
Learning to Rank on Network Data

Majid Yazdani
Idiap Research Institute/EPFL

1920 Martigny, Switzerland
majid.yazdani@idiap.ch

Ronan Collobert
Idiap Research Institute

1920 Martigny, Switzerland
ronan.collobert@idiap.ch

Andrei Popescu-Belis
Idiap Research Institute

1920 Martigny, Switzerland
andrei.popescu-
belis@idiap.ch

ABSTRACT
This paper proposes a method for learning to rank over
network data. The ranking is performed with respect to
a query object which can be part of the network or out-
side it. The ranking method makes use of the features of
the nodes as well as the existing links between them. First,
a neighbors-aware ranker is trained using a large margin
pairwise loss function. Neighbors-aware ranker uses target
neighbors scores in addition to objects’ content and there-
fore, the scoring is consistent in every neighborhood. Then,
collective inference is performed using an iterative ranking
algorithm, which propagates the results of rankers over the
network. By formulating link prediction as a ranking prob-
lem, the method is tested on several networks, with pa-
pers/citations and webpages/hyperlinks . The results show
that the proposed algorithm, which uses both the attributes
of the nodes and the structure of the links, outperforms sev-
eral other methods: a content-only ranker, a link-only one,
a random walk method, a relational topic model, and a me-
thod based on the weighted number of common neighbors.
In addition, the propagation algorithm improves results even
when the query object is not part of the network, and scales
efficiently to large networks.

1. INTRODUCTION
The ranking problem over relational data, such as social
networks, is defined as follows: given a query object, all
the objects in the network must be ranked by decreasing
relevance or relatedness with respect to this object, which
may or may not be already part of the network. When the
query object is already part of the network, some relations
with other objects, represented by directed or undirected
edges, are known. In this case, link-based approaches such as
random walk models can provide an effective solution for the
ranking problem. However, when the query object is not in
the network, link-based approaches are not applicable, and
supervised learning over node attributes must be considered
for learning to rank.

To illustrate our proposal, let us consider a network made of
scientific papers (objects) linked by citations between them
(relations). Given a “query” paper, the goal is to rank all
papers in the network according to a score that reflects the
likelihood or appropriateness of being cited by this query
paper. If the network is made only of completed papers,
then this score should distinguish the papers actually cited
by the query paper (high scores) from all those that are not
cited (low scores). However, higher scores may also indicate

papers that should have been cited but were not, or, con-
versely, citations that were spuriously inserted. The utility
of the ranking task is more obvious for recommending ci-
tations to include in a new paper that is being written (an
object outside the network if it makes no citations yet) or to
extend an existing draft (an object already within the net-
work if it makes some citations). In both cases, the goal is
to compute a ranked list of recommendations for additional
citations. Similarly, new connections in social networks can
be recommended using the same model.

In this paper, we will show that relations between objects
in a network can be used in both situations to increase the
accuracy of ranking with respect to a given query. We will
show how to unify the two above-mentioned approaches to
ranking, and make use of the attributes of objects and of
the relations between them at the same time. We propose
to model the dependencies between the objects of a net-
work, for the ranking problem, by using: (1) a neighbors-
aware ranker based on the features of the objects along with
neighborhood information; and (2) a collective inference al-
gorithm which propagates the results of the neighbors-aware
ranker in the network. We will show that the results ob-
tained by using jointly the neighbors-aware ranker and the
collective inference algorithm improve over a variety of state-
of-the-art techniques: a content-only ranker, a link-only ran-
ker, a random walk model, a relational topic model, and a
common-neighborhood method.

For applications and evaluation, we will study link predic-
tion, which is an instance of the ranking problem. Indeed,
in this situation, given a query object, all other objects (i.e.
nodes in the network) must be sorted according to the likeli-
hood of creating a link between them and the query object.
Link prediction is a binary ranking problem; the loss func-
tion used for training rewards a higher ranking of the objects
that are actually linked in the network. This formulation
has been used in several previous studies [15, 1, 3, 20, 2]. In
the rest of this paper, we focus on binary ranking, although
the proposed algorithms can be generalized to other ranking
problems as well.

