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Abstract
Location-based social networks, in addition to revealing
users’ online social network, also informs users’ actual
movements in the offline physical world. Due to this, they
have recently been used in large-scale mobility and urban
studies. In this paper, using a rigorous statistical
methodology, we have found that a rank-distance
distribution, which in recent research has been suggested
to be a universal mobility law across cultural, demographic
and national boundaries, does not follow a power-law
distribution as originally claimed. Using a large-scale
dataset obtained from Foursquare in Switzerland and New
York City, we have shown that place transitions can be
better explained using a log-normal and power-law with
exponential cutoff model. Our study suggests that urban
mobility patterns are more nuanced than previously
reported and that goodness-of-fit tests need to be done in
view of the generality of human mobility models.

Author Keywords
Mobility Models; Location-based Social Networks;
Foursquare; Human Mobility; Spatial Data

ACM Classification Keywords
H.2.8 [Database Management]: Database Applications,
Spatial databases and GIS, Measurement.



1 Introduction
In the last 5 years, sensor-rich mobile devices and online
social networks have experienced an exponential rise.
Fueled by their growth, location-based social network
(LBSN in short) have emerged, which combine the
sensing capabilities of smartphones with the friendship
structure of online networks. LBSNs have opened new
paths to understand linkages between the virtual and
physical worlds. In addition to revealing information about
users online social network, these networks also inform
about their actual movements in the physical world. The
combination of network structure along with highly
granular mobility information provide unprecedented
amount of user behavioral data to study and model human
mobility patterns at a scale which was not feasible before.

In a typical LBSN, users voluntarily announce their arrival
to a given place (a process known as check-in) and share
information about their visits to places with everyone in
their friendship circle. LBSNs are manual check-in
systems [6], wherein users, based on their personal
preferences and various social/monetary incentives, have
complete control over when, where and to whom they
would like to disclose their place visitations.

In the research community, all empirical analyses on
LBSNs so far have been based on a sample of global
movements of people in space and time due to the
inherent nature of data collection [8, 2, 6]. Due to
restrictive programming interfaces, primarily due to
privacy concerns, it is not possible to publicly collect
user-level mobility data for all users of a location-based
service. For instance, Foursquare, the world’s leading
LBSN, does not allow to collect user-level check-in data.
Typically, a sample of Foursquare public check-ins are
instead collected via Twitter’s streaming API for all those

users who post their check-in updates on their Twitter
account as well [9, 2]. As a result, data obtained from
services like Foursquare, represent only a fraction of
human movement patterns. In this paper, we assume that
mobility patterns captured via LBSNs are a representative
sample of global movements and thus useful to study
human urban mobility.

Studying human mobility has been an area of active
research in recent times [1, 5, 12]. There is a substantial
body of work – qualitative and quantitative – in the
literature which have looked into how people move around
in the physical world and the inherent motivation and
costs associated with mobility [10, 13]. Analyzing mobility
patterns – especially in urban areas – is crucial from a
societal point of view as it has implications to transport
planning, urban studies and management, epidemic spread
and emergency response. As a result, a lot of effort in the
research community has gone into finding laws and models
to characterize the heterogeneity of human movements
across different urban regions. In this paper we take a
critical look into one such model for human mobility.

A recent study has identified universal urban human
mobility patterns using data obtained from Foursquare [8].
This study has proposed that the probability of visiting a
place, when measured as a function of rank-distance (i.e.,
the number of intermediate places between source and
destination, as opposed to mere physical distance between
them), exhibit consistency which cuts across cultural and
national boundaries. In this paper, we statistically
examine whether this particular rank-based model holds
true on an independently collected data. To undertake
this analysis, we have collected and analyzed Foursquare
dataset consisting of more than 660,000 check-ins from



within Switzerland and New York City. In summary, we
address the following research questions:

1. Does the rank-distance follow a power-law like
distribution, as suggested in earlier research?

2. If it does not follow a power-law like distribution,
which other heavy-tailed distributions can better
describe human transitions between places?

To answer these questions, we base our statistical analysis
following the seminal work by Clauset et al. [3]. Their
paper provides a statistical framework to estimate power
law fit for empirical distributions, compute the
goodness-of-fit tests for a power-law like behavior, and
statistically compare and evaluate alternative heavy-tailed
distributions in favor of (or against) a power-law
distribution.

