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Abstract
In a recent work, we proposed an acoustic data-driven
grapheme-to-phoneme (G2P) conversion approach, where the
probabilistic relationship between graphemes and phonemes
learned through acoustic data is used along with the ortho-
graphic transcription of words to infer the phoneme sequence.
In this paper, we extend our studies to under-resourced lexicon
development problem. More precisely, given a small amount
of transcribed speech data consisting of few words along with
its pronunciation lexicon, the goal is to build a pronunciation
lexicon for unseen words. In this framework, we compare our
G2P approach with standard letter-to-sound (L2S) rule based
conversion approach. We evaluated the generated lexicons on
PhoneBook 600 words task in terms of pronunciation errors and
ASR performance. The G2P approach yields a best ASR per-
formance of 14.0% word error rate (WER), while L2S approach
yields a best ASR performance of 13.7% WER. A combination
of G2P approach and L2S approach yields a best ASR perfor-
mance of 9.3% WER.
Index Terms: Kullback-Leibler divergence based HMM, Lex-
icon, grapheme, phoneme, grapheme-to-phoneme converter,
letter-to-sound rules, multilayer perceptron.

1. Introduction
Automatic speech recognition (ASR) systems and text-to-
speech synthesis (TTS) systems tend to model/represent each
word in terms of subword units, typically phonemes. A pronun-
ciation lexicon contains the mapping for each word to its pho-
netic transcription. During the development of ASR or TTS sys-
tems it is often presumed that a pronunciation lexicon is avail-
able. In other words, pronunciation lexicon is a prior resource.
Many of the major languages, such as English, French, Ger-
man have well-developed pronunciation dictionaries. However,
there are languages which may not have such well-developed
pronunciation dictionaries. Furthermore, development of lexi-
con for such languages usually may involve manual effort [1, 2].
The use of small amount of in-domain acoustic training data
may help in avoiding the manual effort and improve pronuncia-
tion lexicon generation.

In a recent work, we proposed an acoustic data-driven
grapheme-to-phoneme (G2P) conversion approach [3]. In this
approach, with the aid of Kullback-Leibler divergence hidden
Markov model (KL-HMM) [4], the probabilistic relationship
between graphemes and phonemes is learned using acoustic
data. The learned relationship along with the orthography of
word is then used to infer the phoneme sequence or pronunci-
ation model (briefly described in Section 2). In our previous
work, we demonstrated the viability of the approach on a simu-

lated scenario, where acoustic and lexical resources of one do-
main were used to create lexical resources for another domain.

In this paper, we extend our studies to under-resource lexi-
con development. More precisely, we study a case where small
amount of transcribed data is available with a lexicon that con-
tains the pronunciations for the few words that are present in the
transcribed data. Given this, the goal is to develop a dictionary
for completely unseen words.

On speaker-independent task-independent setup of Phone-
Book corpus, we investigate our approach and compare it with
standard letter-to-sound (L2S) rule conversion approach using
festival toolkit [5] (Section 3). We evaluate the generated pro-
nunciations in terms of pronunciation error (Section 4) and ASR
performance (Section 5). Evaluation of the generated pronun-
ciation lexicons in terms of ASR performance yielded a word
error rate (WER) of 14.0% for the proposed G2P approach, and
13.7% for L2S approach. However, combining the pronuncia-
tion lexicon of both G2P and L2S based approaches yielded a
performance of 9.3% WER, signifying the complementary in-
formation of the approaches.

2. Acoustic Data Driven G2P Conversion
In a recent work [3], we proposed a two phase G2P conver-
sion approach as depicted in Figure 1. The training phase of
proposed G2P approach involves training a grapheme based
KL-HMM system which learns the probabilistic grapheme-to-
phoneme relationship. Decoding phase infers the pronuncia-
tions of words, given the KL-HMM grapheme subword models
and orthography of words.
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Figure 1: Block diagram of the proposed two phase G2P con-
version approach.

