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ABSTRACT
This paper addresses face diarization in videos, that is, de-
ciding which face appears and when in the video. To achieve
this face-track clustering task, we propose a hierarchical ap-
proach combining the strength of two complementary mea-
sures: (i) a pairwise matching similarity relying on local in-
terest points allowing the accurate clustering of faces tracks
captured in similar conditions, a situation typically found in
temporally close shots of broadcast videos or in talk-shows;
(ii) a biometric cross-likelihood ratio similarity measure re-
lying on Gaussian Mixture Models (GMMs) modeling the
distribution of densely sampled local features (Discrete Co-
sine Transform (DCT) coefficients), that better handle ap-
pearance variability. Experiments carried out on a public
video dataset and on the data from the French REPERE
challenge demonstrate the effectiveness of our approach in
comparison with state-of-the-art methods.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations

Keywords
Face diarization; clustering; similarity measures

1. INTRODUCTION
We address the problem of face diarization within videos.

That is, we aim to automatically answer the question “who
(whose face) appears in the video, and when?”, as illustrated
in Fig. 1. This task has direct applications in the structuring
and indexing of video programs (and beyond, of personal
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photo or video collections) through the generation of meta-
data. It is useful as a preprocessing step for browsing or fast
annotation of the person identities or form the basis, with
audio diarization, for further analysis of people behaviors
and of their interaction or relationships [12].

The face diarization process usually consists of four main
steps as shown in Fig. 2: (i) shot boundary detection, that
aims to split the video stream into homogenous video clips;
(ii) face detection, generally consisting in detecting frontal
and profile faces within each shot; (iii) face tracking, that
temporally extends the face detections within each shot, and
finally (iv) a face clustering step that groups all face tracks
which belong to the same person. In this paper, we focus on
the later step that is the most important and challenging due
to potentially large within person variabilities (pose varia-
tion, lighting conditions, occlusion, make-up or accessories
like glasses) as compared to between person variabilities.

Figure 2: Face diarization process.

Most of the previous work on video face diarization have
addressed the problem using matching-based face pairwise
similarity measures [3, 20, 7, 10]. That is, they compare two
clusters by directly computing the similarity between their
corresponding face samples represented by a set of local de-
scriptors like SIFT or Gabor filter outputs that are com-
puted around detected interest points or landmarks. Such
approaches are more appropriate for matching and compar-
ing faces acquired within the same conditions. This often
corresponds to faces appearing within a TV show episode,
or during talk-shows or debates. However, when the face ap-
pearance variability increases due to pose, hair cut or illumi-
nation changes, the discrimination power of such matching
similarity measures drops as the within person measure com-
parisons become closer to between-person ones. In short,
such measures usually lack generalization capabilities.

To address this generalization issue, we propose to rely
on biometric model-based approaches [4, 13, 21, 17], whose
goals are specifically to handle face variations across con-
ditions and time. In contrast to the matching case, their
aim is to represent each face-cluster with a statistical model
of the distribution of densely sampled local features (thus
reducing alignment issues) whose parameter training lever-
ages on statistics learned a priori from thousands of faces
thanks to the use of Maximum a Posteriori (MAP) adap-



Figure 1: Face diarization task. Top row: Sample frames of a TV debate illustrating variability in face size, pose,

background, number of people, etc. Bottom row: example of face diarization output. The system automatically

retrieves 4 different faces that appear in the video. It provides all sequences of frames in which each face appears.

tation learning. The similarity between two face-clusters
is then estimated by comparing indirectly their statistical
models through their evaluation on the corresponding clus-
ter data. Although the statistical modeling leads to less
powerful plain matching capabilities, variabilities are better
handled.

In this paper, we propose a novel hierarchical bottom-up
clustering method that appropriately combines and takes
advantage of a feature-based matching similarity measure
and a model-based similarity measure. To the best of our
knowledge, we are the first to investigate the model-based
approach for face clustering, and hence also its combination
with matching based methods. Indeed, a key assumption
made by our bottom-up clustering method is that the opti-
mal face representation and similarity comparison for clus-
tering depends on the amount of data available and on the
degree of face variability that are found in the data. On the
one hand the feature-based matching similarity is optimal
with relative small variabilities, i.e. when it is possible to
perform direct comparison with high confidence, and is thus
particularly robust for clustering faces acquired in similar
conditions (close moment in time, same scene). In addi-
tion, as it has the advantage of being able to perfectly work
with small-duration face tracks, it is more appropriate at an
early stage of the clustering process. On the other hand the
model-based method is optimal when more data is available
in initial clusters and when more variabilities are present
due to its robustness to several factors. Its exploitation is
thus more appropriate at later stages of the clustering.

