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ABSTRACT

This paper investigates the use of large TDOA feature vedimr
gether with acoustic information in speaker diarizatiomafetings.
TDOAs are obtained by considering all possible microphqregss
and this approach is compared with conventional TDOA featex-
tracted w.r.t. a reference channel. The study is carriedgusio
systems, the first based on Gaussian Mixture Modeling anddte
ond based on the Information Bottleneck approach. Resnlti 8T
RTO6/RTO7/RT09 evaluation datasets show a large speak®@rrer
duction of30% relative going fromi4.3% to 10.8% for the first and

from 12.3% to 8.2% for the second whenever the feature weighting

is properly handled. Furthermore results reveal that theyfiem is
more robust to different number of microphones even whepaits
large TDOA vectors are used thus outperforming the HMM/GM
by 25% relative 8.2% error compared t@0.8%).

across pairs quantization step is applied in order to find oiasters
used as initialization into a conventional diarizationtsys. This ap-
proach produced state-of-the-art performances durinRitte Tran-
scription 2009 evaluation. Instead of selecting the bess pthose

large TDOA vectors have also been reduced to one or two compo-

nents by means of Principal Component Analysis or Discramin
Analysis [5] with the drawback of noisy covariance matrixires-

tions. Motivated by the performances of those large TDOAUiea
vectors obtained by considering all microphone pairs irvigiing

a good system initialization [4, 6], this paper investigatieeir use
as complementary features to MFCC for diarization. In cmytr
to [3, 4, 5, 6], no selection, dimension reduction nor TDOAdzA
initialization is performed and the use of the entire alrpalelay

\ Vector is investigated. The main challenge comes from ttreased

dimensionality and this work will focus on how the new veatidpr
mension affects the combination with MFCC features. Thdysts

Index Terms— Speaker diarization, Time Delay Of Arrival fea- carried using two state-of-the-art diarization systetns first based

tures, Meetings Recordings, Model combination.

1. INTRODUCTION

Speaker diarization is an unsupervised learning task vighab-
jective of finding“who spoke when”in a given audio recording.
In recent years, diarization has been applied to meetingrde@s
acquired using Multiple Distant Microphones (MDM) and sale
methods have been proposed to effectively use the redundant
ing from the MDM audio. Beamforming techniques have beeasav
tigated where the various audio sources are merged to peasio-
gle high-quality audio stream [1]. The beamforming alduorit[1]
selects a reference channel based on the average croskgtonr

on HMM/GMM modeling and the second based on the Information

Bottleneck (IB) principle - a non parametric clusteringifiewvork.

The remainder of the paper is organized as follows: section 2

describes the delay feature estimation, sections 3 and cfildeshe
state-of-the-art diarization systems used in this studjevgection 5
presents experiments and analysis of the two systems. ez g
concluded in section 6.

2. DELAY FEATURE ESTIMATION

TDOA features are estimated using the generalized crosslation
phase transform (GCC-PHAT) [1]. All time delays are caltedh
with respect to a reference channel. This channel is chesseobon

and performs a Delay-and-Sum combination. The Time Delay ofhe signal to noise ratio or depending on the average crosslation

Arrivals (TDOA) are estimated with respect to the refereoban-
nel. Besides beamforming, the TDOA features also carryrinés

of the channel with other channels. After choosing a refezaman-
nel, signal in each channel is windowed using(®ms window.

tion about the location of the current speaker and they haemb Gijven two windowed signals;(n) andz;(n), the GCC-PHAT is
used as complementary features to conventional MFCC [2]e Thgefined as :

combination happens at model level, weighting the loghlileds
of independent GMM models estimated on each feature stream.
However, the TDOA feature statistics and quality is influeshc
by several factors like the number of microphones in theygrari-
able for each recording environment), the acoustic of tloenae-
verberation/noise and the relative position of speakesgee to the
array (see [3] for analysis). The choice of estimating delag-

Gruar(f) = {X:(NXGF(OIAXDNXNHF @)

where X (f) and X;(f) are the Fourier transforms of the two sig-
nals. The TDOA for these channels is estimated as

)

dpuar(i,j) = arg max Rpmar(d)

cording to a single reference channel, chosen as the onéaisat whereRp ar(d) is the inverse Fourier transform 6fp s a7 (f).

the highest average cross-correlation over the entiredawy may
be locally suboptimal since the TDOA is the result of the etiint
speakers placements with respect to the microphones.

