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ABSTRACT

This paper proposes a novel grapheme-to-phoneme (G2P) con-

version approach where first the probabilistic relation between

graphemes and phonemes is captured from acoustic data using

Kullback-Leibler divergence based hidden Markov model (KL-

HMM) system. Then, through a simple decoding framework the

information in this probabilistic relation is integrated with the se-

quence information in the orthographic transcription of the word to

infer the phoneme sequence. One of the main application of the pro-

posed G2P approach is in the area of low linguistic resource based

automatic speech recognition or text-to-speech systems. We demon-

strate this potential through a simulation study where linguistic re-

sources from one domain is used to create linguistic resources for a

different domain.

Index Terms— Kullback-Leibler divergence based HMM, Lex-

icon, grapheme, phoneme, grapheme-to-phoneme converter, multi-

layer perceptron.

1. INTRODUCTION

Grapheme-to-phoneme (G2P) converters are used in automatic

speech recognition (ASR) systems and text-to-speech synthesis

(TTS) systems to generate pronunciation variants/models. In litera-

ture, different G2P approaches have been proposed, where statistical

models such as, decision trees [1], joint multigram models [2], or

conditional random fields [3] are used to learn pronunciation rules.

All these approaches invariantly assume access to ”prior” linguistic

resources (e.g., phoneme set, pronunciation dictionary) or in simple

terms access to parallel data consisting of sequences of graphemes

and their corresponding sequences of phonemes. Such resources

may not be readily available for all languages/domains.

More recently, we proposed a grapheme-based ASR system in

the framework of Kullback-Leibler divergence based hidden Markov

model (KL-HMM) [4, 5]. In this system, the relationship between

acoustics and grapheme subword units is modeled in two steps.

First, a multilayer perceptron (MLP) is trained to capture the re-

lationship between acoustic features, such as cepstral features and

phoneme classes. Then, by using the phoneme posterior probabil-

ities (also referred to as posterior features) estimated by the MLP

as feature observation, probabilistic relationship between graphemes

and phonemes is captured via the state multinomial distributions of

the KL-HMM system.
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This paper builds upon the above described previous work on

grapheme-based ASR to propose a novel acoustic data-driven G2P

conversion approach. More specifically, this approach exploits the

probabilistic relationship between graphemes and phonemes cap-

tured by the KL-HMM system and the sequence information in the

orthographic transcription of the word to extract pronunciation mod-

els/variants. One of the main application of this approach can be

seen in the context of languages/domains that may not have prior

linguistic resources. In that respect, this paper pursues a line of in-

vestigation to demonstrate the potential of the proposed approach

where,

1. The MLP used to extract posterior features is trained on

auxiliary/out-of-domain data. This can be likened to the sce-

nario where the MLP is trained to classify phonemes using

data from languages/domains that have prior linguistic re-

sources.

2. A grapheme-based KL-HMM system is then trained for a task

(that is assumed to not have prior linguistic resources) with

posterior features extracted from in-domain acoustic data. In

this case, the state multinomial distributions of KL-HMM

system captures the relationship between the phonemes in the

linguistic resources of auxiliary data and the graphemes.

3. Finally, a phoneme-based lexicon is built for the task from

scratch automatically using the orthographic transcription of

words and the KL-HMMs of grapheme subword units. The

phoneme-based lexicon thus obtained is analyzed by compar-

ing it with an existing phoneme-based lexicon at three differ-

ent levels, namely, phoneme error level, word error level, and

ASR system performance level.

The paper is organized as follows. Section 2 briefly intro-

duces the KL-HMM system and summarizes our previous work on

grapheme-based ASR. Section 3 presents the proposed grapheme-

to-phoneme conversion approach followed by presentation of exper-

imental studies in Section 4. Finally, we conclude in Section 5.

2. KL-HMM SYSTEM

Figure 1 illustrates a KL-HMM system where graphemes are used

as subword units and each grapheme subword unit is modeled by a

single state HMM. In KL-HMM system [5, 6], posterior probabili-

ties of acoustic classes (or simply referred to as posterior feature) is

used as feature observation. For simplicity, let the acoustic classes

be phonemes. Let zt denote the phoneme posterior feature vector

estimate at time frame t,

zt = [z1t , · · · , z
D

t ]T = [P (p1|xt), · · · , P (pD|xt)]
T
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Fig. 1. Illustration of KL-HMM system using grapheme as subword

units.

where xt is the acoustic feature (e.g., cepstral feature) at time

frame t, {p1, · · · pd, · · · pD} is the phoneme set, D is the number

of phonemes, and P (pd|xt) denotes the a posteriori probability of

phoneme pd given xt. In the original work as well as in this work,

zt is estimated by a well trained MLP.

