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Abstract

Recurrent neural network language models (RNNLMs) have
recently shown to outperform the venerablgram language
models (LMs). However, in automatic speech recognition
(ASR), RNNLMs were not yet used to directly decode a speech
signal. Instead, RNNLMs are rather applied to rescore N-bes
lists generated from word lattices. To use RNNLMs in earlier
stages of the speech recognition, our work proposes to-trans
form RNNLMs into weighted finite state transducers approxi-
mating their underlying probability distribution. Whileg main
idea consists in discretizing continuous representatibmsord
histories, we present a first implementation of the appraseh
ing clustering techniques and entropy-based pruning. évelui
experimental results on LM perplexity and on ASR word error
rates are encouraging since the performance of the dizedeti
RNNLMs is comparable to the one atgram LMs.

Index Terms. Language model, recurrent neural network,
weighted finite state transducer, speech decoding

1. Introduction

Recurrent neural network language models (RNNLMs) have
shown to outperform the venerabtegram language mod-
els (LMs) [1]. However, in automatic speech recogni-
tion (ASR), RNNLMs cannot be used to directly decode a
speech signal since they rely on continuous represengation
of word histories while decoding algorithms require to han-
dle discrete representations to remain tractable [2, 3jtebd,
RNNLMs are currently used to rescore N-best lists generated
usingn-gram LMs. Hence, the prediction power of RNNLMs
is used only on subsets of all transcription hypotheses.h Suc
an approach does not offer the optimal solution sincerthe
gram LM used for the decoding may have discarded hypotheses
which the RNNLM would have judged very likely. Further-
more, the distributions of these two kinds of LMs have been
shown to be complementary [4, 5]. The use of RNNLMs in
early stages of speech decoding is thus a challenging algect

Recently, few studies were devoted to this problem. In [6],
the authors propose to sample word sequences by using
RNNLM as a generative model before trainingagram LM
based on the generated text. By exploiting this LM to perform
first pass decoding, achieved results outperformed thefuse o
gram LMs trained on standard texts. However, we assume that
this approach is still not optimal since it still preventsrfr re-
lying on long span information during the decoding. In [t
author has proposed derative decodinglgorithm which en-
ables to efficiently rescore word lattices using RNNLMs. The
main idea is to partition word lattices to reduce the computa
tional complexity of browsing all possible hypotheses. Ugio
leading to good results, this technique cannot be direpiied
in the first pass of the decoding since no explicit searchtgigp
available at this moment of the recognition process.

In this paper, we define a new generic strategy to transform
RNNLMs into a Weighted Finite State Transducer (WFST)

which can directly be used within the decoding process of an
ASR system [3]. We believe that this approach has a potential
to outperform the conventional approach where RNNLMs are
employed to rescor&/-best hypotheses as a final step of ASR.
The principle of the conversion consists in discretizingtouu-

ous RNNLM representations of word histories in order todbuil
WEFST states, and then to link these states with probalsilites
rived from the RNNLM. In practice, this approach also raises
some needs for pruning the generated WFST since the theo-
retical number of states may be large according to the chosen
discretization strategy. We present a preliminary impletae

tion of the RNNLM conversion algorithm based ét-means
clustering and entropy pruning.

This paper is organized as follows: after recalling theprin
ciples of RNNLMs provided in Section 2, the generic conver-
sion strategy is introduced in Section 3. Section 4 predevs
K-means clustering and entropy pruning can be used to imple-
ment a first version of the generic strategy. Finally, Secto
describes experiments on the Penn Treebank corpus and using
LVCSR meeting system.

2. Overview of RNNLMs

The goal of a language model employed in ASR system is to
provide the conditional probability of a word; given an his-
tory h of preceding words. As detailed in [1], this history is rep-
resented in RNNLMs by the most recent preceding woyd;

and a multi-dimensional continuous representaiQrof the
remaining context. The topology of the neural network used
to compute conditional probabilitieB[w; |w;—1, c;—1] is orga-
nized in 3 layers using a bottleneck scheme. The input layer
reads a worduv;—; and a continuous history;,_1. The hidden
layer compresses the information of these two inputs and com
putes a new representatien. The valuec; is then passed to
the output layer which, after normalization, provides tbadi-
tional probabilities.