Thus givenM microphones in the array, the dimension of the

TDOA feature vector i$/ —1; in the following we will refer to those

asreference channelDOA features. On the other hand, whenever

In [4], authors proposed to compute TDOA between all micro-a|| possible microphones pairs are considered, i.e., Egis(@m-

phone pairs resulting into a large vector and to select dmyfive
pairs that have the highest peak-to-peak difference thust nep-
resentative of speakers position. After that, a with-irrpaind an

puted for all pairgi, j), the dimension of the TDOA vector becomes
1 M (M —1) thus much larger then the previous one; in the following
we will refer to those aall pairs TDOA features.



3. HMM/GMM DIARIZATION __ Development Data

w
o

This section briefly describes a conventional speakerzéion sys-
tem based on HMM/GMM models in which each speaker is repre-
sented by an HMM state with GMM emission probability [7]. Let
us designate the emission probability distributiop of clustercy,

with log be,, (s¢) = log >, wi, N (se, pe, , ¢, ) wheres; is the in-

put feature, \(.) is the Gaussian pdf and, , ur,, X7, are the
weights, means and covariance matrices (diagonal) camnel&my .
to " mixture Gaussian of clustes,. The diarization starts with a W
uniform linear segmentation of the input into a large nundjeus- 5 ‘ ‘ ‘
ters (speakers). Successively, at each step, a clusteispagrged 107 10 107 10" 10°

based on a distance measure like the BIC or its modified ve[&o TDOA weight

The merging stops when all the BIC values are less than zefo. AFig. 1. Speaker error function of all-pairs TDOA weights on develemt
ter each merge, a Viterbi realignment of speaker boundé&iper-  data in case of HMM/GMM and IB Speaker Diarization. Similaagh for
formed with the estimated speaker models. Whenever meiltgal-  the reference channel TDOA can be found in [2, 11].

ture streams(s:}, e.g., MFCC{s/"/““} and TDOA {s!%°*} (ex-
tracted at the same rate) are available, the system canédredext by
considering a separate GMM model for each stream (see [2}). L
bi(s:) be the GMM model of cluster corresponding to the feature
streams;. A separate GMM emission distributiof, (.) is estimated
for each feature stream. A combined log likelihood is thempoted
for each clusteey, as:
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In order to apply this method to speaker diarization, theo§et
relevance variable¥ = {y.} is defined as the components of a
background GMM(M) trained on the entire audio recording [9].
The input to the clustering algorithm is uniformly segmeigpeech
segmentse:. The posterior probability(y. |z:) is computed us-
ing Bayes’ rule. The speech segments with the smallestrdista
(the Jensen-Shannon divergence) are then iteratively edeugtil

the model selection criterion is satisfied.

log Le, (5¢) = Wingeclog [bi’,if“(si”f“) +Widoa log [biioa(sidoa Whenever multiple features are available, the combinaition

?3) performed in the space of relevance variableq11]. Separate
where, W; corresponds to the weight of each feature streanGMMs with the same number of components are trained for each
(Wimgee + Widoa = 1). This combined likelihoodog L., (.) re-  feature stream. The individual components are kept aligries]
places the log likelihood termisg b., (.) during clustering and re- the same component of two different GMMs are estimated using
alignment (see [2, 8] for details). It can be noticed thatlte  the features with same time indices. In other words, thera is
likelihoods in Eq. 3 are dependent on the dimension of theufea one-to-one correspondence between the GMM components. Let
vectorss™/ *“ ands"*°* thus increasing the dimension of the TDOA {M™/¢¢, M*@%} be the background model for the MFCC and
vector fromM — 1to M (M — 1)/2 willincrease the magnitude of TDOA feature vectors. The combined distributip(y|x) for each
the second term in Eq. 3¢g [b57°* (si%*)] ). segment:™f°¢ andz*?°® is then estimated as:

