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ABSTRACT

In this work, we address the problem of tracking an acoustic source
based on measured time differences of arrival (TDOA). The classical
solution to this problem consists in using a detector, which estimates
the TDOA for each microphone pair, and then applying a tracking
algorithm, which integrates the “measured” TDOAs in time. Such
a two-stage approach presumes 1) that TDOAs can reliably be esti-
mated; and 2) that errors in detection behave in a well-defined fash-
ion. The presence of noise and reverberation, however, causes larger
errors in the TDOA estimates and, thereby, ultimately lowers the
tracking performance. We propose to counteract this effect by con-
sidering a multiple hypothesis filter, which propagates the TDOA
estimation uncertainty to the tracking stage. That is achieved by con-
sidering multiple TDOA estimates and then integrating the resulting
TDOA observations in the framework of a Gaussian mixture filter.
Experimental results show that the proposed filter has a significantly
lower angular error than a multiple hypothesis particle filter.

Index Terms— Direction of arrival estimation, Microphone Ar-
rays, Monte Carlo methods, Kalman filters

1. INTRODUCTION

The problem of TDOA-based source localization can be formulated
as a two-stage approach, which consists in first estimating the TDOA
that has been introduced at each sensor pair; and then triangulating
the source position by integrating the estimated TDOAs in a con-
sistent fashion. While the former is typically performed with the
generalized cross correlation (GCC) [1], the latter can elegantly be
achieved with a Kalman filter (KF) [2, 3]. Unfortunately, the perfor-
mance of this approach degrades in the presence of noise and multi-
path effects, especially under room acoustical conditions where early
reflections and reverberation corrupt the GCCs through smearing as
well as through the introduction of secondary peaks [4, 5]. This in
turn affects the Kalman filter which assumes the error to be a sta-
tionary Gaussian process whereas the TDOA error in a multi-path
environment is rather time-varying and multimodal. In an attempt to
mitigate this problem, Vermaak [5] proposed to use a multiple hy-
pothesis particle filter. This approach has been further improved in
[6], where an extended particle filter has been introduced.

In this work, we continue along the lines of [5, 6] by proposing a
new multiple hypothesis Gaussian mixture filter (MH-GMF), which
propagates the uncertainty in the TDOA estimates to the tracking
stage. Contrary to previous multiple hypothesis filters, our approach
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treats each observation individually, by running a bank of Unscented
Kalman filters (UKF). In doing so, the proposed approach incorpo-
rates the individual information introduced by each hypothesis. The
main problem consists in obtaining the observations. Ideally, we
would like to use all possible TDOA combinations from different
sensor pairs, weighted with their respective GCC values. As this
Cartesian product is computationally intractable, we propose to re-
duce the number of combinations by first drawing TDOA candidates
from the individual GCCs and then combining these TDOAs in a
“proximately consistent” fashion. In doing so, we statistically fo-
cus on TDOA combinations with high likelihood. In fact, the pro-
posed approach interprets the normalized GCC as a probability den-
sity function (pdf) of the TDOA, similar as originally proposed in
[5] and firstly applied in [7] for a steered response power (SRP) [4]
approach, and then approximates the joint pdf of the TDOA (from
all microphone pairs) by an empirical distribution. The angular error
of the resulting filter is 69% lower than that of a UKF [2] and up to
35% lower than that of the particle filter approach from [5]. This re-
sult was obtained on a real corpus [8], with a quickly moving human
speaker in a meeting room.

In the remaining part of this paper, we proceed by briefly re-
viewing the MH-GMF from [9], in Section 2. This is followed by an
explanation of how the MH-GMF can be applied to source localiza-
tion, in Section 3, as well as a presentation of experimental results,
in Section 4.

2. MULTIPLE HYPOTHESIS FILTER

The problem of tracking a time-varying system state xt based on
a sequence y1:t = {y1, . . . , yt} of corresponding observations is
usually formulated as a Bayesian estimation problem in which

• Step 1: A process model xt = f(xt−1, vt) is used to con-
struct a prior p(xt|y1:t−1) for the state estimation problem at
time t.

• Step 2: The joint predictive distribution p(xt, yt|y1:t−1) of
state and observation is constructed according to a measure-
ment model yt = h(xt, wt) with measurement noise wt.

• Step 3: The posterior distribution p(xt|y1:t) is obtained by
conditioning the joint predictive density p(xt, yt|y1:t−1) on
the realized (actually measured) observation Yt = yt.