The paper is organized as follows. In Section 2 we define the
ranking method on network data, first by introducing the
neighbors-aware ranker and then by defining the collective
inference algorithm. In Section 3 we evaluate the proposed
method on several different data sets, and in Section 4 we
compare our proposal to previous work.

2. LEARNING TO RANK ON A NETWORK
Homophily is the tendency for two nodes having similar “so-
cial characteristics” to have a higher probability of being
linked together. Homophily is an important and widely ac-
cepted notion in the study of social networks, which ap-
plies to network relations of many types, such as marriage,
friendship, work, advice, support, information transfer and
co-membership [17]. The social characteristics of nodes are
derived from various attributes of the nodes, for example
age, sex, geographic location, college/university, work place,
hobbies/interests. Homophily, though, might not hold in the
space of the attributes: for example, marriage usually occurs
between different genders (in most countries). We can con-
clude from the homophily principle that for a given query,
the scores of the linked objects should be consistent, because
it is likely that these objects have similar social characteris-
tics.

In the classification of network data, homophily is exploited
by using collective classification algorithms [13], in which a
classifier is trained to classify each object by using at the
same time the features of the object and the labels of other
objects in its neighborhood. A collective inference algorithm
propagates the results of the local classifiers in the network.
For ranking on a network, we draw here inspiration from
this approach to define a collective ranking method which
consists of three parts:

1. The content-only ranker learns to rank only by using
a similarity function on the attributes of nodes, while
ignoring relations between them. This ranker embod-
ies the approach which is traditionally used in learning
to rank problems.

2. The neighbors-aware ranker learns to rank by using
the information that is locally available at each node,
coming from its attributes and its neighborhood (here,
limited to first-degree neighbors).

3. The collective inference algorithm propagates the re-
sults of local rankers over the network, inspired by an
existing collective inference method [16].

2.1 Neighbors-aware Ranker
The neighbors-aware ranker returns a score that is a function
of a query, a target node, and the neighborhood scores of the
target node. More formally, the neighbors-aware ranker is
noted as ψ(xq, xt, N̄(q, t)), in which xq and xt represent re-
spectively the features of the query and target nodes, and
N̄(q, t) represents the average score of the target’s neighbor-
hood. The domains of the ψ function are ψ : R2F+2 → R,
where F is the size of the feature space. For the sake of sim-
plicity, and to follow common practice in learning to rank,
we define ψ as a linear function of the similarity between
query and target, and the neighbors score, although other
learners can also be considered [6, 11] :

ψ(xq, xt,N (q, t)) = similarity(xq, xt)︸ ︷︷ ︸
content-only

+ α N̄(q, t)︸ ︷︷ ︸
neighbors

.

The first part, similarity(xq, xt), is a content-only ranker
which computes the similarity between q and t based only

on their attributes, as proposed by most previous learning
to rank methods, e.g. RankNet [7], polynomial semantic in-
dexing [5] or structure preserving metric learning [20]. Here,
we define the similarity function as: similarity(xq, xt) =
xq ×M × x′t. The M matrix is a F × F matrix, where F
is the number of features representing the nodes, e.g. the
number of content words for text-based nodes. In practice,
to make training and storage possible, some constraints on
M are considered, such as using a diagonal matrix or per-
forming low-rank factorization [5, 20].

The second part, i.e. the neighborhood score N̄ , represents
the contribution of the score of the neighbors of t with re-
spect to q. This factor maintains consistency between scores
in a neighborhood. For instance, if t’s neighbors have high
scores, t itself should have high scores as well. This takes
into account the dependencies between objects, and allows
us to perform collective ranking instead of local ranking only.
As in our applications we use directed graphs, we consider
two types of neighbors: neighbors from in-links (Nin(t)) and
neighbors from out-links (Nout(t)). We define N̄ recursively
as follows (where ψ(xq, xn, N̄(q, n)) is shortened as ψ):

N̄(q, t) =
w1

∑
n∈Nin(t) ψ

|Nin(t)| +
w2

∑
n∈Nout(t)

ψ

|Nout(t)|
.

The parameters w1 and w2 represent the importance of the
in-links neighbors and out-links neighbors, and are learned
during the training along with the parameters of the simi-
larity function.