3. Generic RNNLM conversion

The goal of this work is to convert RNNLMs into an approxi-
mate WFST representation. As illustrated in Figure 1, tkt
mainly consists in binding discrete states with the comirsu
input states of the RNNLM, and in using these discrete states
as the nodes of a WFST. The edges among nodes are then la-
beled with word transitions and their probabilities estieakby

the RNNLM. There are two key aspects to achieve this task.
First, adiscretization functiomeeds to be defined to transform
the continuous representations. Second, we have to take int
account the size of the output WFST since enumerating all pos
sible discrete states might quickly be untractable as sedhea
vocabulary becomes large and the discretization beconges pr
cise. Thus, gruning criterionneeds to be defined in order to
discard uninteresting discrete states, arzhek-off strategyn
order to model the pruned states in a simpler way. This sec-
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Figure 1:Overview of the RNNLM discretization scheme.
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tion formally introduces these parameters before progidire
generic algorithm for the conversion.

3.1. Discretization function

The main function to be defined is a discretization function
which returns a discrete state for every possible inputicont
ous statdw;, c¢;). The generic form of this discretization func-
tion f is as follows:

f+ vV x

Wy 5

— N
— di,

Rh
Cq

)

whereV is the LM vocabularyh is the size of the hidden layer
of the RNNLM, andk is the dimension of the discrete represen-
tationd;. As it will be shown in the algorithm, we also need
to be able to go back from discrete states to continuous +epre
sentations. Thus, the partial inverse functjpn' must also be
defined such that:
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This function is only a partial inverse of functighsince f is,
by definition, a surjection. Thus, the codomainfof' is limited
to a subset ot/ x R".

3.2. Pruningcriterion and back-off

Since the WFST is intended to be used in ASR during the de-
coding, it should not be too large. Thus, it is important to be
able to control the size of the WFST by pruning and by intro-
ducing a back-off scheme. Furthermore, since the cartjnali
of the discrete domaiiv* can be huge, the pruning should be
done on the fly, i.e., while building the WFST. This requires t
define two parameters.

First, a pruning criterionm must be defined to decide

Data: L, a list of discrete states, i.e., of WFST nodes
L + f(beginning of sentenge
while L # () do

dsrc +— pO[xL),

(wsrc, Csrc) +— f_l(dsrc);

Cdst < hidderllayer(wsrc, Csrc);
foreach v € V do

if dsrc = dmin

or not (v, dsrc) then

p P(U|wsrc7 Csrc);
dgst < f(v, casp);

© 0 N o g b WN R

[
o

ese

2R
N P

p+0;
vV €
| ddst+ B(dsrc);
15 f nodedgyst does not existhen
16 addnodeto_wfst(dgs;
7 push(L, dgst);

18 | addedgeto_wfst(dsrc — dgsy);

B
5w

19 C(;mputebackoftweights();

Algorithm 1: Pseudo-code of the RNNLM conversion.

The destination statd; is referred to as théack-off stateor
nodeof the stated;. To avoid cycles in the WFST, the func-
tion S must define a partial order over all discrete states, i.e.,
it must guarantee that; is “simpler” thand;. This naturally
introduces the notion of minimal stathn, i.e., the state for
which no pruning and back-off can be done.

