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Abstract. In this work we address the problem of detecting instances
of complex shapes in binary images. We investigated the effects of com-
bining DoG and Harris-Laplace interest points with SIFT and HOOSC
descriptors. Also, we propose the use of a retrieval-based detection frame-
work suitable to deal with images that are sparsely annotated, and where
the objects of interest are very small in proportion to the total size of
the image. Our initial results suggest that corner structures are suitable
points to compute local descriptors for binary images, although there is
the need for better methods to estimate their appropriate characteristic
scale when used on binary images.
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1 Introduction

The interpretation of ancient Maya inscriptions requires the identification of the
basic individual components (glyphs) of the Maya writing system. Currently,
this identification process is performed manually by experts, who often need to
consult printed catalogs [1], [2]. However, often the size of the individual glyphs
is considerably small in proportion to the size of a complete inscription, thus
making laborious the manual detection process.

The complexity of the manual detection process increases if we take into con-
sideration that, it is a common feature of the Maya writing system to arrange
glyphs at arbitrary position within the inscriptions. Therefore, the implemen-
tation of techniques for automatic detection of these complex glyphs requires
special attention. Fig. 1 shows and example of a Maya inscription.

One issue related to the automatic detection of Maya hieroglyphs, is that
currently, the amount of annotated data that is available remains limited, thus
making difficult the implementation of supervised learning methods.

In this paper we present the results of an evaluation of shape descriptors
for the automatic detection of Maya glyphs, using weakly annotated binary

⋆ This work was conducted at Idiap as part of the first author’s doctoral research.
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Fig. 1: Maya inscription from the archaeological site of Yaxchilan, Mexico. In a
green rectangle, there is an instance of syllable u used as ground-truth for the
random block bounded by the blue rectangle. c© Image provided by archaeologist
Carlos Pallan (University of Bonn), we use this image with his consent.

images. We believe this work will have a positive impact on the daily work
of archaeologist diminishing the time required to decipher Maya inscriptions.
Namely, the contributions of this paper are:

1. The generation of a synthetic dataset of Maya syllables, which was gathered
to overcome the issue of only having few available instances in each visual
class. Because of the nature and visual complexity of its instances, this is a
unique and highly valuable dataset.

2. The approximation of the sliding-window detection approach by a retrieval-
based detection scenario. Our approach overcomes the issue of having only
few annotated data, which constrains the use of supervised learning methods.

3. The evaluation of two popular interest point detectors, and their combination
with two state-of-the-art image descriptors on the task of shape detection.
More precisely, the DoG [3] and Harris-Laplace [4] interest point detectors,
and the SIFT [3] and HOOSC [5] descriptors.

Note that the HOOSC descriptor builds on top of Shape Context (SC) [10],
and that was proposed to overcome some of its limitations when dealing with
shapes that are more complex than the brand logos SC was evaluated on.

The rest of this paper is organized as follows. Section 2 discusses the related
work in shape description and image detection. Section 3 introduces the dataset
we used in this work. Section 4 explains our experimental protocol. Section 5
discusses the results obtained with our approach. Finally, in section 6 we present
our conclusions and a discussion on the open issues.

2 Related work

The representation of shapes is a research topic with long tradition [6], [7], [8],
[9]. In a nutshell, shape descriptors differ according to whether they are applied
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to contours or regions, and whether they describe global or local patterns of
the shapes. For instance, descriptors based on moments are relatively easy to
compute, and they are robust against location, scale, and rotation variations
[6]. And Fourier descriptors work well for simple shapes of convex contours [7].
However, both of them perform poorly with affine transformations, and for com-
plex shapes whose instances have many local variations. Also, they need efficient
approaches to normalize descriptors derived from different shape signatures [8].

Shape context descriptors [10] incorporate robustness against affine varia-
tions, and are able to deal with shapes of high visual complexity [5]. However,
the size of the bounding box containing the shape of interest is of high rele-
vance for the normalization, which in principle is unknown on a detection setup.
Therefore, they are not suitable for detection purposes.