2 Existing Models of Human Mobility
Modeling and analyzing human movement patterns have
been an area of research and debate in the scientific
community. Various models of human mobility have been
proposed in the literature, ranging from distance-based
models to gravity-based models to rank-based models. In
recent times, due to the availability of large-scale datasets
obtained from mobile sensing and online social networks,
it has become possible to validate these models at a scale
and a spatial resolution which was not feasible earlier. In
this section we highlight two well-known models which
have been proposed to capture the heterogeneities of
human mobility.

2.1 Distance-based Model

The first model states that the probability of moving
between places decreases as the geographical distance

between the locations increases. In other words, the
probability of traveling from source (s) to destination(d),
P [s → d], decreases as a power of distance between them,
r(s, d). Mathematically it is given by:

P [s → d] ∝ r(s, d)−α

In recent times, one of the influential works to empirically
validate this model has been reported in [5]. Using
large-scale cellular data records (CDR) obtained from
mobile operators, the authors propose that human
displacements are well approximated by a truncated power
law distribution (a.k.a. power law with exponential cutoff,
defined in Section 4.3) with scaling exponent (α) equal to
1.75 (±0.15).

2.2 Rank-based Model

A second model, recently proposed by [8] states that
absolute physical distance is not the decisive factor in
modeling human displacements. Instead, they suggested a
rank-based model inspired by Stouffer’s theory of
intervening opportunities [13], which says that the
probability of traveling from source to destination is
directly proportional to the number of opportunities closer
to source than destination. Mobility thus is driven by a
spatial distribution of opportunities, as opposed to mere
physical distances. This model further proposes that
transition probability varies inversely as a power of
rank [8]. Formally, the rank of a transition is defined as
the number of intermediate places which between source
and destination. As per the rank-based model, for a
scaling exponent α, the transition probability from source
(s) to destination (d), P [s → d] is described as:

P [s → d] ∝ ranks(d)
−α

where ranks(d) is defined as the total number of places
geographically closer to source than the destination.



Transitions with a place rank of 1 implies that user has
checked in to the same place again, i.e., ranks(s) = 1 for
all places.1

As stated in the Introduction (Section 1), Noulas et al. [8]
have reported that the distance-based model for human
mobility does not exhibit universal properties, but instead
human transitions are better explained using a rank-based
model. In other words, their paper has suggested that
rank-distance distribution follows a universal power-law
model.

3 Dataset
In this paper, we present our analysis based on check-in
dataset from Foursquare. Foursquare currently reports
having over 3 billion check-ins from over 30 million users
worldwide [4]. To respect users’ privacy, Foursquare does
not provide any direct mechanism to gather user-level
check-in data. A common practice, therefore, is to collect
check-ins via Twitter streaming API for all those users
who post their check-in updates on their Twitter account
as well. We have used this workaround to gather our
dataset. Our current analysis is based on two different
datasets, which are described below:

1. Swiss Check-in Dataset: We collected check-in
data within Switzerland (CHE) using the data
collection methods described above. The dataset
spans more than 62,000 check-ins from 15,845 users
over a period of 6 months between December 2011
and June 2012. In addition, we have also analyzed
the movement trajectories from within the Zurich
(ZRH) canton, which includes the largest Swiss city

1To look at the results with ranks(s) = 0, as defined in
Noulas et al. [8], refer to the supplementary material here:
http://idiap.ch/~dsantani/papers/purba13-suppl.pdf

(Zurich) and its vicinity. Within Switzerland, ZRH
canton has the largest Foursquare contribution
amongst all 26 cantons, comprising of more than
30% of national check-ins.

2. NYC Check-in Dataset: The second dataset is
obtained directly from Cheng et al.[2], which spans
22 million check-ins from 220,000 users across the
globe. In this paper, we restrict our analysis to
check-ins from New York City (NYC) only. The
NYC dataset consists of over 600,000 check-ins over
318 days starting in March 2010.

Table 1 lists the basic statistics of datasets summarized
above. Based on these statistics, it is easy to compare the
relative popularity of Foursquare in New York City with
Switzerland.

