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ABSTRACT

In a recent work, the framework of Boosted Binary Features
(BBF) was proposed for ASR. In this framework, a small set
of localized binary-valued features are selected using theDis-
crete Adaboost algorithm. These features are then integrated
into a standard HMM-based system using either single layer
perceptrons (SLP) or multilayer perceptrons (MLP). The fea-
tures were found to perform significantly better (when cou-
pled with SLP) and equally well (when coupled with MLP)
compared to MFCC features on the TIMIT phoneme recogni-
tion task. The current work presents an overview of the idea
and extends it in two directions: 1) fusion of BBF with MFCC
and an analysis of their complementarity, 2) scalability ofthe
proposed features from phoneme recognition to the continu-
ous speech recognition task and reusability on unseen data.

Index Terms— Boosting, localized features, spectro-
temporal features, speech recognition, feature fusion.

1. INTRODUCTION

Standard ASR systems primarily use cepstral features which
tend to capture the envelop of short-term magnitude spectrum
of speech. Dynamic information is subsequently added by ap-
pending approximate temporal derivatives of the cepstral fea-
tures. These features areholistic (computed using thewhole
spectrum),real-valuedandbased on prior knowledgeof the
human speech production and perception systems.

In contrast, a novel set oflocalized, binary-valued(±1)
and data-driven features named Boosted Binary Features
(BBF) was recently proposed for ASR [1][2], partly moti-
vated by similar features proposed by the authors for the
speaker verification task [3][4]. Each such feature is cal-
culated by computing the difference in magnitude at two
particular time-frequency bins in the spectro-temporal ma-
trix (log mel filter bank energies with temporal context of
170ms): hence, the information is localized in time and fre-
quency. This difference is compared with a threshold and
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the result of this comparison gives a binary value which is
taken as the feature. Consideringall possible pairs of time-
frequency bins, a large set of binary features is created. The
Adaboost algorithm [5] selects a small subset of these fea-
tures which best discriminate a particular phoneme against
all other phonemes, based on some training data. These se-
lected features are termed as Boosted Binary Features (BBF).
After extraction, the features are modelled by multilayer per-
ceptrons (MLP) or single layer perceptrons (SLP)[1]. The
posterior estimates of MLP and SLP are then provided to a
Kullback-Leibler Hidden Markov Model for decoding [6].

Previously, phoneme recognition studies on the TIMIT
database [1] showed that BBF achieved a phoneme recog-
nition rate of 67.8% which is slightly better than66.2%
obtained by cepstral features under similar conditions, us-
ing MLP. Using SLP, BBF performed significantly better at
62.8% than cepstral features at45.9%.

In the current work, we extend these studies in the follow-
ing directions:1 1) Analysis of the possible complementary
nature of BBF and cepstral features, and fusion of the two
at a) feature level and b) decision level. 2) Extension from
phoneme recognition to continuous speech recognition task
(i.e. word recognition), and testing the generalization capa-
bility of BBF to unseen data.

The rest of the paper is organized as follows. In Sec.2,
we describe the BBF framework and its integration via SLP
and MLP to a HMM system. We describe the fusion experi-
ments in Sec.3 and the continuous speech recognition studies
in Sec.4. Finally, we outline the main conclusions of the work
and discuss future directions in Sec.5.

2. BRIEF THEORY

2.1. Binary features and their selection

In the first step, the input speech waveform is blocked into
frames and processed via a bank of 24 Mel filters to yield
a sequence oflog spectral vectors of dimensionNF = 24.
Sets ofNT = 17 consecutive such vectors are stacked to
form spectro-temporal matrices of sizeNF × NT .2 Let X

1Note that the above studies were first reported in [2]. We summarize the
studies here for a wider dissemination of this novel work.