According to the resulting formula for the ranker, the score
of a target node t is defined based on the score of its neigh-
bors, recursively. The next section explains how we deal
with recursivity.

The α parameter (here α < 1) is a dampening parameter
which decreases the effect of the neighbors’ scores on the
target node score as their distance from the target node
increases. This is a hyper-parameter of the algorithm and
will not be learned during training.

2.2 Collective Inference
To compute the score for a given query and a target node, we
need to know the scores of the query to the target’s neigh-
bors. To compute this recursive function, we start from an
initial score and iteratively compute the scores at iteration
τ based on the scores at iteration τ − 1. The score of the
target node t with respect to the query q at iteration τ ,
noted simply ψτ , is computed using the values of ψτ−1 in
the definition of N̄(q, t) above.

Considering the linear definition of ψ in the previous section,
given a query it is possible to find out the final scores of the
nodes by solving the inverse of the normalized adjacency
matrix, and therefore perform the computation in one shot.
There are several reasons for designing an iterative algorithm
though: first, ψ can be a non linear function, as for instance
similar to [6, 11]. Second, if the network is large, then time
complexity makes the computation in one shot intractable.
Moreover, we will show that propagating only high scores in
each iteration, using our recursive algorithm, improves the

performance significantly.

The initial scores (noted ψ0) are set as follows. If no prior
link is known for the query node, the scores are initialized
with the scores of the content-only ranker. If the query node
is part of the network, the scores are based on the prior links
and are set to 1 if (q, t) is an edge of the graph and to 0
otherwise.

To propagate scores, we propose a collective inference algo-
rithm, which is effective, easy to implement, and scales well
to large graphs. We refer to it as the ‘Iterative Ranking Al-
gorithm’ (IRA) because at each iteration the results of the
neighbor-aware rankers are propagated one step further in
the graph. The pseudocode for the IRA is given as Algo-
rithm 1 below. At the first step, the initial scores of all nodes
are set as above. Then, scores are normalized, and the scores
above the threshold propagate to the neighbors at the next
step of the algorithm. This propagation of above-threshold
scores continues until convergence, or until the maximum
number of iterations is reached.

Algorithm 1 Iterative Ranking Algorithm.

IRA for query node q, for a vertex set V and edge set E
if q ∈ V then

∀i ∈ V, ψ0
i =

{
1 if (q, i) ∈ E
0 otherwise

else
∀i ∈ V, ψ0

i = ψcontent(q, i)
end if
ψ0
norm(i) = norm(ψ0

i) (normalize scores to [0, 1])
τ = 1
while NotConverged and τ ≤ T do

for i ∈ V do
if ψτ−1

norm(i) < c then
ψτ−1
i = 0

(scores below threshold do not propagate)
end if

end for
HighScoreNodes = {i|ψτ−1

i > 0}
PossiblyChanged = {i|i ∈ Nin(HighScoreNodes) ∨ i ∈
Nout(HighScoreNodes)}
for i ∈ PossiblyChanged do

Update ψτi using ψτ−1

end for
ψτnorm(i) = norm(ψτi) (normalize scores to [0, 1])
τ = τ + 1

end while

Given the linear definition of ψ, the algorithm converges if
|w1| < 1 and |w2| < 1, because the effect of long paths de-
creases exponentially and eventually vanishes. The sketch of
the convergence proof is given in the Appendix. To ensure
convergence, during the training of the ranker, we constrain
the parameters (i.e. the coefficients of the similarity matrix,
w1, and w2) to be between -1 and 1. Moreover, this con-
straint acts as a regularizer on the parameters in the mini-
mization of the loss function, avoiding exploding the values
of the parameters (see Section 2.3).

The normalization of the scores and their thresholding are
used as follows, in order to preserve the linear algebraic na-
ture of the propagation and thus guarantee its convergence.

If the normalized score is higher than the threshold c, the
unnormalized score is passed to the next step, otherwise, the
score is set to zero and does not propagate to the next step.
Therefore, only some terms are expanded while others are
set to zero, which ensures convergence.