Experimental validations were conducted on two bench-
marks datasets: the public dataset from the TV series“Buffy”
provided by [6] exhibiting face variability across episodes,
and 38 TV programs from the “REPERE” challenge [9] con-
taining talks shows, news, and debates. They illustrate the
behavior of the algorithm and the benefit of our approach,
and demonstrate its state-of-the-art performance.

The remainder of this paper is organized as follows: in
section 2, we review face clustering related work. Section 3
details the proposed matching-based and model-based mea-
sures as well as the hierarchical clustering proposed to com-
bine them. Section 4 describes the datasets, metrics, and
experimental results. Section 5 concludes the paper.

2. RELATED WORK
Face clustering requires the design of face representations

and comparison approaches robust to intra-person variabil-
ity (pose, lighting, partial occlusion,...). Below we first re-
view methods that were specifically designed for face cluster-
ing, and then discuss biometric methods developed for the
different but related face verification or recognition tasks.

In the work of [3, 5, 6, 7], researchers use local descriptors
at facial landmarks as face representation. The first one [7]
uses pixel-based descriptors while the others rely on points-
of-interest descriptors like SIFT or SURF. If the data quality
is not sufficient for reliable facial landmark detection, one
alternative is to exploit those descriptors computed around
automatically detected points-of-interest [3, 10, 19]. In this
case, most of the time the spatial information is lost, al-
though [19] keeps it by adding a spatial term depending on
key-point positions to compare descriptors between two face
images. In the paper, we will refer to these methods as rely-
ing on feature-based or matching similarity measures. They
usually enable to perform pairwise comparison between im-
ages when small face variation are observed.

When clustering faces from videos, a useful preprocessing
step can be done by tracking faces on consecutive frames
within a shot. This produces face tracks, i.e. the images
of a single character across multiple frames within a video
shot. Comparing two face tracks offers the possibility to be
more robust to pose variations, and this was used in most
works cited above, e.g. by using as face-track distance the
average of all face distances [10, 11].

Face representations have also been developed in the con-
text of biometric tasks like face verification [4, 14, 17], and in
the paper we will refer to them as model-based (or biometric)
methods. Indeed, state of the art methods in this domain
achieve high robustness by explicitly training a biometric
model for each person they want to identify. The model is
usually characterized by the parameters of the distribution
(often a Gaussian Mixture Model, GMM) of densely sampled
features. A first interesting property of these approaches is
the use of a Universal Background Model (UBM) which is
trained from a large number of subjects and aims at rep-
resent all the population. The UBM can be used as prior
during fitting, preventing from over-fitting and allowing to



handle small amount of data. In addition, the availability
of the UBM model allows to compute a likelihood ratio of
the test sample between the biometric model and the UBM.
In other words, the ratio normalizes the likelihood of a test
sample, allowing to detect for instance if a low likelihood of
the sample for a biometric model is due to the inappropri-
ateness of the biometric model or due to (potentially noisy)
data itself. It is important to note that the UBM methodol-
ogy has also been used with success for other modalities like
in speaker diarization [21]. A second interest of these meth-
ods is the use of densely sampled features. For instance, a
GMM (adapted from a UBM) representing the distribution
of 2D DCT coefficients [14] of spatially neighboring blocks
was shown in [4] to be more robust to alignment error than
when using local descriptors, and the miss detection problem
encountered with facial landmarks is also avoided. However,
this is at the cost of the loss of the spatial information.

Despite their interesting properties, up to our knowledge
these model-based techniques have never been used for a
face clustering task. In our work, we aim at combining the
feature-based method and the model-based method by mak-
ing the following assumption. We state that when the clus-
tering is performed over similar faces with little amount of
data, the features-based method is more confident because
the GMMs adapted from the UBM are too general to han-
dle those little variations. On the other hand, when there
is a high variability and relatively large amount of data, the
model-based method becomes the optimal one. Indeed, it is
more robust and there is enough data to learn it efficiently.
We verified experimentally this assumption in section 4.

It should be noted that additional information can help
the face diarization. To better compare people, [7] includes
clothes information with a color histogram. [16] exploits
uniqueness constraint of a face in a image and the fact that
conversations in TV series induces a particular shot struc-
ture. Although promising, the inclusion of this additional
information is beyond the scope of this paper.