2
NT = 17 is chosen to ensure a fair comparison with MFCC features: a

temporal context of 17 frames is required to compute 9 framesof (MFCC +



be such a spectro-temporal matrix. The(k, t)-th element,
X(k, t) of X denotes thelog magnitude of thek-th Mel fil-
ter output att-th time frame. The proposed binary features
are extracted from the matrixX as follows. A binary feature
φi : ℜ

NF×NT → {−1, 1} is defined completely by 5 param-
eters: two frequency indices,ki,1, ki,2 ∈ {1, · · · , NF }, two
time indices,ti,1, ti,2 ∈ {1, · · · , NT } and one threshold pa-
rameter,θi. The pairs of indices(ki,1, ti,1) and(ki,2, ti,2) de-
fine two time-frequency bins in the spectro-temporal matrix.
The featureφi is defined as,

φi(X) =

{

1 if X(ki,1, ti,1)−X(ki,2, ti,2) ≥ θi,

−1 if X(ki,1, ti,1)−X(ki,2, ti,2) < θi.
(1)

Given the ranges ofki,1, ki,2 andti,1, ti,2, the total number of
such binary features is quite huge:NΦ = NTNF (NTNF −
1) = 17 · 24 · (17 · 24 − 1) ≈ 1.7 × 105. Out of all these
features, a certain numberNf (≈ 40) are selectedfor each
phonemeaccording to their discriminative ability with respect
to that phoneme (1-vs.-all classification) given a set of train-
ing examples. This selection is based on the Discrete Ad-
aboost algorithm with weighted resampling [5]. Details about
the algorithm are provided in [1][2]. Features selected forall
phonemes are aggregated and termed as Boosted Binary Fea-
tures (BBF). This forms a vectorf of binary values of dimen-
sionD = Nf × NΩ whereNΩ is the number of phonemes
used.

2.2. Phoneme posterior probability estimation

In this work, single layer perceptrons (SLP) and multilayer
perceptrons with one hidden layer (MLP) are used as pos-
terior feature estimators. The input to the SLP or MLP is
the BBF vectorf described before. Outputs are the posterior
probability estimates for the phonemes,zt = [z1t , · · · , z

NΩ

t ]T

at every time stept.

2.3. KL-HMM system

The phoneme posterior probability estimates of SLP and
MLP are used as feature observations in a Kullback Leibler
divergence-based Hidden Markov Model (KL-HMM) sys-
tem [6]. 3 In KL-HMM, each statei is modeled by a multi-
nomial distributionyi = [y1i , · · · , y

NΩ

i ]T , whereNΩ is the
number of phonemes. Given a phoneme posterior feature
observationzt = [z1t , · · · , z

NΩ

t ]T at time t, the local score
for statei is estimated as the Kullback Leibler divergence
betweenyi andzt, i.e.,

KL(yi, zt) =

NΩ
∑

d=1

ydi log(
ydi
zdt

)

∆MFCC +∆∆MFCC) [1].
3The KL-HMM was chosen because it matches well with posterioresti-

mates of MLP/SLP and achieves performance better than hybrid HMM/MLP
systems and comparable to standard HMM/GMM systems [6].

The parameters of KL-HMM (multinomial distributions) are
trained using Viterbi EM algorithm with a cost function based
on KL-divergence. Each phoneme is modeled by a three-state
HMM.

3. FUSION STUDIES: BBF AND MFCC

Due to the contrasting properties of BBF (localized and bi-
nary) and standard cepstral features (holistic and real-valued),
they could carry useful complementary information, possibly
suitable for fusion.

3.1. Analysis of complementary nature

We analysed the possible complementary nature of BBF and
MFCC in two ways. In the first approach, we trained two
MLPs, one with BBF and the other with MFCC as inputs,
using 3000 training utterances from the TIMIT database [7].
In Table 1, we show the distribution of frames4 from the 696
cross-validation utterances from TIMIT according to whether
they were correctly or incorrectly classified by these two
MLPs into one of theNΩ = 40 phonemes in TIMIT. To
classify, the phoneme with the maximum MLP posterior esti-
mate was selected. We observe that 8.8% of the frames were
incorrectly classified with MFCC but correctly classified with
BBF, and 9.2% of the frames were incorrectly classified with
BBF but correctly classified with MFCC. This shows that
BBF could rectify some errors of MFCC, and vice-versa.
This indirectly suggests that BBF and MFCC carries useful
complementary information.

In the second approach, we consider a representative sub-
set of the 40 phonemes in the TIMIT database and analyse
the frame-level phoneme classification accuracy of BBF and
MFCC for each (ref. Table 2). It is observed that MFCC per-
forms better than BBF for vowels /ay/ and /ih/, liquid /l/ and
nasal /m/ while BBF outperforms MFCC for fricatives /th/,
/hh/,/v/ and /f/. Again this indirectly suggests the complemen-
tarity of the two features in the sense that one seems to carry
more discriminative information related to certain phoneme
types while the other carries more discriminative information
related to other phoneme types.