The thresholding prevents the propagation of noise in the
graph, therefore improving accuracy, as shown in Section 3.2.
Moreover, it increases the speed of the algorithm for large
graphs, because at each iteration only the scores that may
have changed are updated. In fact, only the scores of the
neighbors of nodes with scores higher than the threshold can
be changed in the next iteration. Many real-world networks
are small world networks, in which each node is only con-
nected to a small number of other nodes in its community. In
small world networks, at each iteration only few nodes have
high scores and the rest have low scores. Therefore, choosing
a reasonably high threshold leaves us with only few nodes
at each iteration. However, in theory, the thresholding does
not change the worst-case time complexity of the algorithm.

2.3 Training the Neighbors-aware Ranker
The goal of training is to approximate a ranker which mi-
nimizes a ranking loss function over the graph G for the
queries, target nodes, and associated grades that are given
in the training set. In this section we discuss the training of
a binary ranker for the link prediction problem (the method
can be generalized to other ranking problems).

At training time, the graph G = (V,E) is available, where
V is the vertex set and E the edge set, as in Algorithm 1.
We assume that there are two possible grades, ‘connected’
or ‘not connected’, which are given by the existing edges in
the graph. We define the training set T made of triples of
nodes, so that the first two are connected, but not the first
and the third one: T = {(i, j, z)|(i, j) ∈ E and (i, z) /∈ E}.
The goal of training is to minimize the empirical risk using
a pairwise hinge loss function (as in [14]) over the training
set T as follows:

Min L =
∑

(i,j,z)∈T

max(0, dmarg − ψ(i, j, N̄) + ψ(i, z, N̄))

so that 0 ≤ wi ≤ 1 and 0 ≤Mij ≤ 1

The parameters of the neighborhood component of ψ are w1

and w2 (−1 ≤ w1 ≤ 1 and −1 ≤ w2 ≤ 1), and the param-
eters of the similarity component are the Mij coefficients
(−1 ≤Mij ≤ 1). As mentioned, the regularization prevents
the arbitrary growth of the parameters in the optimization
of L, and is equivalent to the optimization of the same loss
function plus the infinity norm of the parameters. We de-
fine dmarg as a constant margin that should separate the
examples receiving different grades.

If the training graph G is large, minimizing the above sum-
mation is not tractable. To overcome this problem we make
use of a stochastic gradient descent algorithm in which at
each iteration we randomly select i, j and z from T and
perform gradient descent on them. To impose the regular-
ization constraint we use gradient projection.

The dimension of M is F 2 where F is the number of fea-

tures of the data points. In practice, to make training and
storage possible, particularly when we are dealing with high
dimension data such as text, we perform low-rank factor-
ization of M , assuming that M = AB′, where A and B
are matrices from F to a lower dimension (M is not neces-
sarily symmetric, hence the two lower-rank matrices). The
objective function with the low-rank matrices is not convex
any more, but in practice it has been shown that low-rank
factorization performs well [5].

At each iteration, the time complexity of the stochastic
training algorithm is O(Z2), where Z is the average num-
ber of non-zero features of the objects, which can be much
smaller than the dimension F of the feature space. For ex-
ample, for textual data, the feature vectors are very sparse
in comparison to the dimension of the feature vector, which
is the number of possible words (the vocabulary size).

3. EXPERIMENTAL SETUP & RESULTS
In this section, we apply the proposed method to link pre-
diction on several networks. Given a query node, all other
objects are ranked according to their score, with the goal of
having the objects that are actually linked to the query node
at the top of the list. To build a test set from an initial net-
work, we randomly remove about 10% of the nodes, keeping
them for testing, and train the algorithm on the remaining
network. To evaluate the algorithm, for each node in the
test set, the precision and recall of the first k ranked objects
are calculated with respect to actual links.

We use several data sets which have been frequently used
for the collective classification, and more details about them
can be found in [19]. The networks are by nature directed
graphs. Each object (paper or web page) is characterized by
a set of binary features or attributes, which are the presence
or absence of a given word from the global content-word
vocabulary.

1. The Cora dataset consists of papers in the field of ma-
chine learning. The papers were selected so that in the
final corpus every paper cites or is cited by at least one
other paper. It contains 5429 edges and 1440 nodes.