4. INFORMATION BOTTLENECK DIARIZATION plylz) = Wmfccp(y|$mfcc,/\/lmfcc) + Wtdoap(y|xtdoa7/\/ltdo(a))

5
This corresponds to averaging the differery|z’, M;) obtained
with GMMs trained on different feature streams. After clus-
. A : . ; X tering, the speaker boundaries are realigned. Instead infj us
butional clustering technique introduced in [10]. Consideset of HMM/GMMs, the realignment is performed in the space of rele-

input variablesX. The Information Bot'tlen.eck principle depgnds vance variableg(y|z) using a Kullback-Leibler divergence based
on a relevance variables’ s&t that carries important information \1m system described in [11].

about the problem. According to IB principle, any clustgrify The entire diarization algorithm including clustering afiere

should be compact with respect to the Input repregentatmm( . combination and realignment depends only on the relevaade v

mum/(X; C')) and Preserve as 'T”“Ch mutual mformatlon as pOSSIbIeable distributiorp(y|z). Most importantly, we can notice that com-

about relevance variablés (maximum!(C, Y)). This corresponds i ation (see Eq.5) is performed with probabilities ratthem log-

to the maximization of: likelihoods as in HMM/GMM diarization, thus being less affed
F=1(CY) - %[(x C) (4) by the dimension of TDOA vector.

This section briefly summarizes the Information Bottlenspkaker
diarization system that operates in a hormalized spacel@faiece
variables proposed in [9]. The Information Bottleneck isistré

. L L . 5. EXPERIMENTS
where 5 is a Lagrange multiplier. The IB criterion is optimized
w.rt. the stochastic mapping(c|z) using iterative optimization The experiments are conducted on 24 meeting recordings from
techniques. The agglomerative Information BottlenecB)allus- six different meeting rooms (CMU,EDI,NIST,IDI, TNO,VT) o@-
tering is a greedy way of optimizing the 1B objective functidO].  sponding to data collected for the NIST RTO6/RT07/RT09 wal
The algorithm is initialized with each input elementc X as a tions [12]. The meetings identifier as well as the number of mi
separate cluster. At each step, two clusters are mergedtsath crophones associated with each meeting are reported ire Tabl
the reduction in mutual information w.r.t relevance valéads mini- At first, multiple channels are beamformed using Beamformlt
mum. It can be proved that the loss in mutual information ingimg ~ toolkit [13]. MFCC features are then extracted from the bieamed
any two clusterg; andc; is given in terms of a Jensen-Shannon di- output (details about the front-end are available in [8]gld)s are
vergence that can directly be computed from the distriloytig/|=z)  obtained both with respect to a reference channel as welsiag u
in closed form. The number of clusters is determined by using all possible microphone pairs. The system performancesisiated

threshold on the Normalized Mutual Information given#iiy)). using Diarization Error Rate (DER) that is the sum of spesmh/



Table 1. Meeting number, identifier and associated number of miwwop for each recording.

ID Meet. #Mic | ID Meet. #Mic | ID Meet. #Mic
1 | CMU_20050912-0900| 2 9 EDI_20071128-1000 | 16 17 | NIST_20080201-1405| 7
2 | CMU_20050914-0900f 2 10 | EDI_20071128-1500| 16 18 | NIST_20080227-1501| 7
3 | CMU_20061115-1030] 3 11 ID1_20090128-1600 16 19 | NIST_20080307-0955| 7
4 | CMU_20061115-1530] 3 12 ID1_20090129-1000 16 20 | TNO_.20041103-1130| 10
5 EDI_20050216-1051 16 13 | NIST_-20051024-0930| 8 21 VT _20050408-1500 4
6 EDI_20050218-0900 16 14 | NIST_20051102-1323| 8 22 VT _20050425-1000 7
7 EDI_20061113-1500 16 15 | NIST.20051104-1515 7 23 VT _20050623-1400 4
8 EDI_20061114-1500 16 16 | NIST_20060216-1347 7 24 VT_20051027-1400 4
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Fig. 2. Average TDOA values in case of speaker 6 and 8in/_20090129 — 1000 meeting (NIST reference notation). Left plot represent<OPDw.I.t. &
reference channel while right plot represents features alf possible pairs in case of a single microphone arrayi(@ophones).

