
Conversion of Recurrent Neural Network Language Models to
Weighted Finite State Transducers for Automatic Speech Recognition
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Abstract
Recurrent neural network language models (RNNLMs) have
recently shown to outperform the venerablen-gram language
models (LMs). However, in automatic speech recognition
(ASR), RNNLMs were not yet used to directly decode a speech
signal. Instead, RNNLMs are rather applied to rescore N-best
lists generated from word lattices. To use RNNLMs in earlier
stages of the speech recognition, our work proposes to trans-
form RNNLMs into weighted finite state transducers approxi-
mating their underlying probability distribution. While the main
idea consists in discretizing continuous representationsof word
histories, we present a first implementation of the approachus-
ing clustering techniques and entropy-based pruning. Achieved
experimental results on LM perplexity and on ASR word error
rates are encouraging since the performance of the discretized
RNNLMs is comparable to the one ofn-gram LMs.
Index Terms: Language model, recurrent neural network,
weighted finite state transducer, speech decoding

1. Introduction
Recurrent neural network language models (RNNLMs) have
shown to outperform the venerablen-gram language mod-
els (LMs) [1]. However, in automatic speech recogni-
tion (ASR), RNNLMs cannot be used to directly decode a
speech signal since they rely on continuous representations
of word histories while decoding algorithms require to han-
dle discrete representations to remain tractable [2, 3]. Instead,
RNNLMs are currently used to rescore N-best lists generated
usingn-gram LMs. Hence, the prediction power of RNNLMs
is used only on subsets of all transcription hypotheses. Such
an approach does not offer the optimal solution since then-
gram LM used for the decoding may have discarded hypotheses
which the RNNLM would have judged very likely. Further-
more, the distributions of these two kinds of LMs have been
shown to be complementary [4, 5]. The use of RNNLMs in
early stages of speech decoding is thus a challenging objective.

Recently, few studies were devoted to this problem. In [6],
the authors propose to sample word sequences by using
RNNLM as a generative model before training ann-gram LM
based on the generated text. By exploiting this LM to perform
first pass decoding, achieved results outperformed the use of n-
gram LMs trained on standard texts. However, we assume that
this approach is still not optimal since it still prevents from re-
lying on long span information during the decoding. In [7], the
author has proposed aniterative decodingalgorithm which en-
ables to efficiently rescore word lattices using RNNLMs. The
main idea is to partition word lattices to reduce the computa-
tional complexity of browsing all possible hypotheses. Though
leading to good results, this technique cannot be directly applied
in the first pass of the decoding since no explicit search graph is
available at this moment of the recognition process.

In this paper, we define a new generic strategy to transform
RNNLMs into a Weighted Finite State Transducer (WFST)

which can directly be used within the decoding process of an
ASR system [3]. We believe that this approach has a potential
to outperform the conventional approach where RNNLMs are
employed to rescoreN -best hypotheses as a final step of ASR.
The principle of the conversion consists in discretizing continu-
ous RNNLM representations of word histories in order to build
WFST states, and then to link these states with probabilities de-
rived from the RNNLM. In practice, this approach also raises
some needs for pruning the generated WFST since the theo-
retical number of states may be large according to the chosen
discretization strategy. We present a preliminary implementa-
tion of the RNNLM conversion algorithm based onK-means
clustering and entropy pruning.

This paper is organized as follows: after recalling the prin-
ciples of RNNLMs provided in Section 2, the generic conver-
sion strategy is introduced in Section 3. Section 4 presentshow
K-means clustering and entropy pruning can be used to imple-
ment a first version of the generic strategy. Finally, Section 5
describes experiments on the Penn Treebank corpus and using
LVCSR meeting system.

2. Overview of RNNLMs
The goal of a language model employed in ASR system is to
provide the conditional probability of a wordwi given an his-
toryh of preceding words. As detailed in [1], this history is rep-
resented in RNNLMs by the most recent preceding wordwi−1

and a multi-dimensional continuous representationci of the
remaining context. The topology of the neural network used
to compute conditional probabilitiesP [wi|wi−1, ci−1] is orga-
nized in 3 layers using a bottleneck scheme. The input layer
reads a wordwi−1 and a continuous historyci−1. The hidden
layer compresses the information of these two inputs and com-
putes a new representationci. The valueci is then passed to
the output layer which, after normalization, provides the condi-
tional probabilities.