3. PROPOSED FACE CLUSTERING
In this Section, we assume that a video has been first

processed, using the different steps described in Fig. 2. At
the end of this process, we end up with a set of face tracks
{FTi, i ∈ 1...Nft} that we would like to merge into clusters
that contain only tracks of the same person.

Clustering overview. There is a large number of clus-
tering methods. In the speaker diarization [21] and face
clustering literature [20, 8], hierarchical bottom-up cluster-
ing approaches are dominantly used by state-of-the-art sys-
tems. Those approaches start with an over-segmentation
of the data with high purity clusters (i.e. containing data
of a single person) and then merge the more similar seg-
ments. If required, cluster representation is then updated
and improved through model fitting as more and more data
segments are included into each cluster. Hierarchical meth-
ods have no a priori knowledge about the desired number of
clusters (the real number of persons), and leave the model
selection issue to the choice of a threshold on a fitting cri-
teria or distance. This threshold is often learned using a
validation dataset.

In this paper, we follow this approach. Each face-track is
initially considered as a cluster. Then, the cluster pairs that
are most similar according to a similarity measure DC are
merged until a stopping criterion is verified.

In the following sections, we first describe our face repre-
sentation, then the two cluster similarities involved in our
algorithm, and finally the different clustering strategies we
propose to appropriately combine them.

3.1 Face and face track representations
A face contains many discriminative features, like its shape,

the eyes, the hair or the skin color. All those features can in
principle be used jointly in order to recognize people. How-
ever, due to variations in illumination, scale, pose, or due
to partial occlusions or un-aligned detections, representing
faces (and more generally people) in an invariant yet dis-
criminant fashion is difficult. In this paper, we adopted two
types of features that contain complementary information
regarding the clustering process.

SURF features. SIFT and SURF [2] features computed on
regions around automatically detected points-of-interest are
known to be robust to scale, rotation, and illumination vari-
ations. While initially developed for wide-baseline matching
or image retrieval, they have also shown their interest in
face clustering as well [20] due to their ability to provide
a good matching measure of faces captured within a given
context. For a given face F , the first face representation
that we use is given by the set of associated SURF features:
Surf(F ) = {fsurf

i , i = 1, ..., Nsurf
F }.

Discrete Cosine Transform (DCT) features. Detect-
ing interest points is interesting for matching. Unfortunately
the point locations do not carry any semantic information,
which makes it difficult to build a single model from multiple
faces of the same person. One alternative is to detect facial
landmarks, and to rely on features extracted around them.
However, detecting landmarks is not always trivial, and ex-
tracted features may be dependent on the precision of the
localization. A solution is to extract features on a dense grid
sampling of the face. Indeed, dense sampling has proven to
be superior to interest points for many tasks of computer
vision, including object, scene, and action recognition. In
face biometry, dense feature sampling in combination with
statistical models has also proved to be very competitive,
even if the localization information is discarded, as shown
for instance in [17].

We thus propose to adopt a similar strategy to extract
the features of our second face representation: Dct(F ) =
{fdct

i , i = 1, ..., Ndct}. More precisely, given the face image,
we first estimate the eye locations and use them to register
and normalize the image size. This results in an image of
80 × 64 pixels which is then pre-processed using the Tan
and Triggs illumination normalization [15]. Then, the 2D
DCT is applied on 8×8 densely sampled overlapping blocks
(with a step of 1 pixel between block location), and only the
subset of Ddct

dim = 28 low-frequency components of the DCT
are kept using zig-zag pattern.

Face track representation. To avoid processing all im-
ages of a face track, we decided to only work with a limited
number of images per track. More precisely, Nkf = 9 key-
faces are selected from each face-track by dividing the track
in equal intervals.

3.2 Matching cluster similarity
To define the cluster similarity, we first have to define the

similarity between individual faces.



Face feature similarity. As feature similarity between two
faces F1 and F2, we use the “Average N -Minimal Pair Dis-
tance” (ANMPD) ds(F1, F2) between the two sets of SURF
features that was proposed in [10]. As its name suggests,
the ANMPD measure returns the average of the N (we used
N = 6 in this work) smallest distances between the SURF
feature vectors that match between the two faces. The mea-
sure ds is thus small when the face similarity is high.