2.1. Training Phase

In this phase, a grapheme-based KL-HMM system is trained us-
ing phoneme posteriors as features as detailed in [6] and briefly
described here:

1. KL-HMM directly models posterior probabilities of
phonemes estimated using a multilayer perceptron
(MLP) as observation features in HMM.
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Figure 2: Acoustic data driven G2P conversion using KL-HMM grapheme subword models and orthographic transcription of words.

2. States of HMM are parameterized by multinomial state
distributions. Multinomial state distributions are esti-
mated using Viterbi expectation maximization algorithm
which minimizes the cost function based on Kullback-
Leibler (KL) divergence based local score. In this work,
states represent context-dependent grapheme subword
units.

3. KL-HMM system requires a posterior feature estimator,
in this work we use a trained MLP

4. State multinomial distributions of grapheme subword
models capture the probabilistic relation to phonemes

2.2. Decoding Phase

As shown in the block diagram of Figure 2, decoding phase in-
volves inference of phoneme sequence given the KL-HMMs of
grapheme subword units and the orthographic transcription of
the word. More precisely, decoding phase involves the follow-
ing steps:

1. The orthography of a given word is parsed to ex-
tract context-independent grapheme sequence and then
context-dependent grapheme sequence. As shown in
the figure, word CAT is parsed to extract its context-
dependent grapheme sequence [C]+[A] [C]-[A]+[T]
[A]-[T].

2. A word level HMM is created by concatenating the
context-dependent grapheme sequence. A sequence
of phoneme posterior probabilities is then obtained by
stacking the multinomial distributions of the states as
shown in Figure 2. In other words, the grapheme KL-
HMM acts like a generative model where each state (in
the left-to-right sequence) generates a single phoneme
posterior probability vector.

3. Phoneme posterior probabilities in sequence are decoded
by a phoneme HMM decoder, which is an ergodic HMM
connecting all phonemes. More precisely, phoneme pos-
terior probabilities in sequence are used as local scores
similar to hybrid HMM/MLP system.

3. Experimental Setup
In this paper, we consider a scenario where limited transcribed
speech data along with its pronunciation lexicon constituting

pronunciations of words seen in the speech data is available.
The goal is to infer pronunciation models for words which are
not seen in the training data (For example, to augment the train
pronunciation lexicon with new words).

We validate the proposed approach on PhoneBook speaker-
independent task-independent 600 word isolated word recog-
nition corpus [7]. PhoneBook corpus was chosen to evaluate
the study because of two reasons, (1) test vocabulary consists
of words and speakers which are unseen during training, i.e.,
training and test vocabulary/speakers are completely different
(2) corpus consists of unusual/uncommon words, thus, extract-
ing pronunciations for them is a difficult task. We use the small
training setup defined in [8]. Table 1 gives the overview of the
PhoneBook corpus in terms of number of utterances, speakers
and words present in train, cross-validation and test sets. Phone-
Book pronunciation lexicon is transcribed using 42 phonemes
(including silence).

Table 1: Overview of the PhoneBook corpus in terms of num-
ber of utterances, speakers and words present in train, cross-
validation and test sets.

Number of Train Cross-validation Test
Utterances 19421 7920 6598
Speakers 243 106 96

Words 1580 603 600

MLP was trained on limited training data of PhoneBook
corpus to classify 42 context-independent phonemes. For MLP
training, we followed the same setup as in [8], where 19421
utterances are used for training and 7920 utterances for cross
validation. Thus, the data used to train the MLP did not con-
tain any of the (test) words for which pronunciations are to be
estimated.

Grapheme-based KL-HMM system is built using both
training and cross validation utterances consisting of 27341 ut-
terances covering 2183 words. Context-dependent (single pre-
ceding and single following) grapheme subword models are
trained using phoneme posteriors estimated from the MLP as
observation features. Unseen contexts back-off to the cor-
responding single preceding or single following or context-



independent graphemes. Cost function based on Reverse
Kullback-Leibler divergence (RKL) [4, 6] was used to estimate
the parameters of multinomial state distributions (of grapheme
subword models) as it resulted in minimum KL-divergence on
the training data compared to other KL-based local scores.
Each grapheme subword is modeled as a three state left-to-right
HMM.