The first step is accomplished by transforming the joint random vari-
able of the last state Xt−1 and process noise Vt according to f :
Xt = f (Xt−1, Vt). In step 2, the joint distribution of Xt and Yt is
constructed by transforming (Xt,Wt) according to the augmented
measurement function h̃ [10]:[

Xt
Yt

]
= h̃

([
Xt
Wt

])
with h̃

([
xt
wt

])
,

[
xt

h(xt, wt)

]
.



Both these transformations can generally be performed with the fun-
damental transformation law of probability. A particularly simple
case, however, occurs if f , h are linear and Vt, Wt are Gaussian. In
this case, all the involved random variables remain Gaussian at all
times and the posterior can be obtained as a conditional Gaussian
distribution [10]. This analytical closed form solution is generally
known as the Kalman filter.

2.1. Handling Multiple Observations

The Kalman filter was designed to receive a single observation yt
at time t. In many applied tracking scenarios, however, there are
several (K) potential observation candidates yt =

{
y1t , . . . , y

K
t

}
available, some of which may be due to the object of interest, some
of which may be due to clutter (noise, reverberation). This problem
is typically treated by taking the single most likely observation or
by combining multiple observations in a weighted sum, as it is done
in the probabilistic data association filter (PDAF) [11]. In [9], we
have presented an alternative to these approaches. It treats the mul-
tiple observation problem by a) splitting each Kalman filter at time t
into K filters; b) assigning each of the resulting filters to one of the
observations; and then c) updating them according to the condition-
ing step (Step 3 in Section 2), as illustrated in Figure 1. In order to
integrate the K resulting conditional distributions p(xt|y1:t−1, y

k
t )

in one posterior, p(xt|y1:t) can be written as a marginal distribu-
tion of p(xt, k|y1:t), which, when further expanded under use of
p(xt, k|y1:t) = p(xt|k, y1:t)p(k|y1:t), gives:

p(xt|y1:t) =

K∑
k=1

p(xt|ykt , y1:t−1)p(k|y1:t)︸ ︷︷ ︸
=p(xt,k|y1:t)

. (1)

This is a Gaussian mixture distribution in which the indiviudal pos-
teriors p(xt|ykt , y1:t−1) = p(xt|k, y1:t) constitute Gaussian dis-
tributions and in which the p(k|y1:t) constitute the corresponding
weights. The latter can be obtained with Bayes rule:

p(k|y1:t) =
p(yt|k, y1:t−1)γkt∑K

k′=1 p(yt|k′, y1:t−1)γk
′
t

(2)

where γkt = p(k|t) denotes the prior observation probability, which
accounts for the confidence or certainty that we put into the k-th
observation (similar as motivated in [5]). The p(yt|k, y1:t−1) =
p(ykt |y1:t−1) are observation likelihoods, which can be evaluated by
marginalizing the joint predictive distribution p(xt, yt|y1:t−1) from
step two of the Kalman filter with respect to xt.
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Fig. 1. Handling multiple observations with a Kalman filter (KFi).

2.2. Integration into the Gaussian Mixture Filter Framework

After treating the multiple observation problem as proposed above,
we have a Gaussian mixture filtering density. This can be handled by
maintaining a bank of Kalman filters which are operating in parallel

[9]. As each of the filters is split into K filters at each time t, the
number of Gaussian components in general grows exponentially in
time. Hence, we reduce the number of mixture components after
each iteration by merging Gaussians successively in pairs [9].

Contrary to other tracking frameworks, the MH-GMF treats each
observation independently, and assigns weights reflecting the “im-
portance” of the observations in the updated Gaussian mixture. In
doing so, this filter allows us to propagate the observations uncer-
tainty to the tracking stage, as well as incorporating the individual
information introduced by each observation. In the following, we
propose to apply this filter to the acoustic source tracking problem,
as we propose a sampling scheme, which captures the uncertainty
of the TDOA estimates and propagates it to the tracking stage. We
proceed by elaborating on how source localization can be performed
with a single KF in Section 3.1 and Section 3.2. Section 3.3 finally
presents the multiple observation estimation approach, and how it is
integrated into the MH-GMF from Section 2.