Matching cluster similarity. Considering two face-clusters
Ci and Cj with their associated set of keyfaces {F i

a, a =
1, . . . , Ni} and {F j

a , a = 1, . . . , Nj}, we compared them us-
ing the following cluster similarity:

Df (Ci, Cj) =
1

NiNj

Ni∑
a=1

Nj∑
b=1

ds(F i
a, F

j
b ) (1)

By definition, this measure favors the creation of compact
clusters where all faces are compared to each other. In prac-
tice, we have found this to work as effectively as other ap-
proaches which for instance only seeks for the best subset of
most similar faces between the two image sets. Note that
after merging Ci and Cj , the similaritys between the new
cluster Ci′ and any other cluster Ck can be computed recur-
sively as:

Df (Ci′ , Ck) =
Ni ×Df (Ci, Ck) +Nj ×Df (Cj , Ck)

Ni +Nj
(2)

3.3 Model-based similarity
As motivated in the introduction, statistical models for

representing the distribution of local descriptors are pow-
erful tools to handle face variabilities while keeping infor-
mation about the distinctive features. In this work, we use
Gaussian Mixture Models (GMM) which have proved to be
robust in this context, and allow the exploitation of reli-
able Maximum A Posteriori (MAP) parameter estimation
schemes. Below, we describe the model, how to learn it, and
then define the inter-cluster similarity measure that we use.

Model and parameter learning. We model the likeli-
hood of any DCT feature vector fdct within a face image
as:

p(fdct|Λ) =

Ng∑
i=1

ωiN (fdct;µi,Σi) (3)

where Λ = {ωi, µi,Σi, i = 1...Ng} represent the GMM model
parameters (we used Ng = 200 gaussians which is a good
trade-off between effectiveness and efficiency). Thus, for a
cluster Ci containing the faces Fij , j = 1, ..., Ni, the set of
local features is defined as the union of features over all
faces: Dct(Ci) =

⋃
j Dct(Fij). Its log-likelihood L for a

given model Λ is then given as:

L(Dct(Ci)|Λ) =
∏

fdct∈Dct(Ci)

p(fdct|Λ) (4)

In practice, rather than using Maximum Likelihood, the
GMM model parameters Λi of cluster i are learned through
mean-only MAP adaptation from a prior universal back-
ground model (Λubm) trained on an independent large dataset
of images. This avoids the over-fitting problems that can oc-
cur given the large amount of parameters and the potentially
low number of training faces.

Cross-likelihood ratio. To compare two face-clusters Ci

and Cj with their corresponding model parameters, we rely
on the Cross Likelihood Ratio (CLR) defined as:

CLR(Ci, Cj) = log
L(Dct(Ci)|Λj)

L(Dct(Ci)|Λubm)
+log

L(Dct(Cj)|Λi)

L(Dct(Cj)|Λubm)
(5)

The CLR is a symmetric similarity measure, which is posi-
tive when the clusters are similar, and negative in the other
case. It captures how well the features from one cluster
are likely according to the model of the other cluster, as
compared to the likelihood given by the UBM model, and
vice-versa. The UBM model thus serves as a reference. It
allows to distinguish for instance whether a low data likeli-
hood is due to an inadequacy with the tested model, or to
the data itself.

Model-based similarity measure. The similarity mea-
sure that we used is defined as follows. Given an initial set of
clusters {C1, ..., CNinit}, a model is trained for each cluster,
and the CLR similarity between these clusters, denoted as
Sm(Ci, Cj) = CLR(Ci, Cj), is computed. Then, after each
merge, we have a new cluster Ci′ = Ci ∪ Cj with its size
Ni′ = Ni + Nj . We then define the new similarity of this
cluster with any other cluster k as:

Sm(Ci′ , Ck) =
Ni × Sm(Ci, Ck) +Nj × Sm(Cj , Ck)

Ni +Nj
(6)

Qualitatively, this means that rather than learning a single
face model from all data belonging to a cluster -that could
be corrupted in case of wrong merging of faces from different
people- and exploiting it for likelihood evaluation, we prefer
to rely on the original face models learned on purer clusters
to evaluate the likelihood of a cluster k data, and defined
this later one as a weighted average of its likelihood with
respect to the models of all initial cluster belonging to the
cluster i′.