We estimate the pronunciation models for 600 words in
the test set using the proposed G2P approach. In the phoneme
HMM decoder of the G2P approach, each phoneme was mod-
eled by a 3-state HMM. We compare the proposed G2P ap-
proach with L2S approach, where the letter-to-sound rules
are learned on train and cross-validation pronunciation lexicon
(consisting of pronunciations for 2183 words) using festival tool
kit [5]. Thus, grapheme-based KL-HMM system is trained on
utterances covering 2183 words and L2S rules are learned on
2183 word pronunciation lexicon, where as MLP is trained on
utterances covering 1580 words. Figure 3 gives an outline of
the pronunciation model generation using G2P and L2S ap-
proaches.
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Figure 3: Illustration of pronunciation model generation using
G2P and L2S approaches

4. Pronunciation Error Analysis
In this section, we compare the pronunciation models extracted
using G2P and L2S approaches with the pronunciations given
in the PhoneBook database. Table 2 presents the comparison in
terms of phoneme error rate (PER) and word error rate (WER).
It can be seen that pronunciation models extracted using L2S
rules outperform the proposed G2P based approach. Table 3

Table 2: Comparing the extracted pronunciation models with
actual pronunciations in terms of phoneme error rate (PER) and
word error rate (WER).

System PER WER
G2P 27.7% 89.7%
L2S 18.5% 69.0%

shows the percentage of words covered in terms of Levenshtein
distance (between the extracted pronunciation and actual pro-
nunciation). About 69.8% of words in case of G2P approach
and 81.1% of words in case of L2S approach lie within a Lev-
enshtein distance of two. High error rates of the extracted pro-
nunciations (when compared to the pronunciations given in the
database) show the difficulty of the task and insufficiency of
acoustic or linguistic knowledge to estimate pronunciations.

Table 3: Percent of words covered with the given Levenshtein
distance between the extracted pronunciation and actual pro-
nunciation for G2P and L2S systems.

Levenshtein distance G2P L2S
0 10.3 31.0
1 39.3 63.3
2 69.8 81.1
3 87.6 92.4
4 96.0 98.3
5 98.5 99.3
6 100 99.5
7 100 100

5. ASR Performance Analysis
The following context-independent phoneme subword KL-
HMM-based ASR systems [4, 6] are built to evaluate different
extracted pronunciation lexicons:

1. BASE: System using pronunciation lexicon given in the
PhoneBook database.

2. G2P: System using pronunciation models extracted us-
ing the proposed G2P approach.

3. L2S: System using pronunciation models extracted using
L2S rules.

4. G2P+L2S: System using pronunciation lexicon consist-
ing of two pronunciations for each word, one from G2P
and one from L2S. This lexicon was created to exam-
ine the complementary learning from acoustic data and
linguistic data.

Posterior features for the KL-HMM system are estimated us-
ing PhoneBook MLP and the multinomial state parameters are
estimated by optimizing the cost function based on symmet-
ric Kullback Leibler divergence (SKL) local score [4, 6], since
SKL resulted in better performance for ASR.

Table 4 gives the ASR performance in terms of word er-
ror rates (WER) for different systems on 600-word vocabulary
PhoneBook task. PB-train refers to the case where only the
test pronunciation lexicon is estimated using either G2P or L2S
approaches where as the train pronunciation lexicon given in
PhoneBook corpus is used to train KL-HMM monophone sub-
word models. PM-train refers to the case when both train and
test pronunciation dictionaries are extracted using either G2P or
L2S approaches, i.e., the phoneme KL-HMM subword models
are trained using extracted pronunciations.