Several approaches have shown success in the task of detecting objects on
gray-scale images [11]. The common framework for image detection implements a
sliding-window, in which a classifier is used to evaluate sub-windows and decides
whether or not they contain the element of interest. However, such methods
require having enough amount of data to train the classifier. Another limitation
for using traditional gray-scale oriented approaches [3], is that they rely on local
regions of interest whose size is estimated using the information provided by
local intensity changes [4], and this information is absent in binary images.

Common approaches to deal with the problem of detecting shapes address
these issues by relying on shape information estimated upon gray-scale images,
i.e., by extracting contours and local orientations based on the local gradients
of intensity images rather than using binary images [12]. For instance, using a
networks of local segment as descriptors, and performing detection of shapes
belonging to classes that are relatively easy to differentiate in visual terms [13].

In contrast, in this work we address the problem of detection of complex
shapes that exist as binary images. These shapes belong to visual classes that
exhibit high levels of both inter-class similarity and intra-class variability, thus
making the problem more challenging. Also, we implement an ad-hoc approach
to address the issue of having limited amount of data to train a classifier.

3 Dataset

We use blocks randomly segmented from very large inscriptions to have a better
control over the experimental setup. The reason for this is that the inscriptions
are very sparsely annotated relatively to their size and content, such that there is
a high probability of detecting non-annotated true-positive instances. With this
purpose, we generated three set of images: ground-truth, positive, and negative
instances.

More specifically, we followed a five-steps process for data generation: (1)
First, we chose 24 visual classes of syllabic Maya hieroglyphs, and for each of
them, we manually located 10 different instances on a large collection of inscrip-
tions (thus, 240 instances). We labeled this set as ground-truth instances. The
reason to choose only 24 visual classes is because they correspond to the hiero-
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glyphs that were most commonly used, thus facilitating their manual location
and segmentation. (2) Then, we generated a random block for each ground-truth
instance. This generation of random blocks consisted in segmenting a sub-window
containing the ground-truth itself plus a surrounding area, with the restriction
that the left and right margins surrounding the ground-truth had a random
size between one and four times the width of the respective ground-truth, while
the top and bottom margins have random sizes between one and four times
the height of it. The decision to use such values is to generate random blocks
that contained enough visual information around the ground-truth, such that
the challenge of a realistic detection setup is kept. Fig. 2 shows the details of
the random block highlighted in Fig. 1. (3) The next step consisted in anno-
tating the random blocks, such that the bounding box of each ground-truth is
known, relative to the random block and not to the original large inscription,
i.e., once a random block was segmented, we annotated the coordinates x and y

where the ground-truth bounding box starts, and its corresponding width (w)
and height (h). (4) Later, we generated 20 variants of each ground-truth by ran-
domly shifting the position of its bounding box up to 0.2 times its width and
height respectively, and we annotated the location (x, y, w, h) of these variants.
This resulted in 200 instances per syllabic class that we labeled as positive. (5)
Finally, for each segmented random block, we annotated the location (x, y, w,
h) of all the existing bounding boxes that are of the same size as its respective
ground-truth, but that do not overlap with it. This last part resulted in 6000+
bounding boxes that we labeled as negative instances. On average, each block
contributed with 26.1 ± 16.0 negative instances.

Fig. 2: Random block extracted from the inscription shown in Fig. 1. The ground-
truth corresponds to an instance of syllable u, and it is inside the green rectangle,
the positive instances are marked with blue rectangles, and the red rectangles
indicate some of the negative instances.

In summary, the dataset is composed by 24 syllabic classes, in total containing
240 ground-truth instances (10 for each syllabic class), 4800 positive instances
(200 for each syllabic class), and 6000+ negative instances that do not belong to
any of the positive classes. By annotating the images in this way, we turned the
traditional detection approach based on sliding-windows into a retrieval-based
approach. This change avoids the risk of detecting non-annotated true-positive
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instances, and resulted in fast detection experiments, although at the price of
non-exhaustive scanning of the large inscriptions.