Each HMM state i in the KL-HMM system is parameterized by

a multinomial distribution yi = [y1

i , · · · , y
D

i ]T . The local score at
each HMM state is estimated as Kullback-Leibler (KL) divergence

between yi and zt, i.e.,

KL(yi, zt) =

D∑

d=1

y
d

i log(
yd

i

zdt
) (1)

In this case, yi serves as the reference distribution and zt serves as

the test distribution.

KL-divergence being an asymmetric measure, there are also

other ways to estimate the local score,

1. Reverse KL-divergence (RKL):

RKL(zt,yi) =
D∑

d=1

z
d

t log(
zdt

yd

i

) (2)

2. Symmetric KL-divergence (SKL):

SKL(yi, zt) = KL(yi, zt) +RKL(zt,yi) (3)

The HMM state parameters i.e., multinomial distributions are esti-

mated by using Viterbi expectation maximization algorithm which

minimizes a cost function based on one of the above local scores.

During testing, decoding is performed using standard Viterbi de-

coder. For more details and interpretation of the systems resulting

from different local scores the reader is referred to [5, 6].

In [4], we proposed a grapheme-based ASR system using KL-

HMM. We studied this system on DARPA Resource Management

(RM) corpus. More precisely, for each of the local score described

earlier we trained systems that model different amount of grapheme

subword unit context, namely, context-independent, tri-grapheme

(single preceding and following context), quint-grapheme (two pre-

ceding and following contexts). We compared these systems with

their respective phoneme-based systems. It was found that longer

grapheme subword unit context, i.e. quint-grapheme based system

yields performance comparable to phoneme-based system. Also,

when modelling subword context, local score SKL was found to

yield the best system for both phoneme and grapheme. Upon analy-

sis of the trained grapheme subword unit models it was found that

• Context-independent grapheme models capture gross

phoneme information, i.e. the state multinomial distributions

capture information about different phonemes. For instance,

HMM of grapheme [C] dominantly captures the relation to

phonemes /s/, /k/, /ch/. This is mainly due to the fact that in

English language the correspondence between graphemes

and phonemes is weak.

• Single preceding and following context models of consonant

graphemes are able to dominantly capture the relation to ap-

propriate phoneme. For instance, HMM of grapheme [C+A] 1

capture dominantly the relation to phoneme /k/, while HMM

of grapheme [C+E] capture the relation to phoneme /s/. In

other words, through contextual modelling the ambiguity

present in context-independent grapheme models is resolved

well.

• Vowel graphemes need longer context to dominantly capture

the relation to appropriate phoneme. This observation is syn-

onymous to G2P converters of English language which may

need longer context to map a vowel grapheme to a unique

phoneme.

• The states of the context-dependent grapheme models are also

able to capture some information about preceding and follow-

ing phonemes.

3. ACOUSTIC DATA-DRIVEN G2P APPROACH

One of the key issue when developing a G2P converter is how

to effectively learn/capture the relation between phonemes and

graphemes. As discussed briefly in the previous section, when us-

ing graphemes as subword units in KL-HMM based ASR system

this relation is captured probabilistically through the state multino-

mial distributions. The proposed G2P approach which builds upon

this observation consists of two phases:

1. Training: In this phase, a grapheme-based KL-HMM system

is trained using phoneme posterior features [4]. It is to be

noted that this phase also includes the training of phoneme

posterior feature estimator. As mentioned earlier, in our case,

it is a well trained MLP.

2. Decoding: Given the KL-HMMs of grapheme subword units

and the orthographic transcription of the word, this phase in-

volves inference of phoneme sequence.

More precisely, the decoding phase consists of the following

steps:

1. The orthographic transcription of the given word is parsed

to extract the (context-independent) grapheme sequence. For

example, word AREA is parsed as [A] [R] [E] [A].

1+ denotes following context and - denotes preceding context. For in-
stance, the lexical model of word CAT with single preceding and following
context is [C+A] [C-A+T] [A-T].



Word Actual Extracted

pronunciation pronunciation

WHEN+S /w//eh//n//z/ /w//eh//n//z/

ANCHORAGE /ae/ /ng/ /k/ /er/ /ih/ /jh/ /ae/ /ng/ /k/ /ch/ /ao/ /r/ /ih/ /jh/

ANY /eh/ /n/ /iy/ /ae/ /n/ /iy/

CHOPPING /ch/ /aa/ /p/ /ih/ /ng/ /ch/ /aa/ /p/ /iy/ /ng/

Table 1. Illustration of pronunciation models extracted for a few words using tri-grapheme KL-HMMs. By Actual pronunciation, we refer to

the pronunciation given in the RM dictionary.