Results in the Table 4 show that the performance of the sys-
tem G2P is similar to the performance of the system L2S. Inter-
estingly, the result shows that, despite the poor performance of
pronunciation models extracted using G2P approach compared
to L2S approach, ASR results show that the two approaches
yield similar performance. Also, the system G2P+L2S yields
significant performance improvement over the systems G2P or
L2S. This shows that the pronunciation models learned from
G2P and L2S approaches provide complementary information
to ASR. Results also show that the ASR systems trained on the
extracted pronunciations (column PM-train of Table 4) result
in better performance compared to the ASR systems trained on
the pronunciation lexicon given in database (column PB-train
of Table 4). The reason for this could be the consistency be-
tween train and test pronunciation dictionaries. However, the



performance of the systems G2P and L2S are poor compared to
the over optimistic system BASE, which has good quality pro-
nunciations. Nevertheless, it is encouraging that the combined
system approaches the performance of system BASE.

Table 4: Word error rates (WER) of different ASR systems ex-
pressed in percentage.

System PB-train PM-train
BASE 3.3% –
G2P 15.8% 14.0%
L2S 16.0% 13.7%

G2P+L2S 10.3% 9.3%

6. Summary and Discussion
In this work, we compared our acoustic data-driven G2P ap-
proach with standard L2S rule based technique for under-
resource lexicon development. We found that both techniques
yield similar ASR performance. However, when combined
yield significant performance gain, thus suggesting that our
approach and traditional letter-to-sound conversion approach
could be exploited together especially, for under-resource lex-
icon development. Also, by combining the two dictionaries,
we combine knowledge driven approach (L2S) and data driven
approach (G2P). In literature, there are similar efforts to use
acoustic data and conventional grapheme-to-phoneme conver-
sion approach, such as [9, 10], where they use multigram
grapheme-to-phoneme conversion approach [11] and acoustic
data together. One major distinction between the approach pre-
sented in [9, 10] and the approach investigated here is, we do not
need acoustic data of the word when inferring the pronunciation
model.

In this work, we observe large ASR performance difference
between the baseline dictionary and the extracted dictionaries.
Generally, L2S rules for pronunciation model generation yield
better performance only when trained on very large pronuncia-
tion lexicon. In this work, L2S rules are trained on very limited
training data. Compared to our previous work [3], the reason
for the large ASR performance difference between baseline dic-
tionary and the dictionary extracted using proposed approach
could be,

1. In our previous work, MLP was trained on large amount
of out-of-domain data (about 80 hours of speech). While,
in this work the MLP is trained on only 5 hours of
speech. Moreover, in the previous work speech data was
from microphone, where as in the current work it is tele-
phone speech.

2. In our previous work, grapheme KL-HMMs were trained
on the words for which the pronunciations were to
be extracted. So there was no issue of unseen con-
text. While, in this work the words are neither
seen in MLP training nor during KL-HMM training.
So, many a times we observe that unseen context-
dependent grapheme KL-HMM models back-off to
context-independent grapheme. As observed in [6], the
states of context-independent grapheme KL-HMM tend
to capture information about different phonemes in dif-
ferent states. This may have led to more errors in the
extracted pronunciations.

There are further refinements that are worth investigating to
improve the acoustic data-drive G2P conversion approach in the
context of under resource lexicon development such as,

• phonotactic constraints: in this work, the phoneme infer-
ence was obtained using ergodic HMM. It is possible to
extract phoneme n-gram on the training dictionary and
use it during phoneme decoding.

• n-best list: in this work we used 1-best output as the in-
ferred pronunciation. It would be interesting to see the
use of multiple pronunciations extracted with N-best list.

• MLP retraining: in this work the MLP was trained on
the baseline dictionary. Similar to what we did with
PM-train, we could retrain the MLP with alignments ob-
tained with the extracted pronunciations for the training
dictionary.

We will scrutinize these issues in our future work in addition to
applying the approach on an under-resourced language, such as
Scottish Gaelic.
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