2. The CiteSeer dataset contains a selection of papers
in the field of computer science. Again, the papers
were selected with the same constraint as for Cora. It
contains 4715 edges and 3709 nodes.

3. The WebKB dataset contains web pages and hyper-
links between them, gathered from four different uni-
versities. It contains 1608 edges and 1709 nodes.

3.1 Performance of Collective Ranking
We present first the performance of the proposed method in
terms of recall at 10 for the three data sets. The precision at
10 acts similarly. The evaluation scenario, in which query
objects do not have prior links to the network, corresponds
for instance to situations in which a new person joins a so-
cial network, or a paper is being written and does not cite
any other paper yet. Therefore, the ranking with respect
to a test query node is performed by using only two types
of information sources only: first, the features of the query

node and of the objects in the network; and second, the re-
lations between the objects in the network. The second type
can be exploited only by using the proposed neighboorhood-
aware ranker and propagation algorithm. This task is thus
intractable for algorithms based on only the link structure,
such as random walk algorithms or algorithms based on com-
mon neighborhood.

Figure 1: Color coding of the compared ranking
methods (RW stands for Personalized PageRank
random walk).

However, another frequent real-world situation is when some
prior relations of the query object are known, e.g. a paper
with some known citations or a person which already has
some relations in a social network. It is possible to explore
jointly this context and the above one by studying the per-
formance of the proposed algorithms when the proportion
of the known prior links of the query objects in the test set
varies from zero to a non-zero value below 100%, so that
some unknown links are left for testing. In what follows, we
vary the proportion of known prior links from 0 to 0.7, thus
exploring both scenarios above.

The threshold of the IRA algorithm is set to c = 0.8, which
makes the computation fast on the studied networks. The
effect of this threshold is discussed in the following section
through additional experiments. The similarity matrix M is
constrained to be diagonal. The reported results are the av-
erage of 10 different runs for which the test set was chosen
randomly at the start of each run. We consider average re-
call at 10 for eight conditions (see color-coding in Figure 1).
One is the full proposal of this paper (neighbors-aware ran-
ker with IRA), another one is its first part only (without
propagation), plus a content-only ranker, a neighbors-only
ranker with IRA, and the same ranker without IRA. The re-
maining three are state-of-the-art ones, shown to reach high
scores in previous studies: Personalized Page Rank random
walk [12], Adamic and Adar similarity [15], and a Relational
Topic Model.

The values of recall in Figure 2 show that for all three
data sets, using the neighbors-aware ranker with the IRA
propagation algorithm leads to ranking scores that are al-
ways higher than all the other algorithms, including the
neighbors-aware ranker alone. Therefore, the method pro-
posed in this paper appears to be effective and competitive.

When the number of known relations of the query objects is
increased (moving towards the right side of the graphs), the
performances of the neighbors-only ranker and of the link-
based methods get closer to the rest of the rankers (such

Figure 2: Recall at 10, as a percentage, for the eight rankers listed in the text and shown in Figure 1. The
proportion of known prior relations of the query objects in the network is increased from 0 to 0.7. From left
to right, the data sets are WebKB, Cora, and CiteSeer.

as the random walk one), because the neighborhood and
link structure information around the query nodes become
available. But when there are few known relations of the
query objects in the network (left side of the graphs), the
performance of the neighbors-aware ranker plus IRA, the
neighbors-aware ranker alone, and even the content-only
ranker are much higher than link-based approaches such as
the random walk model.

Propagation by IRA is shown to be useful even when queries
have no known relations at all in the network, in the leftmost
data points in Figure 2. In this case, the IRA propagates the
result of the content-only ranker in the network by exploiting
the relations between objects in the network. For instance,
this can increase the score of a node that does not get a
high score from feature-based similarity, but is connected to
many nodes with high feature-based scores. For instance,
in a paper/citation network, a low-score paper according to
its content might see its score increased after propagation
because it is cited by many high-score papers. Therefore,
modeling the relations between objects in the network even
when there are no known links from the query object is
shown to be helpful.

The neighbors-aware ranker, which uses neighborhood infor-
mation that is only one transition away, improves the results
significantly for Cora and CiteSeer networks, but does not
always improve the results on the WebKB network. On the
other hand, the propagation algorithm, IRA, improves the
performance more on WebKB and Cora network and is less
effective on the CiteSeer network. The combination of both
the neighbors-aware ranker and the IRA has the capability
to model varying-length dependencies if needed, and results
in a robust ranking method which is effective on different
networks.