4 Experimental protocol

This section explains the experimental protocol followed to evaluate the detec-
tion performance achieved by using DoG and Harris-Laplace interest point, and
combining them with the SIFT and HOOSC descriptors. Table 1 summarizes
the combinations we evaluated.

Name Interest points Descriptor Input format

DoG-SIFT DoG SIFT shapes with thick contours

DoG-SIFT-thin DoG SIFT shapes with thinned contours

DoG-HOOSC DoG HOOSC shapes with thinned contours

HarrLapl-HOOSC Harris-Laplace HOOSC shapes with thinned contours

Table 1: Tested combinations of interest points and local descriptors for detection
of Maya syllables.

For the DoG and SIFT implementations we used the OpenCV libraries, and
we implemented the Harris-Laplace and HOOSC methods in Matlab. Since the
HOOSC descriptor was developed to deal with medial axes of shapes, and with
the purpose of comparing the two descriptors, we also computed DoG points
and SIFT descriptors for the thinned versions of the shapes, as shown in Table
1. Namely, we performed our experiments under the following six-steps protocol:

1. Interest point detection: First, we detected points of interest (DoG or
Harris-Laplace), along with their characteristic scales and local orientations
on the random blocks. For the computations of interest points we considered
each random block as a whole (i.e., the points of interest were not computed
individually per each bounding box), thus avoiding potential boundary ef-
fects as in a common detection setup.

2. Description: Second, we computed the local descriptors (SIFT or HOOSC)
using the point’s characteristic scales and local orientations. This computa-
tions were also performed over each complete random block.

3. Estimating visual vocabularies: After computing the sets of descriptors
for all the random blocks, we randomly drew 1000 descriptors (SIFT or
HOOSC) from each visual class and clustered them into 1000 “words”. To
do so we used the k -means clustering algorithm.

4. Indexing: Then, we constructed bag-of-visual-words (bov) representations
individually for each bounding box. The bov were constructed taking into
account only those points whose characteristic scale was relevant within the
current bounding box, thus excluding points that might contain more in-
formation about the exterior than about the interior of the bounding box.
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Therefore, we excluded: (1) points whose scale is much larger than the bound-
ing box, and (2) points near the the edge of the bounding box and whose
scale only intersects a small proportion of it. More specifically, we excluded
all those points whose ratio of intersection r = A/ (2s)

2
was below 0.5, where

s is the characteristic scale of the point, and where A is the intersection area
between the characteristic scale and the current bounding box.

5. Detection: After computing the bov representation of each bounding box,
we computed the euclidean distance from each ground-truth’s bov against
the bovs of all the positive and negative bounding boxes extracted from the
random blocks of the same class as the current ground-truth, i.e., we per-
formed detection on weakly annotated random blocks, looking for instances
for which we know they are present inside a given random block. Note that we
excluded the random block that contains the current ground-truth, as itself
and all its positive variants are easily detected. In practice, each ground-
truth is expected to have smaller distances to 189 bounding boxes (the other
9 ground-truth instances plus their 180 positive instances) than to the neg-
ative instances (on average, 234.8 negative bounding boxes per class). Thus
our detection method is not a classical exhaustive sliding-window but an
approximation based on a retrieval approach.

6. Evaluation: Finally, we ranked all the bounding boxes based on the com-
puted distances, and evaluated the detection performance in terms of,

– ROC curves. Comparing the mean average detection-rate (mA-DR) ver-
sus the mean average false-positive-rate-per-window (mA-FPPW) at var-
ious threshold values.

– Curves showing the average-precision achieved at different top-N posi-
tions of the ranked subwindows.

– The mean Average Precision (mAP).