3.2. Fusion experiments

Two systems based on the fusion of these two features were
studied:
1. Feature-level fusion: A 1600-dimensional BBF feature
vector5 is concatenated with 351-dimensional MFCC feature
vector (i.e. 39-dimensional MFCC+∆+∆∆ vectors accumu-
lated over a context of 9 frames) to form a 1951-dimensional
fused feature vector. This is modeled by an MLP and the
posterior probabilities estimated by the MLP are used as ob-
servations in a KL-HMM system.

4extracted using standard frame size of 25ms and frame shift of 10ms.
5ref. Section 2.1,D = Nf ×NΩ, Nf = 40, NΩ = 40.



BBF correct BBF incorrect

MFCC correct 61.5 9.2
MFCC incorrect 8.8 20.5

Table 1. Distribution (%) of frames from cross-validation set
of TIMIT database.

2. Decision-level fusion:Two MLPs were trained individu-
ally using only BBF and only MFCC features. Their phoneme
posterior probability estimates were then dynamically com-
bined via Dempster-Shafer method described in [8]. Subse-
quent modeling via KL-HMM was the same as before.
These two systems were evaluated on the phoneme recogni-
tion task using the TIMIT database. Note that in this case,
the number of hidden units of the MLP in each system was
set so that the total number of parameters was constant over
all the systems, in order to ensure a fair comparison.Table 3
shows the performance obtained for different systems (fusion
and individual) in terms of phoneme recognition rate (PRR)
obtained on the 1344 test utterances of TIMIT and frame clas-
sification accuracy obtained on the cross-validation utterances
of TIMIT.

The following points related to the results reported are
noteworthy: 1) The fusion of MFCC with BBF is beneficial.
It leads to a 3% increase in PRR over MFCC and a 1.1% in-
crease over BBF individually. 2) Both decision fusionand
feature fusion perform better than the individual feature-based
systems. These observations support the hypothesis that BBF
and MFCC could contain useful complementary information
and a combination of these two features results in improved
ASR performance.

4. CONTINUOUS SPEECH RECOGNITION STUDIES

This section investigates: a) the scalability of these features
from the phoneme recognition task [1] to the continuous

Accuracy (%) Best Improvement (%)
Phoneme MFCC BBF feature Absolute Relative

/ay/ 71.8 64.3 MFCC 7.5 10.4
/ih/ 68.4 61.9 MFCC 6.4 9.4
/l/ 70.5 66.0 MFCC 4.5 6.4
/m/ 66.9 63.2 MFCC 3.6 5.5
/th/ 24.5 31.6 BBF 7.1 22.4
/hh/ 59.7 66.5 BBF 6.8 10.2
/v/ 54.0 60.0 BBF 6.0 10.1
/f/ 78.6 82.7 BBF 4.1 5.0

Table 2. Best feature and relative improvement in frame ac-
curacy on cross-validation set of TIMIT database for subset
of phonemes.

System CV Frame Phoneme
Accuracy Rec. Rate (PRR)

BBF only 70.3 69.3
MFCC only 69.9 67.4

Feature fusion 70.6 70.4
Decision fusion 73.2 70.3

Table 3. Results of different systems using MFCC, BBF and
fusion of the two (in %) on TIMIT.

speech recognition task (i.e. word recognition), and b) the
use of auxiliary data to select the features.