3. Generic RNNLM conversion
The goal of this work is to convert RNNLMs into an approxi-
mate WFST representation. As illustrated in Figure 1, this task
mainly consists in binding discrete states with the continuous
input states of the RNNLM, and in using these discrete states
as the nodes of a WFST. The edges among nodes are then la-
beled with word transitions and their probabilities estimated by
the RNNLM. There are two key aspects to achieve this task.
First, adiscretization functionneeds to be defined to transform
the continuous representations. Second, we have to take into
account the size of the output WFST since enumerating all pos-
sible discrete states might quickly be untractable as soon as the
vocabulary becomes large and the discretization becomes pre-
cise. Thus, apruning criterionneeds to be defined in order to
discard uninteresting discrete states, and aback-off strategyin
order to model the pruned states in a simpler way. This sec-



Figure 1:Overview of the RNNLM discretization scheme.

tion formally introduces these parameters before providing the
generic algorithm for the conversion.

3.1. Discretization function

The main function to be defined is a discretization function
which returns a discrete state for every possible input continu-
ous state(wi, ci). The generic form of this discretization func-
tion f is as follows:

f : V × R
h −→ N

k

wi , ci 7−→ di ,
(1)

whereV is the LM vocabulary,h is the size of the hidden layer
of the RNNLM, andk is the dimension of the discrete represen-
tationdi. As it will be shown in the algorithm, we also need
to be able to go back from discrete states to continuous repre-
sentations. Thus, the partial inverse functionf−1 must also be
defined such that:

f−1 : N
k −→ Y ⊂ V × R

h

di 7−→ (wi, ci) .
(2)

This function is only a partial inverse of functionf sincef is,
by definition, a surjection. Thus, the codomain off−1 is limited
to a subset ofV × R

h.

3.2. Pruning criterion and back-off

Since the WFST is intended to be used in ASR during the de-
coding, it should not be too large. Thus, it is important to be
able to control the size of the WFST by pruning and by intro-
ducing a back-off scheme. Furthermore, since the cardinality
of the discrete domainNk can be huge, the pruning should be
done on the fly, i.e., while building the WFST. This requires to
define two parameters.

First, a pruning criterionπ must be defined to decide
whether a corresponding edge should be discarded or added
when building the WFST. A “good” pruning criterion should
be such that the pruning of an edge does not lead to large in-
formation loss. Given a nodedi, the criterion should thus be
derived from the quantity of information carried by a new word
transitionv. The generic form of this criterion is

π(v,di) =
{

false if P (v|f−1(di)) is informative enough,
true otherwise. (3)

Second, a back-off mechanism must be introduced in order
to approximate the probability of pruned events1. Basically, this
strategy requires to define a back-off functionβ which maps a
given discrete representation to a simpler representation:

β : N
k −→ N

k

di 7−→ d
′

i .
(4)

1Even if an event is judged as unlikely, it does not mean that itcannot
occur. Hence, the model must be able to provide a probabilityfor any
event.

Data: L, a list of discrete states, i.e., of WFST nodes
1 L← f(beginning of sentence);
2 while L 6= ∅ do
3 dsrc← pop(L);
4 (wsrc, csrc)← f−1(dsrc);
5 cdst← hiddenlayer(wsrc, csrc);
6 foreach v ∈ V do
7 if dsrc = dmin
8 or not π(v,dsrc) then
9 p← P (v|wsrc, csrc);

10 ddst← f(v, cdst);
11 else
12 p← 0 ;
13 v ← ǫ;
14 ddst← β(dsrc);

15 if nodeddst does not existthen
16 add nodeto wfst(ddst);
17 push(L,ddst);

18 add edgeto wfst(dsrc
v:v,p
−−−→ ddst);

19 computebackoff weights();

Algorithm 1: Pseudo-code of the RNNLM conversion.