2. The context-independent grapheme sequence is then turned

into context-dependent grapheme sequence. In simple terms,

context expansion. For example, the sequence [A] [R] [E]

[A] is changed into a sequence [A+R] [A-R+E] [R-E+A] [E-

A] (in case of tri-grapheme context).

3. A word level HMM is then created by concatenating the

HMMs of the context-dependent graphemes in the sequence.

A sequence of phoneme posterior probabilities is then ob-

tained by stacking the multinomial distributions of the states

in the (left-to-right) order in which the states are connected.

For example, in the case of context-dependent grapheme

sequence [A+R] [A-R+E] [R-E+A] [E-A] the sequence of

phoneme posterior probabilities starts with multinomial dis-

tribution of the first HMM state of [A+R] followed by the

multinomial distribution of the second HMM state of [A+R],

and so on till the multinomial distribution of the final HMM

state of [E-A]. In other words, the grapheme KL-HMM acts

like a generative model where each state (in the left-to-right

sequence) generates a single phoneme posterior probability

vector.

4. Finally, the phoneme posterior probabilities in the sequence

are used as local scores, exactly like in the case of hybrid

HMM/MLP system [7], and decoded by a fully ergodic HMM

system (that connects all the D phonemes with a uniform

transition probability matrix) to infer the phoneme sequence.

The proposed G2P approach has certain benefits some of which

are inherited from KL-HMM system, such as

• The posterior feature estimator and the parameters of the KL-

HMM system can be trained on independent data. As a result,

the posterior feature estimator, i.e. the MLP can be trained

using the data of resource rich languages/domains.

• KL-HMM system has fewer parameters, i.e. each emitting

state is parameterized by a D dimensional multinomial dis-

tribution. This is particularly of interest when there is less

amount of transcribed data or longer grapheme subword unit

context models that may need to be trained.

• The search involved during decoding to infer the phoneme

sequence is relatively simple.

• Though in this paper the focus is on phoneme, the approach

could be extended to other units, such as syllable, automati-

cally derived acoustic subword units.

4. EXPERIMENTAL STUDIES

To demonstrate the potential of the proposed approach, we consider

a scenario where we have access to acoustic data from two different

domains. For the first domain, we assume that we have prior linguis-

tic resources, i.e. phoneme set and pronunciation dictionary. For the

second domain, we assume that we do not have any prior linguis-

tic resources, i.e. neither phoneme set nor pronunciation dictionary.

However, we still would like to build a phoneme-based ASR system

for the second domain.

We simulate this scenario by using Wall Street Journal (WSJ)

corpus for the first domain, i.e. the MLP to extract posterior feature

is trained on WSJ data. While, using DARPA Resource Manage-

ment (RM) corpus for the second domain, i.e. the grapheme-based

KL-HMM system is trained on RM and then phoneme-based pro-

nunciation dictionary for RM task is generated using the grapheme

KL-HMMs and the orthography of the words. More precisely,

• Training phase: From our previous grapheme-based ASR

study [4], we selected the tri- and quint-grapheme KL-HMMs

that were trained using the cost function based on local score

SKL with posterior features estimated by WSJ MLP.

• Decoding phase: We generated two phoneme-based pronun-

ciation dictionaries containing the 991 words of RM task (fol-

lowing the steps described earlier in Section 3). One dictio-

nary generated using tri-grapheme models, and the other gen-

erated using quint-grapheme models. During decoding, each

phoneme was modeled by a 3-state HMM. Note that multiple

pronunciations could be extracted for each word using n-best

decoding. However, in this study we only used 1-best decod-

ing, i.e. single pronunciation model for each word.

For details about the setup of RM task and the WSJ MLP, the reader

is referred to [4].

The main reason to design the experiment in this fashion was to

have better control on the study as phoneme sets can vary from task

to task. In addition, there are reference ASR systems to which the

ASR studies conducted in this paper can be fairly compared. Thus,

helping us in gaining better understanding. In other words, we have

access to the phoneme-based lexicon obtained from UNISYN dictio-

nary for both WSJ task and RM task. So, the extracted pronunciation

models could be analyzed not only at ASR system level performance

but also at phoneme error level and word error level.

Table 1 shows the extracted pronunciation models of a few

words by the proposed approach along with their respective pronun-

ciation in the RM dictionary.