3.4 Fusing matching-based and model-based
methods

The matching similarity Df and model-based similarity
measure Sm satisfy different purposes. The first one is ade-
quate to directly find matches between face tracks acquired
in very similar conditions, while the second one, that may
require to have sufficient data to adapt the GMM model,
can better handle appearance variability at the cost of loos-
ing some face representation accuracy. From a bottom-up
clustering perspective, this means that the first one is more
adapted at the beginning of the clustering process, whereas
the second one can be applied later on. We therefore have
adopted the following strategy:

• first, apply the clustering using only the feature-based
similarity, ie define DC as Df ;

• once a threshold is reached, i.e. Df (Ci, Cj) ≥ Tf for
any two cluster, use the current clusters as base clus-
ter to learn GMM models (see previous section), and
continue the clustering using a combination of the mea-
sures as cluster dissimilarity:

DC(Ci, Cj) = Df (Ci, Cj)− αSm(Ci, Cj) (7)

where α ≥ 0 denotes the contribution of the model-
based similarity to the overall merging criterion.



Figure 3: Detected face samples for the character

“Joyce” in Buffy: first three samples extracted from

Episode 1, last three from Episode 3. Notice the higher

appearance variability between the inter episode samples

than the intra episode ones.

4. EXPERIMENTAL EVALUATION
We first describe the datasets used in our experiments be-

fore presenting the evaluation metrics in section 4.2. Further
evaluation protocols and results are detailed in section 4.3.

4.1 Datasets Description
Two datasets are used in order to evaluate the different

contributions of our work.

Buffy dataset. The first dataset was used in [8, 6]. It
contains 327 face-tracks selected from episodes 9, 21 and
45 of the TV series “Buffy the vampire slayer”, where each
episode belongs to a different season of the series to pro-
vide face variabilities. Face tracks were obtained using an
automatic system, and false positive tracks and face-tracks
that did not belong to the 8 main actors were manually dis-
carded. This dataset shows generally a higher appearance
variability between inter episode tracks with respect to intra
episode ones tracks, as illustrated in Fig 3.

REPERE dataset. The second dataset contains 38 video
files from the french evaluation challenge REPERE [9]. The
videos feature news, debates and talk-shows recorded from
two french information TV channels (LCP and BFM). The
videos were manually but partially annotated by ELDA1.
The total duration of the recordings is 21.5 hours, with 3
hours manually annotated. There are 1076 face tracks (ini-
tial clusters) that belong to 264 people. This dataset is
challenging due to the large number of clusters, very unbal-
anced cluster sizes (ranging from one when a person appears
in a single shot, to several tenth for anchor men or invited
people) and view point changes. As with the first dataset,
an automatic face track extraction algorithm was applied
to the videos, that lead to different types of error, ans we
similarly filtered out false-positive erroneous tracks to allow
evaluation of the clustering task only.

For experimental and hyper-parameter setting purposes
and following the REPERE experimental protocol, the dataset
was further divided into a development set (DEV), and a test
set (TEST) of 28, and 10 videos, respectively.

4.2 Evaluation metric
Buffy dataset. To allow comparison on this dataset, we
used the clustering metric proposed in [8] and also used
in [6]. It computes the number of clicks that would be
needed to manually correct the automatic output and ob-
tain the ideal result. More precisely, in this scheme, it is
assumed that one click is needed to associate the correct
name to a cluster (even containing wrong face-tracks), and
that one click is needed to provide the correct name of a
face-track whose identity is different than that assigned to
the cluster it belongs to.

1http://www.elda.org/

REPERE dataset. In this case, we primarily evaluated
the methods in term of Diarization error rate (DER) that
was previously proposed for speaker diarization in the NIST
RT 2 competitions, and provided as well the results in terms
of clicks for comparison with the Buffy dataset. The DER
is computed from the ratio of three error rates divided by
the total duration of the video: a miss detection error rate,
that counts the number of times a face that exists in the
ground truth is not detected by the automatic system; a
false alarm error rate, that counts the number of times a
face is detected by the system while no corresponding face is
available in the ground truth3; and the confusion error rate,
that counts the number of times for a given face, the ground
truth identity associated with the cluster label automatically
provided by system does not match the one in the ground
truth for that face. In this dataset, methods are applied
separately to each of the videos, and the final performance
is obtained by measuring the DER from the aggregated error
rates.

Compared methods. We compared three methods with
our system. The two first ones rely on the individual (dis)
similarity measure: Df corresponds to using only the feature-
based matching dissimilarity measure. The clustering is con-
ducted until a threshold Tf is reached. Sm corresponds to
using only the model-based distance (until a threshold Tm

is reached). Finally, DC denotes the combined method, as
described in section 3.4. Note that all involved thresholds
are learned on the development set for the REPERE data.