speech segmentation and speaker errors. Since we use tke Sa'quble 2. Weighting for MFCC and TDOA feature vectors in case of all-
speech/non-speech segmentation across all the expesimeniy pairs TDOA and reference channel TDOA obtained minimizimg speaker
speaker error is reported for the purpose of comparisoncobi- _Eror on development data set.

nation weightdV,,, r.. andWq,, (Se€ Eg. 5 and Eqg. 3) are estimated alB HMM/GMM TDOA dim.
from a development dataset composed of recordings acrose m|_Ref. Channel TDOA| (0.7,0.3)|  (0.9,0.1) M-1
ings rooms as in the test data set. The weights are selectbdszs All Pairs TDOA | (0.8,0.2) | (0.999,0.001)] M (M —1)/2

that minimize the speaker error on the development data/\#een-
ever conventional reference channel delay features adg theetypi-
cal HMM/GMM (W, fee, Widoa) Weighting is(0.9, 0.1). This con-
ventional system is considered as baseline in this work.e&sribed
in section 3, the model log-likelihood is proportional te tfeature
vector dimension thus moving from a delay vector of dimemsio
M —1to a vector of dimension/ (M —1) /2, will increase the delay
feature log-likelihood. Keeping th@.9, 0.1) weighting produces a
speaker error abov&)% (see Figure 1) on development data. In or-
der to compensate for this effect, weigh¥,, fcc, Wtdoa) are opti-
mized on a logarithmic scale. Figure 1 (solid line) repdntsperfor- For analysis purposes, let us plot the average TDOA values in
mance of the HMM/GMM on development data when the weightingcase of meeting D1_20090129-1000 (only one array out of the two
is optimized on a a logarithmic scale: it can be noticed thhgn the ~ available, i.e., 8 microphones) for two speakers (speakedd ac-
TDOA feature vector moves from/ — 1to M (M —1)/2, the opti- cording to NIST reference files) that are merged togetherdih b
mal weights move fronf0.9, 0.1) to (0.999, 0.001). In other words, ~ Systems into a single cluster. Figure 2 (left figure) plots TDOA
the effect of increase in dimensionality can be compendayeidn- feature values estimated w.r.t. a reference channel angathes of
ing the feature weightéW,, rc., Wtdoa ) in @ logarithmic scale. the all-pairs TDOA features (right figure). In the first casgydwo