Precision and recall score are not necessarily increasing with
the increase of the known links of the query objects (going
from the left to the right side of the each graph). This is
because for each query object in the dataset only a fixed
number of connected objects (e.g. cited papers) is available,
and by revealing more of them the number of potential cor-
rect answers decreases, i.e. the upper bound of precision at
k (here k = 10).

3.2 Effect of Threshold
In this section, we analyze experimentally the effect of the
threshold c below which the normalized scores are not prop-
agated in the IRA algorithm. We report recall at 10 for
the three data sets while varying the threshold c, for three
different proportions of known links (0.2, 0.4 and 0.8), in
Figures 3. The first observation is that the performance
increases when increasing the threshold. The main reason
is that with a lower threshold, many wrong predictions are
propagated in the graph. Still, when the threshold is close
to 1, the performance drops again as the propagation (which
was shown above to be clearly useful) decreases and eventu-
ally stops.

The results demonstrate the advantage of the proposed me-
thod, because the performance increases when using a high
threshold, and moreover in this case only a few nodes are
updated at each iteration, thus accelerating the IRA. The
running time, in practice, is nearly constant with respect to
the graph size, although the theoretical worst case time com-
plexity remains linear. We report in Figure 4 the required
inference time on the data sets while varying the threshold
c. Increasing the threshold makes the required time decrease
rapidly (for low thresholds), as there are many nodes with
very low scores (long tail). Then, by increasing further the
threshold, the required time decreases only slightly. This
confirms our assumption that these networks are small world
graphs and form connected communities, which makes our
propagation algorithm very efficient.

We performed a similar experiment varying α when the
threshold c is fixed. The results show that for very small
values of α the neighborhood does not have any effect on
the score and the performance unsurprisingly decreases. If
α is close to 1, then although the w1 and w2 are trained
on the network, the training becomes more difficult as the
loss function gives a high weight to the neighborhood part
in comparison to the similarity part, so again performance
decreases. In addition, when alpha is close to 1, the conver-
gence is harder and loops can have negative effects on the
performance.

4. RELATED WORK
Related work falls into several categories: ranking based on
link structure, learning to rank on objects’ attributes, and

Figure 3: Recall at 10 of the neighbors-aware ranker with IRA, as a percentage, when increasing the threshold
c of the IRA from 0.20 to 0.95 on the three data sets. In each graph, the curves correspond to 0.2, 0.4 and
0.8 of prior relations known.

Figure 4: Inference time of the IRA, with the neighbors-aware ranker, when increasing the threshold c from
0.20 to 0.95 on the three data sets. In each graph, the curves correspond to 0.2, 0.4 and 0.8 of prior relations
known.

learning to predict links.

Ranking based on link structure. The link prediction
task can be formulated as a ranking task of pairs of nodes,
based on similarity metrics that use link structure, for ex-
ample random walk metrics or metrics using the common
neighborhood. The Adamic and Adar [1] similarity mea-
sure, which is based on common neighborhood, yields rel-
atively high performance in link prediction [15]. Methods
based on random walks, such as Personalized Page Rank [12]
or Visiting Probability [21] also showed good performance
on relatedness, recommendation, and link prediction tasks.
However, these approaches are not trained on the attributes
of nodes (and those of edges, when available). Therefore, if
a query object is weakly (or not) included in the link struc-
ture, these methods can not perform well (e.g., in the case of
paper citation, if a paper contains only few or no citations).
Our proposal, instead, can take advantage of the attributes
of nodes when learning the similarity function.

Learning to rank on objects’ attributes. Many meth-
ods for learning to rank have been proposed, with various
learning abilities. Perception Ranking [10] is an online algo-
rithm for ordinal classification, which can be employed for
ranking as a pointwise method. The algorithm learns sev-
eral parallel perceptron models which perform classification
between the neighboring grades.

