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ABSTRACT the result of this comparison gives a binary value which is

In a recent work, the framework of Boosted Binary Featured2ken as the feature. Considerialy possible pairs of time-
(BBF) was proposed for ASR. In this framework, a small seff€dquency bins, a large set of binary features is createe. Th
of localized binary-valued features are selected usin@the ~Adaboost algorithm [5] selects a small subset of these fea-
crete Adaboost algorithm. These features are then integyrat tUres which best discriminate a particular phoneme against
into a standard HMM-based system using either single Iayé?” other phonemes, based on some training data. These se-

perceptrons (SLP) or multilayer perceptrons (MLP). The fealected featur_es are termed as Boosted Binary Feat_ures (BBF)
tures were found to perform significantly better (when cou/After extraction, the features are modelled by multilayer-p

pled with SLP) and equally well (when coupled with MLP) C€Ptrons (MLP) or single layer perceptrons (SLP)[1]. The
compared to MFCC features on the TIMIT phoneme recogniPOSterior estimates of MLP and SLP are then provided to a
tion task. The current work presents an overview of the ideulloack-Leibler Hidden Markov Model for decoding [6].

and extends it in two directions: 1) fusion of BBF with MFCC _ Previously, phoneme recognition studies on the TIMIT
and an analysis of their complementarity, 2) scalabilitghef ~ database [1] showed that BBF achieved a phoneme recog-
proposed features from phoneme recognition to the continition rate of 67.8% which is slightly better thar66.2%

ous speech recognition task and reusability on unseen dataPt@ined by cepstral features under similar conditions, us
) . ing MLP. Using SLP, BBF performed significantly better at
Index Terms— Boosting, localized features, spectro- o g94 than cepstral features 4i.9%.

temporal features, speech recognition, feature fusion. In the current work, we extend these studies in the follow-
ing directionst 1) Analysis of the possible complementary
1. INTRODUCTION nature of BBF and cepstral features, and fusion of the two

at a) feature level and b) decision level. 2) Extension from
Standard ASR systems primarily use cepstral features whigbhoneme recognition to continuous speech recognition task
tend to capture the envelop of short-term magnitude spectru(i.e. word recognition), and testing the generalizatiopaca
of speech. Dynamic information is subsequently added by apility of BBF to unseen data.
pending approximate temporal derivatives of the cepsten f The rest of the paper is organized as follows. In Sec.2,
tures. These features anelistic (computed using thehole  we describe the BBF framework and its integration via SLP
spectrum)yeal-valuedandbased on prior knowledgef the  and MLP to a HMM system. We describe the fusion experi-
human speech production and perception systems. ments in Sec.3 and the continuous speech recognition studie

In contrast, a novel set dbcalized binary-valued(+1)  in Sec.4. Finally, we outline the main conclusions of thekvor

and data-driven features named Boosted Binary Featuresand discuss future directions in Sec.5.
(BBF) was recently proposed for ASR [1][2], partly moti-
vated by similar features proposed by the authors for the 2. BRIEF THEORY
speaker verification task [3][4]. Each such feature is cal-
culated by computing the difference in magnitude at two2.1. Binary features and their selection

particular time-frequency bins in the spectro-temporat M3 the first step, the input speech waveform is blocked into

e e ot o e AMES a0 procesed v bank of 24 Nl e 0 i
' : sequence dbg spectral vectors of dimensiaNy = 24.

guency. This difference is compared with a threshold an@ets of Ny — 17 consecutive such vectors are stacked to

The first author completed the work while at the Idiap Reseamsti-  form spectro-temporal matrices of si2é- x Nrp.2 Let X
tute, Martigny, Switzerland. The authors would like to thdahe Swiss Na-

tional Science Foundation projects MultiModal Interact®and MultiMedia INote that the above studies were first reported in [2]. We sariza the
Data Mining (MULTI, 200020-122062) and Interactive Multiial Informa- studies here for a wider dissemination of this novel work.
tion Management (IM2, 51NF40-111401) and FP7 European NeOBbject 2Nr = 17 is chosen to ensure a fair comparison with MFCC features: a

(IST-214324) for their financial support. temporal context of 17 frames is required to compute 9 frani¢MFCC +



be such a spectro-temporal matrix. Ttiet)-th element, The parameters of KL-HMM (multinomial distributions) are

X (k,t) of X denotes théog magnitude of theé-th Mel fil-  trained using Viterbi EM algorithm with a cost function bese
ter output att-th time frame. The proposed binary featureson KL-divergence. Each phoneme is modeled by a three-state
are extracted from the matriX as follows. A binary feature HMM.

@i« RVFXNT 5 L1 1} is defined completely by 5 param-
eters: two frequency indices; 1, k;2 € {1,---, Np}, two
time indicest; 1, ti2 € {1,---, N} and one threshold pa-
rameterf;. The pairs of indice$k; 1,¢; 1) and(k; 2, t; 2) de-
fine two time-frequency bins in the spectro-temporal matrix
The featurep; is defined as,

3. FUSION STUDIES: BBF AND MFCC

Due to the contrasting properties of BBF (localized and bi-
nary) and standard cepstral features (holistic and rdakd,
they could carry useful complementary information, pdgsib
suitable for fusion.