In case of conventional TDOA features, the typical features exhibit a sign change, while other five featuree Isame
(Wnfee, Widoa) Weights for IB diarization ar¢0.7,0.3). Figure 1 sign and almost comparative values. In the second caseaflBds
(dashed line) also reports the performance of the IB on dpweént  out of 28 have different signs making the diarization digtiish bet-
data in case of all-pairs TDOA: it can be noticed that when thel€r in between the two speakers that are confused by thesnefer
TDOA feature vector moves from/ — 1 to M(M — 1)/2, the  channel TDOA thus suggesting that, depending on the speéker
optimal weights move fronf0.7, 0.3) to (0.8,0.2). The increased cation, the choice of a single reference channel can be siotalp
dimensionality only marginally affects the weighting ag ttom- As previously pointed in [11], the IB system appears more ro-
bination is done using probabilities (see Eq. 5) in the spafce bustto variation of weights across different meeting rdicgs. This
relevance variables. Table 2 summarizes the weightingsage ¢ robustness holds also in case of all-pairs TDOA featureovecFig-
of conventional TDOA feature as well as all-pairs TDOAs whil ures 3 and 4 plot the meeting-wise error for the 24 recordings
Table 3 reports the speaker error obtained using such viegght Table 1 that compose the evaluation data set in case of HMMAGM
on the evaluation dataset. It can be noticed that, both ie chs and IB systems. From figure 3, it can be noticed that in case of
HMM/GMM and IB, the error is reduced by more thae% relative =~ HMM/GMM, improvements happen on recordings with larger rum
achieving speaker errors equal 10.8% and 8.2% respectively.  ber of microphones (7 or more) - while the new features/wsigh
Interestingly, optimizing the weights on a logarithmic leganake  produce some degradation in case of recordings performibdegs
the HMM/GMM system benefit of those large feature vectorsthan 4 microphones (meetings ID 1,2,3,4,21,23,24). On thero
without the need of selecting the best pairs as in [3] noreedithe  hand, Figure 4 shows that in case of IB diarization, improets
dimensionality as in [5]. are verified on recordings with larger number of microphafresr

Table 3. Speaker Error obtained by HMM/GMM and IB diarization on eval
uation data set; TDOA features are computed respect to eenefe channel
and as all possible TDOA pairs.

alB
12.3
8.2 (+33%)

HMM/GMM
143
10.8 (+32%)

Ref. Channel TDOA
All Pairs TDOA




HMM/GMM

-Speaker Error-—>

i1 2 3 4 5 6 7 8

T T T T T T 4‘
Bl Al Pairs

[ |Reference Channel

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ALL

Fig. 3. Speaker Error obtained by HMM/GMM diarization the RTO6/RIRT09 data set whenever TDOA features are computed retpecteference

channel (yellow bars) and whenever all possible TDOA paiscamputed (green bars)
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Fig. 4. Speaker Error obtained by IB diarization the RT06/RTO7/®R@@ata set whenever TDOA features are computed respect teranmee channel (yellow

bars) and whenever all possible TDOA pairs are computectgoars)

more) with not much degradation on others as feature stremens being larger with increasing number of microphohes.

combined using normalized quantities (see Eq. 3) insteadgf
likelihoods (see Eq. 5) which are dependent on the featunemli

sion. [1]

6. CONCLUSION AND DISCUSSIONS
[2]
Many state-of-the art diarization systems combine acousfbr-
mation with TDOA features computed with respect to a refegen
channel from the michrophone array. Previous works havevisho
that this choice can be suboptimal depending on the positidhe
speakers respect to the michrophone, e.g. [3], thus pnogdke
use of TDOA values computed for all possible microphonesspai
Issues related to the increased dimensionality of the vdwiwe
been addressed selecting the most performant pairs [4Hocireg
the dimensionality of the vector [5] before using them faardia-
tion purposes. This work investigates how those large TD&&wo
can be directly used in diarization systems and studies toen-
bination with acoustic information using two systems: capaetric
HMM/GMM system and the IB system. Experiments on 24 meet- 7]
ings from the RTO6/RTO7/RT0O9 NIST RT evaluations reveal tha (8]
all-pairs TDOA features become effective in HMM/GMM moahe)i
only when the combination weights are optimized dogarithmic
scale in order to compensate for the increased dimensignialithis
case the speaker error is reducedB32% relative (from14.3% to
10.8%) w.r.t. conventional delay features and, interestingbyneed
for pair selection [4] nor dimensionality reduction [5] iseded.
Whenever IB diarization is performed, the increased dimenjiy]
sionality marginally affects the optimal weighting andsain this
case the speaker error is reducedH32% relative (from12.3% to
8.2%). This effect is due to the fact the IB system combines the
information in a normalized space of relevance variablasither- ~ [12]
more, also in case of large TDOA vectors, the IB system outper[13]
forms the HMM/GMM being more robust to dimensionality vari-
ations achieving a speaker error 2% compared t010.8%. In

[l

[
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