Note that the HOOSC descriptor, as described in [5], has five main charac-
teristics. Namely, (1) it uses thinned versions of the shapes, (2) estimates local
descriptors only for certain locations (termed pivots) with respect to whole set
of points in the thinned shapes, (3) computes an histogram of local orientations
in each of the regions of a polar grid around each pivot, (4) in turn, the spatial
scope of the polar grid is defined as a function of the average pair-wise distance
between all the point in the thinned shape, and (5) the explicit relative position
of the pivot to be described may be used as a part of its own descriptor.

These characteristics of the HOOSC descriptor work well in tasks such as
classification and retrieval of shapes that have been previously segmented and
where the instances are not rotated or reflected. However, such assumptions
are not true in the case of a detection setup. For our experiments, it was not
possible to compute the spatial scope of the polar grid as a function of the pair-
wise distances of the contour points, as the correct size of the bounding box
is unknown a priori, and evaluating all possible sizes would result impractical.
Therefore, we made use of the characteristic scale of the interest point (DoG or
Harris-Laplace) at which the descriptor is computed. More precisely, the polar
grid we implemented has two local rings with boundaries at 0.5 and 1.0 times
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the characteristic scale of the interest point. Also note that we did not use the
explicit relative position of the pivots in their description, as the size of the
candidate bounding boxes is assumed to be unknown, and also because some
elements might be rotated within the inscriptions.

5 Results

The ROC curves in Fig. 3 show that the use of DoG points with thinned contours
gives detection rates close to chance, both with SIFT and HOOSC descriptors
(green and red curves, respectively). This observation is not especially surprising
as binary images lack of intensity information which is the main clue to localize
DoG interest points and to estimate their characteristic scale. The motivation
to use DoG points in thinned shapes was based on the high frequency of blob
structures present in the Maya syllables. However, some times of the DoG interest
points correspond to large blob structures that encompass visual information
beyond the locality of the glyph of interest, which in practice, were excluded as
explained in section 4. This in turn, resulted in poor shape representations.
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Fig. 3: ROC curves showing the detection performance of different combinations
of interest point detectors and shape descriptors.

Note that the detection rate is relatively increased with the estimation of
DoG points on the original shapes that have thick contours (blue curve in Fig. 3),
this is mainly explained by the used of the Gaussian convolutions that smooth
the thick contours and approximate intensity values on the resulting image.
Moreover, the use of Harris-Laplace interest points resulted in a slightly increased
detection rate when used on thinned shapes (see cyan curve Fig. 3).

In terms of retrieval precision, the relative difference among the four methods
remains proportional to their ROC curves, as shown in Fig. 4a. The slight peak in
the retrieval precision at position 21 results because some classes have instances
very similar to one another, such that for a given query (ground-truth instance),
the 21 bounding boxes (ground-truth + positive instances) of (at least) one
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relevant random block are well ranked at the top of the retrieved vector. To
better illustrate this, we recomputed the average precision regrouping the ranked
vectors into two sub-groups: one with the queries whose precision curves remain
equal to 1 at the 21-st position, and the other with the remaining queries. These
results are shown in Fig. 4b, where the solid curves (named XXX-01) show the
average precision for the first set, and the dashed curves (named XXX-02) show
the average precision of the second set. This said, some visual classes are very
easy to retrieve, whereas some others are quite hard.
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Fig. 4: Average retrieval precision achieved by the different combinations of in-
terest point detectors and shape descriptors. (a) ROC curves, and (b) mean
Average Precision curves at top N, plotted for different combinations of interest
points and images descriptors evaluated in detection experiments.

The cyan solid curve in Fig. 4b corresponds to HOOSC descriptors com-
puted at Harris-Laplace interest points. Note that this curve remains with good
precision values at the 40-th position of the top N vector. Thus indicating that
this combination of interest points and descriptor works well in general terms.
To summarize the retrieval performance of the tested combinations, we present
their mean Average Precision (mAP) in Table 2. Note that the use of corners as
interest points achieves better performance than blob structures. Finally, Table
3 shows visual examples of the detection obtained using Harris-Laplace points
with HOOSC descriptors.