3.3. Conversion algorithm

Assuming that the discretization functigh the pruning crite-
rion 7, and the back-off functio are defined, the conversion
algorithm seeks to discretize each given RNNLM state and to
build outgoing edges reaching new states. This processean b
written in an iterative way whose pseudo-code is given by the
Algorithm 1. Given the list of states which have already been
added to the WFST but for which no outgoing edge has been
created yet, the algorithm pops a state, computes protiesili
using the RNNLM, and then builds edges. As soon as an edge
reaches a new destination node in the WFST, this next node is
built and pushed into the list on remaining states to be egglo

In practice, the conversion process starts with the RNNLatkst
corresponding to a beginning of sentence. When considering

whether a corresponding edge should be discarded or added pruning, a decision must be made before adding a new edge. If

when building the WFST. A “good” pruning criterion should

be such that the pruning of an edge does not lead to large in-

formation loss. Given a nodé;, the criterion should thus be

derived from the quantity of information carried by a new dor

transitionv. The generic form of this criterion is

(v, d;) = { false if P(v|f~'(d;)) is informative enough
true otherwise. 3)

Second, a back-off mechanism must be introduced in order
to approximate the probability of pruned evéntasically, this
strategy requires to define a back-off functi@nwvhich maps a
given discrete representation to a simpler representation

B: Nk
d;

— NF
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1Evenifan event is judged as unlikely, it does not mean tharinot
occur. Hence, the model must be able to provide a probalidityny
event.

the edge starts from the minimal state or carries enough-info
mation, then it is built. Otherwise, it is discarded and rectied
to a back-off node. The weights of back-off transitions anme¢
puted after building the WFST by following Katz's strate@y.[

4. Implementation

We propose to implement the generic process described above
by using K-means clustering for the discretization of RNNLM
states and entropy-based criteria for the pruning strat€bis
implementation is described in this section.

4.1. Discretization using K-means

We propose to discretize RNNLM states by first partitioning
their continuous domain into clusters computed using Ahe
means algorithm, and then by associating each state toe corr
sponding cluster. Each cluster is denoted by an identifidr an
is associated with its centroid. Given a setfofcentroids, the



discretization and “undiscretization” functions are defiras:

fK(wvc):(ka)v (5)
wherek € [1, K] is the ID of the centroid associated with
and

flzl(w7k):(wvck)7 (6)

wherecy, is thek-th centroid. As mentioned in Section 3.1, we
can clearly see that, in most casgs; (fK (:c)) does not equal
to =, which means that some information is lost.

An advantage ofi{-means is that the size of the discrete
space of the WFST nodes can be explicitly set throdgh
Nonetheless, for a large vocabulary, the size of the final WFS
can be huge if no pruning is applfedTo train the centroids,
the RNNLM is first applied on a text data, e.qg., the training.te
Then, each continuous statg encountered is stored and the
K-means clustering is performed on these logs.

4.2. Back-off

We define a two-fold back-off scheme such that the informa-
tion about the long-span context is dropped as first and the
information about the last word is dropped as second. For-
mally, given a discrete stat@wv, k), this consists in defining
B(w, k) = (w,o) and f(w, @) = (@,2) where means
that no information is provided. To remain compliant with
the method, values are defined according td for these two
special discrete stateg ™! (w, @) = (w, co) Wherecy is the
global mean of all the continuous states observed duringthe
means clustering, anf (@, @) = (2, co).

4.3. Pruning

Within the conversion process, the principle of pruningds t
reduce the final WFST size by not building edges whose ab-
sence does not result in significant information loss. A well
known strategy for this problem consists in identifying eslg
which have a minimal effect on the entropy of the probability
distribution [9]. Following this principle, we define ounpring
criterion based on two values.

First, the piece of entropy carried by a transition from the
stated with the wordv is considered. It is expressed as:

H(v,d) = —P(v, fi'(d)) - log P(v, f'(d)) . (7)

By denoting P(v|fx*(d)) to P(v|d), the joint probability
P(v, fz*(d)) of a wordv and its historyd can be approxi-
mated as:

P(v, fx'(d)) P(v|d) - P(d) (8)

= P(v|lw,ck) - P(w, k). 9)

Q

The probability P(v|w, cx) is directly given by the RNNLM
while the probabilityP (w, k) is considered as a prior estimated
from the logs used to train the centroids. Since the estinati
of this joint probability may be unreliable because of dqtars
sity, an independence assumption betweeandk is made. In
practice,P(w, k) is thus simplified taP(w) - P(k) .