IR SVM [8] is a pairwise method which formulates the rank-

ing problem as an SVM classification, for document retrieval.
The feature selection that transforms the ranking problem
into a classification one – building features for classification
from the query and each target document – is not effective
on all data sets and seems especially problematic for link
prediction, due to the numerous non-linked examples. Sim-
ilarly, SvmRank [14] is a pairwise ranking algorithm which
transforms the pairwise ranking to SVM binary classifica-
tion. However, batch optimization on large graphs is not
possible with SvmRank due to the large number of non-
linked pairs.

RankNet [7] is a feed forward neural network which is trained
by back propagation to learn the scores of each training ex-
ample. Authors in [4] perform a supervised training of a
nonlinear model between vectors of words to preserve a pair-
wise ranking between documents, which scales well to large
data sets with many words. Similarly, authors in [20] trained
a distance metric by stochastic gradient descent over a hinge
loss function that preserves the network structure.

In comparison to the approaches above, which assume that
data points are independent, we consider dependency be-
tween the objects in the network by using neighborhood in-
formation together with features of objects. Moreover, we
use collective inference to propagate the results of each ran-
ker. In other words, we fill the gap between the link-based
ranking and learning to rank on features, and we show that
our algorithm is more effective than either approach.

Learning to predict links. Authors in [3] describe the
problem of link prediction as a supervised learning task
and use supervised random walks to solve it. Although it
uses both link structure and object features, this method
requires the iterative computation of the gradient, which
makes training inefficient. Similarly, another supervised me-
thod for learning to rank [2] uses a random walk model and
learns the transition probabilities from the ordered pairs of
objects in the training data. As a transition probability is
learned for each link, overfitting is likely and training is not
effective for large-scale graphs due to number of parameters.
Moreover, the two previous methods do not apply when the
query object is not part of the network.

Authors in [18] adopt a generative Bayesian nonparametric
approach to simultaneously infer the number of latent fea-
tures and to learn which entities have each feature. This me-
thod is difficult to train, and inference for large scale graphs
is time-consuming. Relational Topic Models (RTM) [9] con-
sider both the documents and the links between them. For
each pair of documents, their link is a binary random vari-
able that is conditioned on their content. The model can be
used to predict links between documents and is used as a
comparison point below (Section 3). Our proposal outper-
forms RTM on the studied networks, presumably because
the neighborhood information is not modeled explicitly in
RTMs.

5. CONCLUSION AND FUTURE WORK
We proposed a learning to rank algorithm on network data,
which uses both the attributes of the nodes and the structure
of the links, for learning and inference. The proposed col-
lective inference algorithm, IRA, propagates the predicted
scores through the graph on condition that they are above
a given threshold. Thresholding improves performance and
makes a time-efficient implementation possible.

The proposed algorithm improved the link prediction perfor-
mance on three different networks, for binary graded scores
(connected vs. not connected). The results showed more
specifically that the neighbors-aware ranker, which uses con-
tent features and scores of the neighbors, has a higher per-
formance than the content-only ranker, the neighbors-only
ranker, a Relational Topic Model and two linked-based sim-
ilarity measures. Moreover, using the IRA in addition to
the neighbors-aware ranker improves the performance even
more.

In the current model, the influence of the neighbors is not
considered: all neighbors are assumed to be equal. However,
neighbors might have different influences, including negative
ones. Our model can be generalized to learn a node-specific
influence of neighbors as a function of their features and of
the features of the edges between them. This model has
more parameters and needs therefore bigger training sets to
perform reliable experiments. Moreover, a recursive proce-
dure can be considered for training the ranker, which does
not assume that the training network is complete. The ran-
ker could be trained first by using the scores from the current
links, and then by replacing them with those provided by the
ranker learned in the previous iteration. These perspectives
deserve further experimental investigations.

APPENDIX
The convergence of the IRA algorithm can be proven as
follows. We first make explicit the value of ψτi , the score
of the node i after τ iterations, and we omit q from the
equations for simplicity.