3. MH-GMF APPLIED TO SOURCE LOCALIZATION

The arrival of sound waves at a microphone array introduces time
differences between the individual sensor pairs. This happens in de-
pendence of the angle of arrival – that is, the azimuth θ and elevation
φ – as well as the positions mi, i = 1, . . . ,M of the microphones.
Under the far field assumption, in which the distance of the source
from the microphones is neglected, the TDOA at the n-th sensor pair
n = {mi,mh} with i 6= h, can be calculated as:

τn (d[θ, φ]) =
d[θ, φ]T (mi −mh)

c
(3)

where c denotes the speed of sound and where d[θ, φ] denotes the di-
rection of arrival

[
cos(φ) sin(θ), cos(φ) cos(θ), sin(φ)

]T . Source
localization approaches may use these time differences by either

(a) constructing a spatial filter (beamformer), which scans all
possible source locations, and then taking that position where
the signal energy is maximized [4].

(b) using a two stage approach, which consists in first estimat-
ing the TDOAs of all considered microphone pairs and then
inferring the most likely source position [2, 3].

3.1. GCC-Based TDOA Estimation

The most popular approach to estimate the TDOA of a microphone
pair n = {mi,mh} is the generalized cross-correlation with Phase
Transform (PHAT) weighting [1]. This approach is based on calcu-
lating the correlation of the signals si(t) and sh(t), which have been
received at the microphones, according to:

Rn(τ) =
1

2π

∫ 2π

0

Si(ω)S∗h(ω)

|Si(ω)S∗h(ω)|e
jωτdω (4)

where Si(ω) and Sh(ω) denote the short-time Fourier transforms of
si(t) and sh(t), respectively, and where Rn is their weighted cross
correlation. Subsequently, the most “likely” TDOA is extracted as:

τ̂n = argmaxτ Rn(τ) (5)

3.2. Acoustic Source Tracking Based on Estimated TDOAs

Once the TDOA has been estimated for a number of N ≤
(
M
2

)
mi-

crophone pairs, source localization can be performed with a Kalman



filter, as described in [2, 3]. In order to do this, we use the follow-
ing process model for tracking the azimuth θ and elevation φ of the
source: [

θt
φt

]
= f

([
θt−1

φt−1

]
, vt

)
=

[
θt−1 + vt,θ
φt−1 + vt,φ

]
(6)

where vt,θ and vt,φ denote zero-mean Gaussian process noise with a
variance of σ2

θ and σ2
φ, respectively. Similar to the approaches taken

in [2, 3, 5], we use

yt = h

([
θt
φt

]
,wt

)
=

 τ1 (d[θt, φt]) + wt,1
...

τN (d[θt, φt]) + wt,N

 (7)

as a measurement model. In this equation, τn (d[θt, φt]) denotes the
predicted TDOA of the n-th microphone pair, with n = 1, . . . , N ,
whereaswt,n is zero-mean Gaussian measurement noise with a vari-
ance of σ2

W . This measurement model is nonlinear. Hence the use of
an extension of KF is required, we propose to use the UKF, similar
as it was originally proposed in [2], but as a single observation filter.

3.3. Applying The Multiple Hypothesis Gaussian Mixture Filter

In the Kalman filtering approach from [2, 3], the most likely TDOA
is determined individually for each microphone pair. These indi-
vidual TDOA estimates are subsequently combined to form a joint
measurement yt = [τ̂1, . . . , τ̂N ]. The error is assumed to follow
a Gaussian distribution [2, 3]. This assumption may be true under
ideal conditions. In practice, however, the errors in the GCCs (i.e.
measurement errors) can be expected to have a multimodal distri-
bution, due to reflections, reverberation and background noise [5].
Hence, we here propose to

1. consider a larger number of observation candidates (hypothe-
ses) ykt with associated confidence weights γkt .

2. process these weighted observations with the multiple hy-
pothesis Gaussian mixture filter (MH-GMF) from Section 2,
with the KFs being replaced by UKFs.

The aim of this procedure is to propagate the uncertainty from the
detection (TDOA estimation) to the tracking stage, by choosing the
weighted observation candidates in such a fashion that they capture
the observation uncertainty in the GCCs. Let us first consider the
observation space Y (does not depend on time), which can be ap-
proximated by the Cartesian product of all possible TDOAs from N
different microphone pairs :

Y =
{
y1, . . . , yK

}
,

N

×
n=1

{−τmax
n , . . . , τmax

n } (8)

where yk =
[
τk1 , . . . , τ

k
N

]
with k = 1, . . . ,K. τmax

n denotes the
maximum TDOA of microphone pair n and K is the cardinality of
Y . Then, interpreting the GCC as a likelihood function (as done
in [7] for the SRP) and further assuming that errors in the GCCs
are statistically independent [5], the confidence or prior observation
likelihood of a particular combination yk can be calculated as the
product of the individual GCC values Rn(τkn):

