hours
of data available in the target language.

7. CONCLUSION AND FUTURE WORK

In this study, we successfully exploited out of language data
and boosted a monolingual speech recognizer that was trained
on three hours of Afrikaans data.

First, for two investigated acoustic modeling techniques,
the best multilingual system yields more than 10% rela-
tive improvement compared to the corresponding monolin-
gual systems only trained on Afrikaans. To the best of our
knowledge, such improvements have not been reported on
Afrikaans before. Second, we also found that Tandem sys-
tems consistently outperform the KL-HMM systems. How-
ever, the performance of the KL-HMM is extremely satisfac-
tory. Third, careful analysis of the experimental results re-
vealed that the KL-HMM system mostly gains improvement
by exploiting multilingual information whereas the Tandem
system seems to benefit from both, contextual and multilin-
gual information.

In the future, we will further investigate several aspects
such as the training of MLPs with higher number of output
units or weighted combinations of MLP outputs rather than
normalized concatenations.
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