(bi(X){ It X (i1, tin) (Fki2,ti.2) (1) 3.1. Analysis of complementary nature

-1 if X(/{Zi71,ﬁi,1) — X(k?@g, ti72) < 0;.
We analysed the possible complementary nature of BBF and

Given the ranges df; 1, k; » andt; 1, ; 2, the total number of MFCC in two ways. In the first approach, we trained two
such binary features is quite hug¥as = Ny Np(N7Nrp —  MLPs, one with BBF and the other with MFCC as inputs,
1) =17-24-(17-24 — 1) ~ 1.7 x 10°. Out of all these  using 3000 training utterances from the TIMIT database [7].
features, a certain numbéf; (~ 40) are selectedor each  In Table 1, we show the distribution of franfdsom the 696
phonemeccording to their discriminative ability with respect cross-validation utterances from TIMIT according to whesth
to that phoneme (¥s-all classification) given a set of train- they were correctly or incorrectly classified by these two
ing examples. This selection is based on the Discrete AdVILPs into one of theNg = 40 phonemes in TIMIT. To
aboost algorithm with weighted resampling [5]. Detailsatbo classify, the phoneme with the maximum MLP posterior esti-
the algorithm are provided in [1][2]. Features selectedalbr mate was selected. We observe that 8.8% of the frames were
phonemes are aggregated and termed as Boosted Binary F@#eorrectly classified with MFCC but correctly classifiedtwi
tures (BBF). This forms a vectdrof binary values of dimen- BBF, and 9.2% of the frames were incorrectly classified with
sionD = Ny x Nq where N is the number of phonemes BBF but correctly classified with MFCC. This shows that

used. BBF could rectify some errors of MFCC, and vice-versa.
] . o This indirectly suggests that BBF and MFCC carries useful
2.2. Phoneme posterior probability estimation complementary information.

In this work, single layer perceptrons (SLP) and multilayer [N the second approach, we consider a representative sub-
perceptrons with one hidden layer (MLP) are used as pos€t of the 40 phonemes in the_TIM_IT database and analyse
terior feature estimators. The input to the SLP or MLP isthe frame-level phoneme classification accuracy of BBF and
the BBF vectorf described before. Outputs are the posteriofFCC for each (ref. Table 2). Itis observed that MFCC per-

probability estimates for the phonemes= [z}, - -- , z?]T forms better t_han BBF for vowels /ay/ and /ih/, _quu_id /Il and

at every time step. nasal /m/ while BBF outperforms MFCC for fricatives /th/,
/hh/,Iv/and /f/. Again this indirectly suggests the conmpdan-

2.3. KL-HMM system tarity of the two features in the sense that one seems to carry

more discriminative information related to certain phoeem

The phoneme posterior probability estimates of SLP anges while the other carries more discriminative inforiorat
MLP are used as feature observations in a Kullback Leiblefg|ated to other phoneme types.

divergence-based Hidden Markov Model (KL-HMM) sys-
tem [6]. 3 In KL-HMM, each statei is modeled by a multi- 3.2. Fusion experiments

nomial distributiony; = [y}, - ,yiNQ]T, whereNg, is the
number of phonemes. Given a phoneme posterior featurBvo systems based on the fusion of these two features were
observationz, = [z},---, 2?7 at timet, the local score studied:
for statei is estimated as the Kullback Leibler divergencel. Feature-level fusion: A 1600-dimensional BBF feature
betweeny; andz, i.e., vector® is concatenated with 351-dimensional MFCC feature
vector (i.e. 39-dimensional MFCEA+AA vectors accumu-
Jo ar oyl lated over a context of 9 frames) to form a 1951-dimensional
KL(yize) =) _vi log(Z4) fused feature vector. This is modeled by an MLP and the
d=1 ! posterior probabilities estimated by the MLP are used as ob-
AMFCC + AAMFCC) [1]. servations in a KL-HMM system.
3The KL-HMM was chosen because it matches well with postez&ii-
mates of MLP/SLP and achieves performance better thandhiiM/MLP 4extracted using standard frame size of 25ms and frame $Hifiros.

systems and comparable to standard HMM/GMM systems [6]. Sref. Section 2.1D = Ny x Nq, Ny =40, No = 40.



| | BBF correct| BBF incorrect| System CV Frame Phoneme
MFCC correct 61.5 9.2 Accuracy | Rec. Rate (PRR
MFCC incorrect 8.8 20.5 BBF only 70.3 69.3
MFCC only 69.9 67.4
Table 1. Distribution (%) of frames from cross-validation set Feature fusion 70.6 704
of TIMIT database. Decision fusion 73.2 70.3

Table 3. Results of different systems using MFCC, BBF and

2. Decision-level fusion: Two MLPs were trained individu- fusion of the two (in %) on TIMIT.

ally using only BBF and only MFCC features. Their phoneme

posterior probability estimates were then dynamically eom

bined via Dempster-Shafer method described in [8]. Subse&peech recognition task (i.e. word recognition), and b) the
quent modeling via KL-HMM was the same as before. use of auxiliary data to select the features.