ZRH CHE NYC
Number of Users 2,003 4,968 19,294
Number of Places 4,078 15,845 18,612
Number of Check-ins 19,333 62,714 602,898
Period of Analysis (days) 185 185 318
Area (in km2) [15] 1,729 41,285 784

Table 1: Summary Statistics of Foursquare Dataset

4 Analysis
Now that we have described the Foursquare dataset in
detail, in this section we present our rigorous statistical
analysis. First, we fit a power-law model to the dataset,
then we perform the goodness-of-fit tests to statistically
validate the power-law hypothesis, and last but not least
we evaluate alternate heavy-tailed distributions in favor or
against the power-law distribution.

http://idiap.ch/~dsantani/papers/purba13-suppl.pdf


4.1 Fitting Power Law to Foursquare Data

In this section we focus our attention towards fitting the
power-law distribution, in particular computing the scaling
exponent α for our dataset.

4.1.1 Estimating the Scaling Exponent
We begin our analysis assuming a power-law like
distribution for transition ranks. We compute ranks for
every place transition and approximate a power-law fit
using the methods described in [3]. More precisely, we
approximate our discrete place-rank dataset to be a
continuous distribution, and apply the method of
maximum likelihood to estimate the scaling parameter, as
given by the following equation (For mathematical
derivations and proofs, the reader is referred to [3]):

α ≃ 1 + n

[

n
∑

i=1

ln
xi

xmin − 1

2

]

In the above equation, xmin indicates the place rank x,
where the power-law scaling begins. A priori we do not
know the place rank where the scaling begins, and
moreover we are interested in estimating the fit for the
complete dataset. So, we have set xmin to be 1 for now.
With this choice, we have obtained a scaling exponent
α = 1.18, 1.18 and 1.16 respectively for Switzerland,
Zurich and NYC respectively, shown in Table 2. These
values are similar to exponent values of 0.88 and 0.93
obtained in [8] and [6], which points towards the similarity
of our dataset with ones used in these earlier studies. To
the best of our knowledge, [8] and [6] have computed the
scaling parameter on the whole dataset i.e., by setting
xmin to 1.

xtotal x0.25 x0.50 α p

ZRH 17,330 11 216 1.18 0.00
CHE 57,746 12 158 1.18 0.00
NYC 583,604 1 1,171 1.16 0.00

Table 2: Summary statistics for different regions. x stands for
a place rank. x0.25 and x0.50 represent the first and second
quantile of place ranks respectively. α indicates the power-law
exponent fitted to the entire dataset, with the given p-value.
Statistically significant p-values are shown in bold (i.e., no
statistical significance is found for the power-law fit)

Note that in our analysis we have adopted the definition
of a place rank as described in Section 2. Transitions with
a place rank of 1 implies that user has checked in to the
same place again. From Table 2, we observe that in NYC
more than 25% of place ranks (x0.25) are 1. That is, one
quarter of place transitions in NYC are happening to the
same venue, albeit at different times. While in CHE,
consecutive visits to the same venue happen in over
10.5% of total transitions. We can think of one possible
explanation for this phenomenon: Foursquare provides
monetary and social incentives (badges, crowns,
mayorship, etc.) to users who have performed the
maximum number of check-ins to a given place. Due to
the inherent game mechanics, users are incentivized to
check in to the same venue time and again. This trend
might simply be more popular in NYC than in Switzerland.

4.1.2 Visual Inspection
A typical characteristic of power-law behavior is that if the
underlying variable is distributed as per the power-law,
then the probability distribution function (PDF) and the
complementary cumulative distribution function (CCDF)
will be a straight line on log-log axes. It is important to
realize that having a straight line on a log-log PDF plot is



a necessary but not sufficient condition for power-law like
behavior [14].
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Figure 1: PDF of rank-distance
on log-log scale for Switzerland.
(Best viewed in color)
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Figure 2: PDF of rank-distance
on log-log scale for NYC. (Best
viewed in color)

In order to visually reveal the power-law nature of the
rank-distance distribution, Figure 1 and 2 show the PDF
of place ranks on logarithmic scale for Switzerland and
New York City. Due to space constraints, we have omitted
the PDF plot for Zurich, though the plot looks similar to
the one obtained for Switzerland. Figure 1 and 2 also
demonstrate fits for competing heavy-tailed distributions
(discussed in Section 4.3). The blue curve indicates
power-law fit to the data, with the green curve indicating
a log-normal fit, while the red curve highlighting a
power-law fit with exponential cutoff. We also show a
purple curve which depicts the “universal” scaling
exponent (with α as 0.88 and intercept value of 0.24) as
estimated by [8]2. Based on visual inspection alone, it
appears that power-law is not the most suitable fit; rather
power-law with exponential cutoff provides the best
possible fit, though log-normal also looks like a better fit
when compared against a pure power-law. (We will
discuss this issue in detail in Section 4.3)