Second, an important aspect is to know if the probabilities
of an event remain close before and after pruning. For aitrans
tion (v, d), the relative difference between these two probabili-
ties is defined as:

_ |P(]d) = a(d) - P(v|5(d))|

D(v,d) = P(o|d) ) (10)

2Precisely, the theoretical maximum numbers [@¢ x K nodes
and(|V| x K)?2 edges.

Table 1:Perplexities ofa-gram LMs and of the RNNLM.
2-grams| 3-grams| 4-grams| 5+-grams || RNNLM
186 148 142 141 124
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Figure 2: Perplexities on test set of the Penn Treebank corpus

for WFSTs generated using various numbers of centroids and

various pruning thresholda.

where (d) is the back-off state ford, and the back-off
weighta(d) is approximated by iteratively estimating the prob-
ability mass of events which will be pruned for the stdteThe
higher D(v,d), the lesser backing off preserves the original
probability.

Finally, for a noded and a transition worad taken under
examination, we define the pruning criterion as follows:

false if H(v,d) - D(v,d) < A
m(w,d) = { true othe(rwis?e, (4 (11)
whereA is a user-determined pruning threshold (the lower the
value, the larger the size of the WFST).
The whole process has been implemented using the
RNNLM toolkit® and the OpenFst libraty Conversions last be-
tween a few minutes and a few hours accordivigj K, andA.

5. Experiments

Two series of experiments have been carried out to evalhate t
proposed approach: (a) experiments on the Penn Treebank cor
pus to study the behavior of the conversion process, andé¢b) t
decoding experiments on meeting speech recordings using a
large vocabulary continuous speech recognition system.

5.1. Perplexitieson the Penn Treebank corpus

The goal of the first part of experiments is to study an impéct o
the K-means algorithm as well as the pruning threshold on the
RNNLM conversion. To do so, we use the same LMs as those
used in [1] on the Penn Treebank corpus. Two types of LMs
are consideredn-gram LMs trained with various orders us-
ing maximum likelihood estimation and Kneser-Ney smooth-
ing, and a RNNLM based on a hidden layer3f0 neurons.
The Penn Treebank corpus is a portion of the Wall Street Jour-
nal which is widely used for evaluating performance of stati
tical LMs [10]. This corpus is split into 3 parts: a trainingts
of 900K words, a development set 80K words (which is only
used for RNNLM training), and a test set &K words. The
vocabulary is made afOK words. Perplexities of these models
on the test set are reported in Table 1.

Various values ofi’ have been used to extract centroids
from the training set, as described in Section 4.1. Furtbeem
3 different values have been set for the pruning threshold- WF
STs are generated using these settings and the final peigdexi
are measured on the test set. These perplexities are réporte
in Figure 2 and are compared with those of the other models.

Shttp://www.fit.vutbr.cz/ imikolov/rnim/
4http:/Avww.openfst.org



Table 2:Perplexities of LMs on the evaluation set of RT 2007.
2-gram LM | 4-gram LM || WFST | RNNLM
162 93 127 93

Additionally, the optimal perplexity, which can be obtaihié

no pruning was applied, is given in Figure 2. First, it appear
that this optimal value decreases when the nunibesf cen-
troids increases (as increasifigmeans that richer history can
be considered). Although the optimal perplexity does natine
the perplexity of the original RNNLM, these preliminary véts
interestingly show that the discretization does not leadge
information loss as long a&” is large enough. Then, a degra-
dation can clearly be observed when introducing prunirey, (i.

A > 0), which is obvious since most of the possible transi-
tions are pruned These degradations increasefasecomes

too large, which probably highlights some weaknesses of our
current implementation. This can mainly be explained by the
fact that the average prior probability of any centroid éases
as K increases. This leads to reduce the number of transitions
which are informative enough according to the pruning thres
old. Moreover, this phenomenon can become worse by taking
into account more unreliable prior probabilities of cerdsofor

high values ofK because of the limited size of the training set.