These two systems were evaluated on the phoneme recogni-

tion task using the TIMIT database. Note that in this case4.1. Database and experiment setup

the number of hidden units of the MLP in each system was

set so that the total number of parameters was constant ov-gpe DARPA Resource Managgment (RM) corpus [9] was

all the systems, in order to ensure a fair comparison.Table %sed. It consists of re_ad queries on the stz_at_us of naval re-
shows the performance obtained for different systemsdfusi sources. The corpus is partitioned into training set (2,880
and individual) in terms of phoneme recognition rate (PRRjJt_terances), development set (1,110 utterances) and-evalu
obtained on the 1344 test utterances of TIMIT and frame cla&ton Set (1,200 utterances) [10] an.d has a vocapulary of
sification accuracy obtained on the cross-validation attees 991 words. The _phoneme—based lexicon was qbtamed from
of TIMIT. the UNISYN dictionary. There are 45 context-independent

The following points related to the results reported aréohonemes including silence. A frame size of 25 ms and a

noteworthy: 1) The fusion of MFCC with BBF is beneficial. frame shift of 10 ms was used to extract features. The fea-

It leads to a 3% increase in PRR over MFCC and a 1.1% in}uris used tm this s_tutt_dy ar?:l?f/)Ft—F;_LP';A?:IQFdlmenS|onallLP
crease over BBF individually. 2) Both decision fusiand eature vector consisting o static Vel Frequency

feature fusion perform better than the individual featbased C_:epstral Co_efhments_ (MF'P.LP) with cepstral mean sgbtr_ac-
on and their approximate first and second order derivative

systems. These observations support the hypothesis tiat BB,

and MFCC could contain useful complementary information-€ €0 — .312 EA j; ﬁA)‘ Z)B?B?ZF':I'I-I(/IV\II'(I)' %e]tsf.of zgzoo
and a combination of these two features results in improve ere considered, as follows. a) N e first 80,

ASR performance. sam.p_les (spectro-temporal rnatnces) extr.ac_;ted fromitrgin
partition of TIMIT database is used as training data to gelec

the features (ref. Section 2.1). The purpose is to evaluate

the generalization capability of these features boostetjus

: L : . o TIMIT to a speech recognition task using a different databas
Thi ion investi : h lability of theseufiesst > ;
S sectio estigates: a) the scalability of these RM. b) BBF-RM In a similar way, the first 80,000 samples

from the phoneme recognition task [1] to the continuous .- I .
P g [ extracted from the training partition of the RM database is

used to select the features. In this case, the feature isglect

4. CONTINUOUS SPEECH RECOGNITION STUDIES

Accuracy (%) | Best Improvement (%) | and speech recognition studies use siaenedatabase. 3)

Phoneme| MFCC | BBF | feature | Absolute [ Relative Rand: To ascertain the utility of the feature selection algo-

Tayl 718 | 643 | MECC 75 104 rithm, we also used features that involvashdomly selected

Tihy 68.4 61.9 MECC 6.4 9 4 time-frequency bin pairs from the spectro-temporal plahe[

7 70'5 66.0 VMECT 4'5 6.4 As with BBF, two cases are considered: a) Rand-TIMIT, and

Ty 66.9 63.2 VECC 3.6 5'5 b) Rand-RM. As before, the phoneme posterior estimates are

T 24'5 31.6 BBE 7'1 22’ 7 sent as feature observations to a KL-HMM system. Two types

T 59'7 66.5 BBE 6.8 10'2 of KL-HMM systems are considered: 1) context-independent

7 54'0 60.0 BBE 6.0 10'1 sub-word unit based system, and 2) word internal context-

/\f'/ 78.6 82.7 BBE 4'1 £ 0 dependent sub-word unit based system [10].

L . 4.2. Results
Table 2. Best feature and relative improvement in frame ac-

curacy on cross-validation set of TIMIT database for subsethe performance obtained for different features in terms of
of phonemes. word error rate (WER) on the evaluation set of the RM corpus
is reported in Table 4, for context-independent and context



Context Context stead of depending on MLPs, phoneme posterior inputs to
independent| dependent KL-HMM could be directly modeled by extending the sys-
Feature MLP [ SLP || MLP | SLP tem from BBF to boosted decision trees. 3) The extraction of
MF-PLP 71 | 28.3] 5.1 | 14.7 BBF could be interpreted as adding a layer to the MLP or SLP
BBF-TIMIT 76 |111] 55 | 7.1 to learn phone-specific representations directly from tspec
BBF-RM 78 109 56 | 7.2 temporal plane using auxiliary data. This could complement
Rand-TIMITIT 92 1751 6.8 | 10.3 deep-learning frameworks geared towards similar objestiv
Rand-RM 92 | 1681 6.4 | 108 [12]. Other general directions are as follows: 1) When pre-

viously applied to speaker recognition, BBF showed better
Table 4. Word Error Rate (%) on evaluation set of RM noise-robustness than cepstral features [4]. It is worilevid
database. verify this property of BBF for ASR also. 2) Fusion studies
should be extended from phoneme recognition to a complete
word recognition task.

dependent systems. The following points are noteworthy:
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