4.1. Analysis at Phoneme Level and Word Level

We compared the pronunciation models extracted for each word us-

ing the tri-grapheme KL-HMMs with the respective pronunciation

in the RM dictionary. We performed similar comparison for pronun-

ciation models extracted using quint-grapheme KL-HMMs. Table 2

presents this comparison in terms of phoneme error rate (PER) and

word error rate (WER).

It can be seen that the pronunciation models extracted using

quint-graphemes are more closer to the actual pronunciation when

compared to pronunciation models extracted using tri-graphemes.



PER WER

Tri-grapheme 20.1% 68.8%

Quint-grapheme 15.9% 60.4%

Table 2. Comparing the extracted pronunciation models with ac-

tual pronunciations in terms of PER and WER. Quint-grapheme de-

notes the case where pronunciation lexicon is extracted using quint-

grapheme models. Tri-grapheme denotes the case where pronuncia-

tion lexicon is extracted using tri-grapheme models.

This is further illustrated by Table 3 which shows the distribution

of words in terms of Levenshtein distance (between the extracted

pronunciation and actual pronunciation). It is interesting to note that

Levenshtein Quint-grapheme Tri-grapheme

distance

0 392 309

1 376 373

2 166 206

3 45 71

4 6 26

5 4 4

6 1 1

7 1 1

Table 3. Distribution of words in terms of Levenshtein distance be-

tween the extracted pronunciation and actual pronunciation. Quint-

grapheme denotes the case where pronunciation lexicon is extracted

using quint-grapheme models. Tri-grapheme denotes the case where

pronunciation lexicon is extracted using tri-grapheme models.

about 77.5% of the words (in case of Quint-grapheme) and 68.8%

of the words (in case of Tri-grapheme) lie with in the Levenshtein

distance of one.

4.2. Analysis at ASR Performance Level

We built separate context-dependent phoneme (more precisely tri-

phone) based ASR systems using the different pronunciation lex-

icons. We refer to the system using the pronunciations extracted

with quint-grapheme models as Quint-grapheme and the system us-

ing the pronunciations extracted with tri-grapheme models as Tri-

grapheme. We trained two types of ASR system, namely, stan-

dard HMM/Gaussian mixture model (HMM/GMM) system and KL-

HMM system. In the case of KL-HMM system, we used the same

WSJ MLP for posterior feature extraction and trained the system by

optimizing the cost function based on local score SKL. We com-

pare the performance of systems Quint-grapheme and Tri-grapheme

to ASR system that is trained using the original RM dictionary, re-

ferred to as System Baseline. Table 4 presents the performance of

different systems on the RM evaluation set of 1200 utterances in

terms of WER.

It is interesting to note that despite only generating correct

pronunciation for 39.6% words and 31.2% words systems Quint-

grapheme and Tri-grapheme achieve a performance that is close to

the Baseline system, respectively. Thus, demonstrating the potential

of the proposed approach.

The ASR studies also show the superiority of quint-grapheme

models over tri-grapheme models for extracting pronunciation

model. It can be also observed that the ASR performance differences

System HMM/GMM KL-HMM

Baseline 5.7% 4.7%

Tri-grapheme 7.8% 5.9%

Quint-grapheme 7.1% 5.4%

Table 4. Performance of different ASR systems expressed in terms

of WER.

with respect to system Baseline in the case of KL-HMM system is

lower than HMM/GMM system. This may be due to matched condi-

tion effect, as the data used for pronunciation model extraction and

ASR system training is same.

5. CONCLUSION

In this paper, we presented a novel acoustic data driven grapheme-to-

phoneme conversion approach using KL-HMM. The main strength

of the proposed G2P approach is that the relationship between

phoneme and grapheme is learned through acoustics. This strength

could be exploited to

• develop a lexicon from scratch given some transcribed acous-

tic data from the target language/domain and acoustic and

linguistic resources of other languages/domains. Our experi-

mental studies tried to demonstrate this. This approach could

be further exploited for rapid development of ASR and TTS

systems for languages/domains that have fewer resources,

and for tasks such as proper name recognition where one usu-

ally has to take multiple languages into account when extract-

ing pronunciation models.

• generate pronunciation variants (taking the acoustic realiza-

tion aspects into account). Our experimental studies also sug-

gests it as in the generated lexicons maximum 39.6% of the

words had correct pronunciations, but the systems were still

able to achieve performance that was not too far from the

baseline system. Thus, the proposed G2P approach is also

interesting for languages/domains that have prior linguistic

resources.

Our future work includes a) improving the pronunciation vari-

ant/model extraction by using mixed context grapheme models,

phoneme n-gram models, n-best list, and confidence measures, b)

evaluation on unseen words, i.e. the words that are not seen during

KL-HMM training and low resource ASR task.
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