5.2. Decoding of meeting data

Second, preliminary decoding experiments have been car-
ried out on the evaluation set of NIST RT 260dataset
(35K words). We use a two-pass recognition process where
word lattices are first generated using “simple” modelsgdlea
ing to N-best lists, withV set to1l, 000. Then, more complex
LMs are used to rescore these lists. For the rescoring, wéhase
RNNLM described in [5] and d-gram developed for the AMI
system [11]. The RNNLM has been trained on 26.5M words
with a 65K words vocabulary while the-gram LM is trained

on about a billion words with the same vocabulary. Both mod-
els reach the same perplexity on the evaluation set of RT.2007
For the decoding, a WFST is built from the RNNLM based
with K = 512 and A = 10~7 and a bigram LM is derived
from the4-gram LM. The WFST and the bigram LM are about
the same size. Perplexities of all LMs on RT 2007 are given
in Table 2. Acoustic model is represented by relatively $amp
HMM/GMM trained using maximum likelihood over PLP fea-
tures (39 dimensions). The model contains 4.5K tied staits w
18 Gaussian mixture components per state. No speaker adapta
tion is performed in order to keep reasonable run times.

Table 3 reports the word error rates (WER) of the best hy-
pothesis directly after the decoding pass using the bigrdn L
or the WFST, and after rescoring with thegram LM or with
the RNNLM. Additionally, the WERSs of the best hypothesis re-
turned without any rescoring, i.e., by using only the WFS@ an
the bigram LM, are given. First, we can notice that WERs are
a bit high. This is due to the absence of speaker adaptation.
Then, it appears that the WER obtained using the WFST is bet-
ter than when using the bigram LM since an absolute differ-
ence of0.5 % is reported, as this was suggested by the perplexi-
ties. This is consistent with observed perplexities. Fynafter
rescoring, the difference is lesser when using 4kgram LM
and it is even reversed when using the RNNLM. Nonetheless,
these results are encouraging since our preliminary imghem
tation of the RNNLM conversion scheme performs already as
well asn-gram LMs. We will thus continue experiments.

5For instance, folX = 2 andA = 10~%, 99.946 % of the tran-
sitions are pruned, and, fd&¢ = 1024 and A = 10~7, this number
become®99.986 %.

Shttp://www.itl.nist.gov/iad/mig/tests/rt/2007/

Table 3: WERs on the evaluation set of RT 2007 using
gram LM or RNNLM-derived WFST to generat&best lists
and usingn-gram LM or RNNLM to rescore them.

Decodin WEFST derived
Rescoring ’ Zgram LM | ¢ 5 m RNNLM
No rescoring 47.8% 47.3%
4-gram LM 45.2% 45.0%
RNNLM 42.9% 43.2%

6. Conclusion

In this paper, we have proposed a new strategy to directly ex-
ploit probabilities estimated by RNNLMs in the ASR decoder.
This strategy consists in converting a RNNLM into a WFST
by means of discretization and pruning. We have proposed an
original implementation of this generic strategy by usiig
means clustering and entropy-based pruning. Achievedtsesu
on the Penn Treebank and RT 2007 corpora show that this strat-
egy is promising since the generated WFSTSs lead to similar
performance to the one of-gram LMs. Nevertheless, some
improvements are still necessary. Especially, a more edébo
pruning criteria could be defined to examine the importarfce o
a transition. However, this task is difficult since estimgtthe
entropy of a RNNLM is complex. Finally, the discretization
step could probably also be improved. For instance, it could
be interesting to use other possible distances than thelltdefa
L2 distance to compute the centroids. Measures based on the
Kullback-Leibler divergence appear as a natural optioratols

this objective. Eventually, the employment of hierarchatas-
tering may also reduce the loss of information due to ba&k-of
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