4.3 Experimental Results
Results on the Buffy dataset. Fig. 4 and Table 1 present
the results obtained with the different clustering methods.
In addition, it also shows the results from [8, 6] and reported
in [6]. All three methods perform bottom-up clustering and
rely on a face represented using a fixed set of descriptors
computed around facial landmarks, but differs on the met-
ric used to compare two faces: L2 uses a Euclidian distance;
LFW uses a metric learned from the Labeled-Face-in-the-
Wild dataset; and UML uses a metric learned in a discrimi-
native and unsupervised fashion using faces within tracks as
positive samples, and faces from different tracks in a given
shot as negative samples.

Fig. 4 shows the evolution of the performance metric in
function of the number of cluster (in logarithmic scale),
where for clarity we have split the results into two figures.
From the top one, we can see that (i) both our feature-
based Df and model-based Sm approached outperforms the
landmark-based method relying on L2 and LFW metrics; (ii)
the feature-based Df outperforms Sm, probably due to the
lack of training data at initialization for the model-based ap-
proach Sm; (iii) the feature-based Df outperforms the UML
approach [6] for a number of clusters higher than 60, but
then perform worse as the number of clusters is reduced.
This might be explained by the ability of our feature-based
method to better match similar face images, and its higher
difficulty when more variability is present.

The bottom plot of Fig. 4 further shows the result using
our combined approach DC (for α = 0.5). As can be seen,
it outperforms both the single measure based clustering Df

2http://nist.gov/itl/iad/mig/rt.cfm
3Note that as we removed these false alarms after the track-
ing process, this rate will be 0 in reported experiments.
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Figure 4: Results on the Buffy dataset. Number of

clicks with regards to the number of clusters. Top: com-

parison between the proposed Df and Sm measures and

the L2, LFW and UML metrics [6]. Bottom: comparison

of our proposed combination approach DC with Df , Sm

and UML.

Table 1: Minimum number of clicks needed to correct

the automatic on the Buffy dataset.

Method
Minimum

Number of Clicks
Number of
Clusters

L2 129 98
LFW 106 58
UML 72 34
Df 82 43
Sm 102 65
DC 68 44

and Sm, and is better than or equivalent to UML at the be-
ginning of the clustering process (number of clusters higher
than 38) and then is worse or better depending on the num-
ber of clusters. Table 1 details the values of the minimum
number of clicks and its corresponding number of clusters
for each of the methods. It shows that our combined ap-
proach DC provides the best result with 68 clicks, showing
its ability to achieve state-of-the-art results. In this case,
60 clicks come from the clustering errors, and the remain-
ing 8 clicks come from annotating the clusters with their
real names which makes the percentage of clicks due to the
clustering errors equal to 23.3%.

In order to highlight the different behavior of the Df and
Sm measures, we computed their intra- and inter-episode
values for the main character (Joyce) of the dataset. Fig. 5
plots the resulting corresponding cumulative histograms. Qual-
itatively, we can see from the top figure that Df is suitable
at comparing similar faces with high accuracy, as illustrated
by the fact that 26% of intra-episode measures are lower
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Figure 5: Cumulative percentage of tracks pairs from

the character Joyce whose pairwise (dis)similarity mea-

sures are below a given threshold for the Df (top) and

(-Sm) (bottom) measures when considering track pairs

within an episode or between an episode.

than any inter-episode measure. As a comparison, for Sm,
only 12% of intra-episodes have higher similarity than any
inter-episode similarity.

Results on the REPERE dataset. For this dataset, as
we deal with multiple videos, we need to set the parameters
involved in the different algorithms: for the Df and (−Sm)
approaches, this mainly corresponds to the thresholds Tf

and Tm respectively to be used to stop the clustering pro-
cess. For the combined approach4, there are the coefficient
α controlling the contribution of the model-based measure
to the overall dissimilarity measure (cf Eq. 7), and the stop-
ping threshold TC . These parameters are tuned to provide
the best result for a given approach on the development set
(DEV), and then further used on the TEST set. Results are
presented in Table 2, where the minimum DER obtained by
optimizing the parameters is reported as min-DER. Note
that we also report on the DEV set the DER (denoted cross-
DER) obtained through cross-validation: for each video,
the parameters are tuned using the remaining files and used
to the DER on that file. This is repeated for all files, and
finally their average DER is computed. The cross-DER re-
duces the impact of files that have relatively long duration
and provide an idea of the performance variance due to pa-
rameter setting.