The destination stated′

i is referred to as theback-off stateor
nodeof the statedi. To avoid cycles in the WFST, the func-
tion β must define a partial order over all discrete states, i.e.,
it must guarantee thatd′

i is “simpler” thandi. This naturally
introduces the notion of minimal statedmin, i.e., the state for
which no pruning and back-off can be done.

3.3. Conversion algorithm

Assuming that the discretization functionf , the pruning crite-
rion π, and the back-off functionβ are defined, the conversion
algorithm seeks to discretize each given RNNLM state and to
build outgoing edges reaching new states. This process can be
written in an iterative way whose pseudo-code is given by the
Algorithm 1. Given the list of states which have already been
added to the WFST but for which no outgoing edge has been
created yet, the algorithm pops a state, computes probabilities
using the RNNLM, and then builds edges. As soon as an edge
reaches a new destination node in the WFST, this next node is
built and pushed into the list on remaining states to be explored.
In practice, the conversion process starts with the RNNLM state
corresponding to a beginning of sentence. When considering
pruning, a decision must be made before adding a new edge. If
the edge starts from the minimal state or carries enough infor-
mation, then it is built. Otherwise, it is discarded and redirected
to a back-off node. The weights of back-off transitions are com-
puted after building the WFST by following Katz’s strategy [8].

4. Implementation
We propose to implement the generic process described above
by usingK-means clustering for the discretization of RNNLM
states and entropy-based criteria for the pruning strategy. This
implementation is described in this section.

4.1. Discretization using K-means

We propose to discretize RNNLM states by first partitioning
their continuous domain into clusters computed using theK-
means algorithm, and then by associating each state to a corre-
sponding cluster. Each cluster is denoted by an identifier and
is associated with its centroid. Given a set ofK centroids, the



discretization and “undiscretization” functions are defined as:

fK(w , c) = ( w , k ) , (5)

wherek ∈ J1, KK is the ID of the centroid associated withc,
and

f
−1

K (w , k) = ( w , ck ) , (6)

whereck is thek-th centroid. As mentioned in Section 3.1, we
can clearly see that, in most cases,f−1

K

(

fK(x)
)

does not equal
to x, which means that some information is lost.

An advantage ofK-means is that the size of the discrete
space of the WFST nodes can be explicitly set throughK.
Nonetheless, for a large vocabulary, the size of the final WFST
can be huge if no pruning is applied2. To train the centroids,
the RNNLM is first applied on a text data, e.g., the training text.
Then, each continuous stateci encountered is stored and the
K-means clustering is performed on these logs.

4.2. Back-off

We define a two-fold back-off scheme such that the informa-
tion about the long-span context is dropped as first and the
information about the last word is dropped as second. For-
mally, given a discrete state(w, k), this consists in defining
β(w, k) = (w,∅) and β(w,∅) = (∅,∅) where∅ means
that no information is provided. To remain compliant with
the method, values are defined according tof−1 for these two
special discrete states:f−1(w,∅) = (w, c0) wherec0 is the
global mean of all the continuous states observed during theK-
means clustering, andf−1(∅,∅) = (∅, c0).

4.3. Pruning

Within the conversion process, the principle of pruning is to
reduce the final WFST size by not building edges whose ab-
sence does not result in significant information loss. A well
known strategy for this problem consists in identifying edges
which have a minimal effect on the entropy of the probability
distribution [9]. Following this principle, we define our pruning
criterion based on two values.

First, the piece of entropy carried by a transition from the
stated with the wordv is considered. It is expressed as:

H(v,d) = −P (v, f−1

K (d)) · logP (v, f−1

K (d)) . (7)

By denotingP (v|f−1

K (d)) to P (v|d), the joint probability
P (v, f−1

K (d)) of a word v and its historyd can be approxi-
mated as:

P (v, f−1

K (d)) ≈ P (v|d) · P (d) (8)

= P (v|w, ck) · P (w, k) . (9)

The probabilityP (v|w, ck) is directly given by the RNNLM
while the probabilityP (w,k) is considered as a prior estimated
from the logs used to train the centroids. Since the estimation
of this joint probability may be unreliable because of data spar-
sity, an independence assumption betweenw andk is made. In
practice,P (w, k) is thus simplified toP (w) · P (k) .