ψτi = Simi + α w1
|Nin(t)|

∑
n1∈Nin(t)(Simn1+

+α w1
|Nin(n1)|

∑
n2∈Nin(n1)

ψτ−2
n2

+α w2
|Nout(n1)|

∑
n2∈Nout(n1)

ψτ−2
n2

)

+α w2
|Nout(t)|

∑
n1∈Nout(t)

(Simn1+

+α w1
|Nin(n1)|

∑
n2∈Nin(n1)

ψτ−2
n2

+α w2
|Nout(n1)|

∑
n2∈Nout(n1)

ψτ−2
n2

)

If we continue expanding the above equation, the coefficient
for the similarity of a node that is n transitions away is
αn × wa1 × . . . wan with ai ∈ {1, 2}. When increasing n,
this coefficient tends to zero, given that α < 1, w1 < 1, and
w2 < 1, which means that the effect of long paths (including
loops) vanishes, and the algorithm converges.

Acknowledgments
This work has been supported by the Swiss National Science
Foundation through the National Center of Competence in
Research (NCCR) on Interactive Multimodal Information
Management (IM2), http://www.im2.ch.

6. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. Social Networks, 25:211–230, 2001.

[2] A. Agarwal, S. Chakrabarti, and S. Aggarwal.
Learning to rank networked entities. In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, pages
14–23, New York, NY, USA, 2006. ACM.

[3] L. Backstrom and J. Leskovec. Supervised random
walks: Predicting and recommending links in social
networks. In Proc. Web Search and Data Mining
(WSDM), 2011.

[4] B. Bai, J. Weston, D. Grangier, R. Collobert,
K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.
Learning to rank with (a lot of) word features.
Information Retrieval, 13(3):291–314, June 2010.

[5] B. Bai, J. Weston, D. Grangier, R. Collobert,
K. Sadamasa, Y. Qi, C. Cortes, and M. Mohri.
Polynomial semantic indexing. In Advances in Neural
Information Processing Systems, volume 22, pages
64–72, 2009.

[6] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. Joint
learning of words and meaning representations for
open-text semantic parsing. Journal of Machine
Learning Research - Proceedings Track, pages 127–135,
2012.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd
international conference on Machine learning, ICML
’05, pages 89–96, New York, NY, USA, 2005. ACM.

[8] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking svm to document retrieval. In
Proceedings of the 29th annual international ACM

SIGIR conference on Research and development in
information retrieval, SIGIR ’06, pages 186–193, New
York, NY, USA, 2006. ACM.

[9] J. Chang. Relational topic models for document
networks. In Proceedings of the Conference on AI and
Statistics (AISTATS), 2009.

[10] K. Crammer and Y. Singer. Pranking with ranking. In
Advances in Neural Information Processing Systems
14, pages 641–647, 2001.

[11] X. Glorot, A. Bordes, J. Weston, and Y. Bengio. A
semantic matching energy function for learning with
multi-relational data. CoRR, abs/1301.3485, 2013.

[12] T. H. Haveliwala. Topic-sensitive PageRank: A
context-sensitive ranking algorithm for web search.
IEEE Transactions on Knowledge and Data
Engineering, 15:784–796, 2003.

[13] D. Jensen, J. Neville, and B. Gallagher. Why
collective inference improves relational classification.
In Proceedings of the 10th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’04, pages 593–598, New York, NY,
USA, 2004. ACM.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’02, pages 133–142,
New York, NY, USA, 2002. ACM.

[15] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proc. ACM
International Conference on Information and
Knowledge Management (CIKM), 2003.

[16] L. McDowell, K. Gupta, and D. Aha. Cautious
collective classification. Journal of Machine Learning
Research (JMLR), 2009.

[17] M. McPherson, L. Smith-Lovin, and J. M. Cook.
Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27:415–444, 2001.

[18] K. Miller, T. Griffiths, and M. Jordan. Nonparametric
latent feature models for link prediction. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 1276–1284, 2009.

[19] P. Sen, G. M. Namata, M. Bilgic, L. Getoor,
B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. AI Magazine,
29(3):93–106, 2008.

[20] B. Shaw, B. Huang, and T. Jebara. Learning a
distance metric from a network. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
editors, Advances in Neural Information Processing
Systems 24, pages 1899–1907, 2011.

[21] M. Yazdani and A. Popescu-Belis. Computing text
semantic relatedness using the contents and links of a
hypertext encyclopedia. Artificial Intelligence,
194:176–202, 2013.