γkt =

N∏
n=1

R̃n(τkn) with R̃n(τ) ,
Rn(τ)∑
τ ′ Rn(τ ′)

(9)

where the division by
∑
τ ′ Rn(τ ′) normalizes the total probability

to 1. This gives us the following observation density:

pmeasured(yt) =

K∑
k=1

γkt δ
(
yt − yk

)
(10)

where the yk and γkt are given by (8) and (9), respectively. As a next
step, we could now pass this density to the multiple hypothesis filter
from Section 2. But, considering the fact that the Cartesian prod-
uct results in K =

∏N
n=1 (2τmax

n + 1) different combinations, this
approach has to be dismissed as intractable. Hence, we reduce the
number of observations by approximating (10) through a sampling
scheme, which samples observations from high likelihood regions of
the observation space.

Sampling from the GCCs: In order to obtain a set {y1t , . . . , yK
′

t }
of K′ << K observations from (10), we first draw K′ TDOA from
each normalized GCC R̃n (through multinomial sampling) and then
combine the resulting τkn (from different sensor pairs) to formK′ ob-
servations ykt =

[
τk1 , . . . , τ

k
N

]
. As a result of sampling, the weights

γkt all need to be set to 1/K′. In particular, note that the use of
sampling ensures that we draw more TDOAs from regions of high
likelihood (GCC peaks) and less TDOAs from regions of low likeli-
hood (GCC valleys). So, we statistically focus on combinations ykt
where the observation probability is high.
Proximate Consistency: The main drawback of the above sampling
technique is that the TDOAs τkn of different microphone pairs are
independently drawn from the GCCs. This may lead to inconsistent
observations, i.e. TDOA combinations

[
τk1 , . . . , τ

k
N

]
which do not

correspond to a physically possible location. In order to alleviate
this problem, the filter’s predicted observation likelihood p(ykt |y1:t)
can be used as an approximate measure of consistency. This moti-
vates the idea of combining the independently drawn τkn in such a
fashion that the total observation likelihood is maximized. In this
work, we use a greedy approach which 1) selects from each sampled
set {τ1n, . . . , τK

′
n } the τknn with the highest projected observation

likelihood p(τknn |y1:t−1); 2) combines these samples to form the
observation ykt = [τk11 , . . . , τkNN ], and finally, 3) removes the τknn
from the respective sample sets. This procedure is repeated until all
samples are combined.
Voice Activity Detection and Gating: As there is no point in track-
ing an inactive speaker, we use a voice activity detector [12] for sup-
pressing observations during silence frames. As a further precaution
against outliers, we extend the above sampling scheme through the
integration of gating [11]. This is achieved by 1) merging all the
predicted observation densities of the Gaussian mixture filter into a
single Gaussian p(yt|y1:t−1) = N (yt;µ,Σ); 2) defining a gating
area Gn ,

{
τn|(τn − µn)2/Σn,n ≤ ψ

}
for each sensor pair n; and

then 3) sampling the TDOAs τkn from the “gated” pdf

R̄n(τn) =
Rn(τn) · IGn(τn)∑τmax

τ ′=−τmax
Rn(τ ′) · IGn(τn)

(11)

In these equations, ψ denotes the gating threshold and IGn(τn) de-
notes the indicator function, which is 1 if τn ∈ Gn and 0 otherwise.

4. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed algorithm, we
performed a set of tracking experiments on the AV16.3 corpus [8].
This corpus consists of real human speakers, which were recorded in
a smart meeting room (approximately 30m2 in size), using a 20cm
8-channel circular microphone array. The real mouth position is
known within an error ≤ 5cm [8]. In this work, we perform ex-
periments on two different sequences: The highly non-stationary se-



Sequence “seq11-1p-0100” / quickly moving
tracking root mean square error real-time

algorithm azimuth elevation DOA factor
UKF 5.56◦ 15.98◦ 16.92◦ 0.336
PF 4.80◦ 10.33◦ 11.40◦ 0.374

UKF + Gating 4.17◦ 7.12◦ 8.24◦ 0.329
MH-PF 3.72◦ 5.94◦ 7.00◦ 0.582

MH-GMF 2.85◦ 4.25◦ 5.11◦ 0.664

Sequence “seq11-1p-0100” / quickly moving
tracking root mean square error real-time

algorithm azimuth elevation DOA factor
UKF 5.56◦ 15.98◦ 16.92◦ 0.336
PF 4.80◦ 10.33◦ 11.40◦ 0.374