Second, an important aspect is to know if the probabilities
of an event remain close before and after pruning. For a transi-
tion (v,d), the relative difference between these two probabili-
ties is defined as:

D(v,d) =
|P (v|d)− α(d) · P (v|β(d))|

P (v|d)
, (10)

2Precisely, the theoretical maximum numbers are|V | × K nodes
and(|V | ×K)2 edges.

Table 1:Perplexities ofn-gram LMs and of the RNNLM.
2-grams 3-grams 4-grams 5+-grams RNNLM

186 148 142 141 124

Figure 2: Perplexities on test set of the Penn Treebank corpus
for WFSTs generated using various numbers of centroids and
various pruning thresholds∆.

where β(d) is the back-off state ford, and the back-off
weightα(d) is approximated by iteratively estimating the prob-
ability mass of events which will be pruned for the stated. The
higherD(v,d), the lesser backing off preserves the original
probability.

Finally, for a noded and a transition wordv taken under
examination, we define the pruning criterion as follows:

π(w,d) =

{

false if H(v,d) ·D(v,d) < ∆
true otherwise, (11)

where∆ is a user-determined pruning threshold (the lower the
value, the larger the size of the WFST).

The whole process has been implemented using the
RNNLM toolkit3 and the OpenFst library4. Conversions last be-
tween a few minutes and a few hours according|V |, K, and∆.

5. Experiments
Two series of experiments have been carried out to evaluate the
proposed approach: (a) experiments on the Penn Treebank cor-
pus to study the behavior of the conversion process, and (b) the
decoding experiments on meeting speech recordings using a
large vocabulary continuous speech recognition system.

5.1. Perplexities on the Penn Treebank corpus

The goal of the first part of experiments is to study an impact of
theK-means algorithm as well as the pruning threshold on the
RNNLM conversion. To do so, we use the same LMs as those
used in [1] on the Penn Treebank corpus. Two types of LMs
are considered:n-gram LMs trained with various orders us-
ing maximum likelihood estimation and Kneser-Ney smooth-
ing, and a RNNLM based on a hidden layer of300 neurons.
The Penn Treebank corpus is a portion of the Wall Street Jour-
nal which is widely used for evaluating performance of statis-
tical LMs [10]. This corpus is split into 3 parts: a training set
of 900K words, a development set of70K words (which is only
used for RNNLM training), and a test set of80K words. The
vocabulary is made of10K words. Perplexities of these models
on the test set are reported in Table 1.

Various values ofK have been used to extract centroids
from the training set, as described in Section 4.1. Furthermore,
3 different values have been set for the pruning threshold. WF-
STs are generated using these settings and the final perplexities
are measured on the test set. These perplexities are reported
in Figure 2 and are compared with those of the other models.

3http://www.fit.vutbr.cz/˜imikolov/rnnlm/
4http://www.openfst.org



Table 2:Perplexities of LMs on the evaluation set of RT 2007.
2-gram LM 4-gram LM WFST RNNLM

162 93 127 93

Additionally, the optimal perplexity, which can be obtained if
no pruning was applied, is given in Figure 2. First, it appears
that this optimal value decreases when the numberK of cen-
troids increases (as increasingK means that richer history can
be considered). Although the optimal perplexity does not reach
the perplexity of the original RNNLM, these preliminary results
interestingly show that the discretization does not lead tolarge
information loss as long asK is large enough. Then, a degra-
dation can clearly be observed when introducing pruning (i.e.,
∆ > 0), which is obvious since most of the possible transi-
tions are pruned5. These degradations increase asK becomes
too large, which probably highlights some weaknesses of our
current implementation. This can mainly be explained by the
fact that the average prior probability of any centroid decreases
asK increases. This leads to reduce the number of transitions
which are informative enough according to the pruning thresh-
old. Moreover, this phenomenon can become worse by taking
into account more unreliable prior probabilities of centroids for
high values ofK because of the limited size of the training set.