It is evident from Figures 1 and 2 that the PDF plot is
noisy in its right fat tail, due to a sudden drop in the
number of high-ranked transitions. More than 73% of all
transitions in Switzerland happen to destinations with a
rank of less than 1000, while it is over 48% for NYC. Due
to the inherent noise in the tail, it is often useful to
consider the CCDF of a power-law distributed variable.
We show the CCDF plots in Figures 3 and 4 along with
the respective distribution fits (as in Figures 1 and 2).
Again from these figures, it is evident that the cutoff
power-law model provides a better fit for our data.

2Noulas et al. [8] has used “least squares based optimization” to
estimate the scaling exponent.

4.1.3 Estimating the Lower Bound Parameter
While estimating the scaling exponent in Section 4.1.1, we
have assumed xmin to be known, and set its value to 1 in
order to estimate the fit for the whole dataset. In this
section, we relax this assumption and compute an optimal
xmin where the power-law scaling begins, assuming a
power-law like distribution for data above xmin.

As in Section 4.1.1, we have followed the statistical
methods described in [3] to compute the lower bound for
the scaling region. In brief, we choose x as xmin, which
minimizes the distance between probability distributions of
observed empirical data and the best-fit power-law model.
The Kolmogorov-Smirnov (KS) statistic [7] is used to
measure the distance between the respective distributions.
In practice, we iterate through all possible values of x and
compute KS statistic (denoted by D) between our data
and the model that best fits the data above xmin. Once
we have D values for every x, the x which minimizes D is
our lower cut-off parameter xmin, and the exponent α
corresponding to xmin is the power-law scaling exponent
α in the region x ≥ xmin.

Table 3 lists the respective xmin and α for all regions
under investigation. We make several observations. First,
it is evident that these regions have different power-law
exponents, even when we account for different scaling
regions. Second, we observe that for all regions, xmin is
significantly large relative to the maximum possible rank
(xmax). For NYC with xmin = 8266, we are only fitting
the model to about 19% of the dataset; while for CHE,
the fit is to only 15% with the computed lower bound.
Given that the dataset is quite noisy in its right tail
(Figures 1 and 2), it is hard to expect a pure power-law a
possible explanation to model place transitions on, even if



it is able to explain, it is definitely not applicable to all
place transitions.

xtotal xmax xmin α p

ZRH 17,330 4078 1,527 2.97 0.00
CHE 57,746 15,802 2,488 2.34 0.00
NYC 583,604 18,609 8,266 3.50 0.00

Table 3: Summary statistics for different regions, along with
power-law parameters with p-values. xmin informs the x value
where power-law scaling begins with α as the scaling exponent
and xmax refers to the maximum place rank observed in the
data. Statistically significant p-values are shown in bold.(i.e.,
no statistical significance is found for the power-law fit)
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Figure 3: CCDF of rank-distance
on log-log scale for Switzerland.
(Best viewed in color)
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Figure 4: CCDF of rank-distance
on log-log scale for NYC. (Best
viewed in color)

4.2 Goodness-of-Fit Tests

Before claiming whether power-law is a plausible fit for a
given dataset, it is crucial to perform goodness-of-fit
tests, in addition to statistically comparing the power-law
with alternative heavy-tailed distributions [14]. In this
section, we take a critical look at the power-law
assumption for rank-distance distribution in the context of
human mobility.

Instead of pursuing a purely qualitative analysis of the
dataset (e.g., based on visual inspection), we
quantitatively test the power-law hypothesis. We estimate
the goodness-of-fit of power-law distribution using the KS
statistic, to measure the similarity (or differences) between
our dataset and hypothesized power-law model. Rather
than describing the method here, we refer the readers to
[3] (section 4, page 675) for a detailed statistical
explanation. We wish to highlight the interpretation of
p-value which is obtained as a result of the goodness-of fit
test: p-value has an inverse interpretation, compared with
significance testing – the higher the p-value, the higher

the chance of observed data to follow a power-law like
distribution, and vice-versa.