According to the results in Table 2, we can see that the
combined approach outperforms both the Df and Sm meth-
ods on the DEV and TEST sets: we obtain at least 14%
relative gain (in terms of cross-DER) on the DEV set and
around 35% of relative gain on the TEST set. Interestingly,
we can notice that the Sm approach provides the more sta-
ble results with respect to the stopping criterion, as there

4For this combined approach, the threshold Tf for which
only the feature-based measure is used in the initial cluster-
ing stage was set to 0.09, see Section 3.4.



the cross-validation on the DEV provides the same results
than when doing a direct optimization of the results, and
the TEST results are closer to the DEV ones. This is prob-
ably due to the use of the UBM model and the inherent data
normalization that it provides in the cross-likelihood ratio.

Fig. 7 illustrates qualitatively the output of the 3 clus-
tering methods for 2 different persons, and where each row
corresponds to an automatic output cluster. For person 1,
the Sm based clustering suffers not only from sub-clustering,
but also from confusion (mixing up 2 different persons in the
same cluster). On the other hand, the Df based clustering
suffers from sub-clustering. However, the clustering output
for that person is perfect for the combined measure. Similar
observation is found for person 2.

Impact of different α values. Fig. 6 shows the results ob-
tained by varying the contribution of the model-based mea-
sure to the overall cluster dissimilarity measure. The behav-
ior is quite similar on the two datasets, with optimal values
found in the 0.3 to 0.5 range. It is also worthy to notice that
the clustering error rate of the combination measure DC in
this range is lower than the error rates obtained by Df and
Sm alone (the curve keeps increasing beyond 0.7).

Difficulty of the databases. We also evaluated the clus-
tering on REPERE database using the metric used on Buffy
database. In this case, the percentage of clicks due to the
clustering errors on both DEV and TEST sets are equal to
7.6% and 4.5%, respectively less than the one obtained on
Buffy (23.3%). This shows that, the clustering task is more
challenging on series and movies than on news and debates.
Note however that in this domain, there is some discrep-
ancies between programs, where lively talk-shows actually
generate more errors than political debates.

5. CONCLUSIONS
We proposed a face diarization method which combines

a feature-based and a model-based (dis)similarity measures.
We show that each measure is the most efficient in different
cases depending on the variability of the faces and the sizes
of the clusters. The two approaches are combined appropri-
ately, and this results in a decrease of the diarization error
rate. As a future work, the automatic extraction of head
pose [1] could be used to generate pose dependent face mod-
els and improve comparison between faces, while additional
person detector [18] would allow a better tracking of people.
We also plan to extend our work to a person diarization
method, by integrating more visual features derived from
clothes [16], and integrate audio information. The similar-
ity between our face diarization method and the models from
speaker diarization [21] should facilitate this integration.
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Table 2: REPERE dataset. Diarization error rate (DER) on the DEV and TEST sets. The hyper-parameters tuned

on the DEV set (corresponding to the min-DER results) were: Tf = 0.15 for Df ; Tm = 0.15 for Sm measure; and

(α, TC) = (0.3, 0.13) for the combined approach. These parameters were used on the TEST set. Cross-DER are the

results obtained through parameter cross-validation on the DEV set.

Method cross-DER (DEV) min-DER (DEV) DER (TEST)

Df 6.41% 5.13% 8.33%
Sm 6.68% 6.68% 8.21%
DC 5.49% 4.37% 5.28%

 50

 60

 70

 80

 90

 100

 0.1  0.3  0.5  0.7

N
um

be
r o

f c
lic

ks

 values on Dataset 1

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.1  0.3  0.5  0.7

D
ia

riz
at

io
n 

Er
ro

r R
at

e

 values on Dataset 2

Figure 6: Impact of α on the performance on the two datasets. For the Buffy dataset the minimum number of clicks

is used as measure. For the second dataset, we report the min-DER on the DEV set.

Person 1
model-based Sm: 2 clusters matching-based Df : 2 clusters combination DC : 1 cluster

Person 2
model-based Sm: 2 clusters matching-based Df : 3 clusters combination DC : 1 cluster

Figure 7: Illustration of the clustering results for the 3 methods discussed here. For each person and each method, all

the clusters containing that person are represented by 2 images per face track. Each row corresponds to an automatic

output cluster.