5.2. Decoding of meeting data

Second, preliminary decoding experiments have been car-
ried out on the evaluation set of NIST RT 20076 dataset
(35K words). We use a two-pass recognition process where
word lattices are first generated using “simple” models, lead-
ing toN -best lists, withN set to1, 000. Then, more complex
LMs are used to rescore these lists. For the rescoring, we usethe
RNNLM described in [5] and a4-gram developed for the AMI
system [11]. The RNNLM has been trained on 26.5M words
with a 65K words vocabulary while then-gram LM is trained
on about a billion words with the same vocabulary. Both mod-
els reach the same perplexity on the evaluation set of RT 2007.
For the decoding, a WFST is built from the RNNLM based
with K = 512 and∆ = 10−7 and a bigram LM is derived
from the4-gram LM. The WFST and the bigram LM are about
the same size. Perplexities of all LMs on RT 2007 are given
in Table 2. Acoustic model is represented by relatively simple
HMM/GMM trained using maximum likelihood over PLP fea-
tures (39 dimensions). The model contains 4.5K tied states with
18 Gaussian mixture components per state. No speaker adapta-
tion is performed in order to keep reasonable run times.

Table 3 reports the word error rates (WER) of the best hy-
pothesis directly after the decoding pass using the bigram LM
or the WFST, and after rescoring with the4-gram LM or with
the RNNLM. Additionally, the WERs of the best hypothesis re-
turned without any rescoring, i.e., by using only the WFST and
the bigram LM, are given. First, we can notice that WERs are
a bit high. This is due to the absence of speaker adaptation.
Then, it appears that the WER obtained using the WFST is bet-
ter than when using the bigram LM since an absolute differ-
ence of0.5% is reported, as this was suggested by the perplexi-
ties. This is consistent with observed perplexities. Finally, after
rescoring, the difference is lesser when using the4-gram LM
and it is even reversed when using the RNNLM. Nonetheless,
these results are encouraging since our preliminary implemen-
tation of the RNNLM conversion scheme performs already as
well asn-gram LMs. We will thus continue experiments.

5For instance, forK = 2 and∆ = 10−5, 99.946% of the tran-
sitions are pruned, and, forK = 1024 and∆ = 10−7, this number
becomes99.986%.

6http://www.itl.nist.gov/iad/mig/tests/rt/2007/

Table 3: WERs on the evaluation set of RT 2007 usingn-
gram LM or RNNLM-derived WFST to generateN -best lists
and usingn-gram LM or RNNLM to rescore them.
`
`
`
`
`
`
`
`
`
`

Rescoring
Decoding

2-gram LM WFST derived
from RNNLM

No rescoring 47.8 % 47.3 %
4-gram LM 45.2 % 45.0 %
RNNLM 42.9 % 43.2 %

6. Conclusion
In this paper, we have proposed a new strategy to directly ex-
ploit probabilities estimated by RNNLMs in the ASR decoder.
This strategy consists in converting a RNNLM into a WFST
by means of discretization and pruning. We have proposed an
original implementation of this generic strategy by usingK-
means clustering and entropy-based pruning. Achieved results
on the Penn Treebank and RT 2007 corpora show that this strat-
egy is promising since the generated WFSTs lead to similar
performance to the one ofn-gram LMs. Nevertheless, some
improvements are still necessary. Especially, a more elaborate
pruning criteria could be defined to examine the importance of
a transition. However, this task is difficult since estimating the
entropy of a RNNLM is complex. Finally, the discretization
step could probably also be improved. For instance, it could
be interesting to use other possible distances than the default
L2 distance to compute the centroids. Measures based on the
Kullback-Leibler divergence appear as a natural option towards
this objective. Eventually, the employment of hierarchical clus-
tering may also reduce the loss of information due to back-off.
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