UKF + Gating 4.17◦ 7.12◦ 8.24◦ 0.329
MH-PF 3.72◦ 5.94◦ 7.00◦ 0.582

MH-GMF 2.85◦ 4.25◦ 5.11◦ 0.664

Sequence “seq02-1p-0000” / more stationary
tracking root mean square error real-time

algorithm azimuth elevation DOA factor
UKF 8.66◦ 19.28◦ 21.14◦ 0.410
PF 7.54◦ 19.57◦ 20.98◦ 0.432

UKF + Gating 2.71◦ 8.14◦ 8.58◦ 0.329
MH-PF 3.99◦ 6.44◦ 7.58◦ 0.680

MH-GMF 2.71◦ 4.07◦ 4.89◦ 0.793

Sequence “seq02-1p-0000” / more stationary
tracking root mean square error real-time

algorithm azimuth elevation DOA factor
UKF 8.66◦ 19.28◦ 21.14◦ 0.410
PF 7.54◦ 19.57◦ 20.98◦ 0.432

UKF + Gating 2.71◦ 8.14◦ 8.58◦ 0.329
MH-PF 3.99◦ 6.44◦ 7.58◦ 0.680

MH-GMF 2.71◦ 4.07◦ 4.89◦ 0.793

Table 1. Average root mean square error (RMSE) in azimuth, elevation and direction of arrival (DOA), with respect to the center of the
array. Results are shown under use of the unscented Kalman filter (UKF) [2], a standard sequential importance resampling (SIR) particle
filter (PF), the UKF with gating [3, 11], the particle filter (MH-PF) from [5] and the proposed multiple hypothesis Gaussian mixture filter
(MH-GMF) from Section 3.3. The last column shows the real-time factor, i.e. the processing time divided by the duration of the input.

quence “seq11-1p-0100” in which a single speaker is quickly mov-
ing in the room; and the relatively stationary sequence “seq02-1p-
0000” in which a speaker is moving through 16 predefined locations
while uttering one sentence at each of the positions. These sequences
are 32 and 185 seconds in length, respectively. The average distance
of the speaker from the array is 1.18 and 1.53 meters, with a mini-
mum of 0.57 and a maximum of 2.40. In the experiments which are
reported below, all the GCC functions were calculated under use of
PHAT [1] weighting. The window length was 1024 samples (64ms).
GCC interpolation did not improve the results. The number of used
observations (K′) was 20 for the MH-GMF. The particle filters were
using 100 particles (a larger number did not improve the results).

The results in Table 1 show that the proposed multiple hypothe-
sis Gaussian mixture filter performs significantly better than any of
the other methods. Its angular error (DOA) is 69% and 79% lower
than that of the UKF [2]; 38% and 43% lower than that of the UKF
with Gating [11]; and still 27% and 35% lower than that of the MH-
PF from [5]. Regarding these results, it should be noted that the
main problem of the small aperture microphone arrays, with a pla-
nar geometry, consists in obtaining good estimates of the elevation.
But, having a closer look at Table 1, we can see that it is exactly
where our method shows its true strength. Regarding the anomaly
rate (AR) [13], which represents the percentage of estimates with an
error ≥ 5◦, we obtained an AR of 4.79% and 8.34% for the quickly
moving sequence “seq11-1p-0100” as well as the more stationary se-
quence “seq02-1p-0000”. On the sequence “seq01-1p-0000”, we ob-
tained an AR of 8.50%, in comparison to an AR of 30.43% which the
authors of [13] reported for multi-channel cross correlation (MCCC)
based localization. This result shows that speaker tracking algo-
rithms can significantly improve the RMSE, as they smooths out the
erroneous estimates.

In terms of real-time implementation, the time factors in Table
1, show that all methods run faster than real-time on a standard In-
tel i7-2600K CPU clocked at 3.4GHz. The plain UKF is roughly 2
times faster than the proposed MH-GMF; and that although the latter
runs more than 20 UKFs in parallel. This indicates that most of the
computation time is spent in the generalized cross correlation.

5. CONCLUSIONS

We have presented a new multiple hypothesis Gaussian mixture fil-
ter for acoustic source localization and tracking. It counteracts the
problem of TDOA estimation error by propagating the estimation
uncertainty rather than passing a point estimate. This approach is
justified in room acoustical environments where the presence of re-
verberation and noise smears and changes the GCC function. We
plan to extend the proposed MH-GMF to multiple speaker tracking.
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