Method DoG-SIFT DoG-SIFT-thin DoG-HOOSC HarrLapl-HOOSC

mAP 0.614 0.449 0.440 0.646

Table 2: Mean average precision (mAP) for the combinations of interest points
and local descriptors tested for detection of Maya syllables.
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Top
Query 1 2 3 4

Table 3: Visual examples of detection with Harris-Laplace interest points and
HOOSC descriptors. The first random block in each row contains a query inside
a blue rectangle (ground-truth). The next four random block correspond to the
four most similar bounding boxes according to the method, where green rectan-
gles indicate correct detection, and red rectangles indicate erroneous detection.

6 Conclusions

In this work we explored an initial approach for detection of complex binary
images (syllabic Maya hieroglyphs), evaluating the performance of DoG and
Harris-Laplace interest points combined with SIFT and HOOSC descriptors.

We presented a controlled retrieval-based framework for detection that can
be used as an alternative resource when the data is sparsely annotated, thus
avoiding the risk of detecting non-annotated true-positive instances. This setup
also avoids the exhaustive scanning of the traditional sliding-window approach.

Our results show that regardless of the local image descriptor, the use of
DoG points with thinned contours gives detection rates close to chance as a
consequence of the lack of intensity information in binary images. A slightly
better performance is achieved by using thicker contours since the Gaussian
smoothing approximates some sort of intensity information. Moreover, the use
of corner detectors seems suitable for local description of complex binary images,
as shown by the detection rates obtained by the Harris-Laplace interest points.
In terms of retrieval performance, the HOOSC descriptor achieves competitive
results, specially when it is combined with Harris-Laplace interest points.
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It is important to remark, that this initial stage suggests the need for interest
point detectors specially tailored for binary images, such that regions of interest
are located within the shape along with their characteristic scales, and therefore,
shape descriptors that have proven successful with segmented shapes can be used
also for detection.
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References

1. J. E. S. Thompson.: A Catalog of Maya Hieroglyphs. Norman : University of Okla-
homa Press, 1962.

2. M. Macri and M. Looper.: The New Catalog of Maya Hieroglyphs, volume 1, The
Classic Period Inscriptions. University of Oklahoma Press : Norman, 2003.

3. D. G. Lowe.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, November 2004.

4. K. Mikolajczyk and C. Schmid.: Scale and Affine Interest Point Detectors. Interna-
tional Journal of Computer Vision, 60(1):63–86, 2004.

5. E. Roman-Rangel, C. Pallan, J.-M. Odobez, and D. Gatica-Perez.: Analyzing An-
cient Maya Glyph Collections with Contextual Shape Descriptors. International
Journal in Computer Vision, Special Issue in Cultural Heritage and Art Preserva-
tion, 94(1)101–117, August 2011.

6. M.-K. Hu.: Visual Pattern Recognition by Moment Invariants. IEEE Transactions
on Information Theory, 8(2):179–187, February 1962.

7. C.T. Zahn and R.Z. Roskies.: Fourier Descriptors for Plane Close Curves. IEEE
Transactions on Computers, 21(3):269–281, 1972.

8. D. Zhang and G. Lu.: Review of Shape Representation and Description Techniques.
Pattern Recognition, 37(1):1–19, 2004.

9. M. Yang, K. Kpalma, and J. Ronsin.: A Survey of Shape Feature Extraction Tech-
niques. Pattern Recognition, 43–90, 2008.

10. S. Belongie, J. Malik, and J. Puzicha.: Shape Matching and Object Recognition
Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(4):509–522, June 2002.

11. P. A. Viola and M. J. Jones.: Rapid Object Detection using a Boosted Cascade
of Simple Features. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, June 2001.

12. N. Payet and S. Todorovic.: From Contours to 3D Object Detection and Pose
Estimation. IEEE International Conference on Computer Vision, November 2011.

13. V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid.: Groups of Adjacent Contours for
Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(1):36–51, 2008.