Tables 2 and 3 list p-values for a plausible power-law
model for the three regions under study. In all the
experiments in Section 4.1.1 and 4.1.3 (i.e., with or
without an estimated lower bound), we have obtained a
p-value of 0, implying that the likelihood of the power-law
model to fit the observed place ranks is negligible. The
question thus arises is: if the place-rank distribution does
not follow a power-law model, which other heavy-tailed
distributions can better describe them? We investigate
this issue in the next section.

4.3 Alternative Models

Now that we have obtained statistical evidence to suggest
that place transitions do not follow a power-law model as
a function of rank, we turn our attention towards finding
competing distributions, if they exist, which can possibly
explain a better fit. Our goal is to find a good model, that
is a model which can explain our data well, as opposed to
an “ideal” model. To compare power-law nature of
rank-distance distribution, we have chosen two similar
heavy-tailed distributions which are listed below:

1. Log Normal, parameterized by µ and σ takes the
form,

f(x) =
1

x
exp

[

−
(ln(x)− µ)2

2σ2

]

2. Power Law with Exponential Cutoff,
parameterized by the scaling exponent αE and
decay rate λ. Mathematically, it is described as:

f(x) = x−αEe−λx

Note that a pure power-law is the limiting case of
cutoff power-laws, which arises when λ → 0.



Log Normal Power Law with Exp. Cutoff
LR p µ σ LR p αE λ (×10−4)

ZRH -3,330.26 0.00 4.09 3.31 -6,294.633 0.00 0.86 2.4
CHE -10,471.73 0.00 3.97 3.37 -16,570.95 0.00 0.93 1.2
NYC -60,844.73 0.00 3.39 5.01 -198,489.1 0.00 0.91 0.40

Table 4: Distribution parameters for log normal and power law with exponential cutoff models. Log-likelihood ratios (LR) are also
shown along with their respective p-values. Statistically significant p-values are shown in bold.

In Section 4.1, Figures 1, 2, 3 and 4 illustrate the fit of
these alternate models to our data. Furthermore, we have
performed statistical tests to compare power-law with the
above distributions. Table 4 lists the parameters for
respective distributions for ZRH, CHE and NYC. In
addition, it also reports log-likelihood ratios (LR) for both
distributions in comparison with a pure power-law. Note
that the comparison with the power-law distribution has
been performed with xmin set to 1, i.e., for the complete
dataset.

Note that LR with a negative sign favors the competing
distribution over a pure power-law, while the p-value
indicates its statistical significance. Higher the p-value,
higher is the chance that observed sign of LR is a result
of statistical fluctuations and thus the alternative
distribution hypothesis can be rejected. (It is important to
observe that the interpretation of p-value in this section
differs from the interpretation described in Section 4.2.)
From Table 4, it is clear that log-normal and cutoff
power-laws are preferred over pure power-law model due
to significant p-values (p < 0.05). We have obtained
identical results for all three geographical regions,
highlighting the fact that rank-distance distributions are
better explained using cutoff power-law model as opposed
to a pure power-law model.

5 Discussion and Conclusion
Modeling and analyzing human movement patterns have
been an area of research and active debate in the scientific
community. Various models of human mobility have been
proposed in the literature. In recent times, due to the
availability of large-scale spatial datasets obtained from
location-based services like Foursquare, it has become
possible to empirically validate some of these models at a
scale, which was not feasible earlier.

In this paper, using data obtained from these services, we
have taken a critical look into the power-law hypothesis of
the rank-based model to characterize human mobility. We
have found that the rank-distance distribution does not
follow a pure power-law on an independently collected
Foursquare data of a country (Switzerland), canton
(Zurich) and a major metropolitan (New York City).
Instead, we have observed that the rank-distance can be
better explained using a power-law with exponential cutoff
model, as opposed to a pure power-law model. We have
performed the statistical analysis on this dataset and
found results to be consistent.

We wish to highlight that even though we have observed
the cutoff power-law parameter αE , to be consistent
across the three studied regions with values in the range
of 0.86− 0.93 (Table 4), we do not claim a cutoff



power-law model as the “universal” mobility model to
explain human transitions. Furthermore, we clearly do not
imply that these results hold true for other datasets from
which human movement trajectories can be inferred such
as cellular data records [5], GPS traces obtained from
taxicab movements [11], etc. This has to be empirically
verified and will be investigated as part of the future work.

Our study suggests that urban mobility patterns are more
nuanced than previously reported in the literature and
that rigorous statistical analysis including goodness-of-fit
tests should to be performed in view of the generality of
human mobility models.
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