4.1. Database and experiment setup

The DARPA Resource Management (RM) corpus [9] was
used. It consists of read queries on the status of naval re-
sources. The corpus is partitioned into training set (2,880
utterances), development set (1,110 utterances) and evalu-
ation set (1,200 utterances) [10] and has a vocabulary of
991 words. The phoneme-based lexicon was obtained from
the UNISYN dictionary. There are 45 context-independent
phonemes including silence. A frame size of 25 ms and a
frame shift of 10 ms was used to extract features. The fea-
tures used in this study are: 1)MF-PLP : 39 dimensional
feature vector consisting of 13 static Mel Frequency PLP
Cepstral Coefficients (MF-PLP) with cepstral mean subtrac-
tion and their approximate first and second order derivatives
(i.e., c0 − c12 + ∆ + ∆∆). 2) BBF: Two sets of BBF
were considered, as follows. a) BBF-TIMIT The first 80,000
samples (spectro-temporal matrices) extracted from training
partition of TIMIT database is used as training data to select
the features (ref. Section 2.1). The purpose is to evaluate
the generalization capability of these features boosted using
TIMIT to a speech recognition task using a different database,
RM. b) BBF-RM In a similar way, the first 80,000 samples
extracted from the training partition of the RM database is
used to select the features. In this case, the feature selection
and speech recognition studies use thesamedatabase. 3)
Rand: To ascertain the utility of the feature selection algo-
rithm, we also used features that involvedrandomly selected
time-frequency bin pairs from the spectro-temporal plane[1].
As with BBF, two cases are considered: a) Rand-TIMIT, and
b) Rand-RM. As before, the phoneme posterior estimates are
sent as feature observations to a KL-HMM system. Two types
of KL-HMM systems are considered: 1) context-independent
sub-word unit based system, and 2) word internal context-
dependent sub-word unit based system [10].

4.2. Results

The performance obtained for different features in terms of
word error rate (WER) on the evaluation set of the RM corpus
is reported in Table 4, for context-independent and context-



Context Context
independent dependent

Feature MLP SLP MLP SLP

MF-PLP 7.1 28.3 5.1 14.7
BBF-TIMIT 7.6 11.1 5.5 7.1
BBF-RM 7.8 10.9 5.6 7.2
Rand-TIMIT 9.2 17.5 6.8 10.3
Rand-RM 9.2 16.8 6.4 10.8

Table 4. Word Error Rate (%) on evaluation set of RM
database.

dependent systems. The following points are noteworthy:
1) In general, context-dependent systems show a reduction
in WER over context-independent systems. 2) With MLP,
BBF and MF-PLP perform comparably well, with WERs
ranging from 5.1 to 5.6% for context-dependent, and 7.1 to
7.8% for context-independent. As reported in [10], standard
HMM/Gaussian Mixture Model system and Tandem features
based system (which are equivalent in terms of context mod-
eling to the context-dependent system reported here) achieve
5.7% WER each. This is similar to the WER achieved using
BBF. 3) BBF-TIMIT and BBF-RM show similar perfor-
mance. This shows that BBF is not sensitive to the training
data used for boosting, and can generalize well to unseen
data. 4) Going from MLP to SLP, BBF shows significantly
lower degradation in performance compared to MF-PLP in
all cases. For example, WER for BBF-TIMIT increases from
5.5 to 7.1 %, i.e. a relative increase of 29 %, while WER
for MF-PLP increases from 5.1 to 14.7 %, a relative increase
of 188 %, for the context-dependent case. 5) Rand features
also achieve reasonable performance. Interestingly, in case
of SLP they perform better than MF-PLP. However, they per-
form worse than BBF inall cases, showing the utility of the
feature selection stage.

5. CONCLUSIONS AND FUTURE WORK

Firstly, the fusion of Boosted Binary Features with cepstral
features led to an improvement in ASR performance at both
the feature level and the decision level, possibly drawing
from the complementary nature of the two feature types. Sec-
ondly, continuous speech recognition experiments using the
Resource Management database showed that BBF compares
well with cepstral features in terms of word error rate. Im-
portantly, although the framework is data-driven, our study
suggests that the performance of BBF is independent of the
dataset used to select the features.

From a machine learning perspective, possible directions
for future work are as follows: 1) In this work, a one-vs-all
strategy was used to select the binary features. Other se-
lection strategies could be explored, such as feature sharing
across classes and multiclass boosting strategies [11]. 2)In-

stead of depending on MLPs, phoneme posterior inputs to
KL-HMM could be directly modeled by extending the sys-
tem from BBF to boosted decision trees. 3) The extraction of
BBF could be interpreted as adding a layer to the MLP or SLP
to learn phone-specific representations directly from spectro-
temporal plane using auxiliary data. This could complement
deep-learning frameworks geared towards similar objectives
[12]. Other general directions are as follows: 1) When pre-
viously applied to speaker recognition, BBF showed better
noise-robustness than cepstral features [4]. It is worthwhile to
verify this property of BBF for ASR also. 2) Fusion studies
should be extended from phoneme recognition to a complete
word recognition task.
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