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Abstract

Successfully modeling overlapping speech is a crucial step to-

wards improving the performance of current speaker diariza-

tion systems. In this direction, we present ongoing work on

a novel Multi-Class Vector Taylor Series (MC-VTS) approach

that models overlapping speech from knowledge of the indi-

vidual speaker models and the feature extraction process. We

explore several variants of the MC-VTS technique that aim at

modeling overlapping speech more precisely. Bootstrapping

the algorithm with both oracle and diarization output segmenta-

tions, we show the potential of this approach in terms of over-

lapping speech detection and speaker labeling performances

through a set of experiments on far-field microphone meeting

data.

Index Terms: Multi-Class Vector Taylor Series, Overlap De-

tection, Speaker Diarization

1. Introduction

Speech overlap is a common phenomenon in a multi-party con-

versation. In situations involving an open exchange of ideas,

discussion and debate, such as in a meeting scenario, it has

been found [1] that speech overlaps can occur nearly 20% of

the speech time. For speaker diarization systems, determining

“who spoke when” in an audio recording, performance suffers

when it comes to detecting and labeling speakers in overlap-

ping speech segments. In addition, the presence of overlap-

ping speech also results in inaccurate modelling of individual

speaker models which in turn again degrades the diarization per-

formance.

Though overlapping speech is simply a linear combina-

tion of the individual speech sources in the signal and spectral

domains, statistical modeling in such high-dimensional vector

spaces is challenging. Speech technologies typically seek low-

dimensional vectors that gather enough information to solve a

given task. Overlapping speech can be modeled as a set of lin-

ear and non-linear operations on the individual speech sources

in the cepstral domain. As we did in our previous work [17], we

model these non-linearities through a Vector Taylor Series ap-

proximation of the overlapping speech model. In this paper we

extend the work on overlap detection towards increasing detec-

tion performance but also diarization performance by labeling

overlapping speech speakers from the speaker diarization out-

put.
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A range of studies has been done on overlap detection and

speaker diarization of overlapping speech. Boakye et al. used

a HMM-based segmenter [2] to detect speech, non-speech and

overlapping speech from meeting audio, where the models are

trained using cepstral features together with instantaneous and

LPC residual energies and diarization posterior entropy from

ground truth alignments. The detected overlapped segments are

labeled with multiple speakers in the output given by a stan-

dard diarization system. Convolutive non-negative sparse cod-

ing (CNSC) used in [3], [4], [5] and [6] has also been found

effective for overlap detection. Features extracted using CNSC

are used together with a wide variety of features such as cepstral

features, energy, jitter, shimmer and even linguistic features in

a probabilistic framework. The knowledge of the silence distri-

bution in meeting recordings in [7] and analysis of long-term

conversational features (distribution of overlap occurence) in

[8] has also been shown to improve detection and diarization

performance.

This paper is organized as follows: Section 2 describes the

multi-class VTS approach to modeling overlapping speech. We

discuss the framework and describe how the overlapping speech

detection system works. Sections 3 provides experimental de-

tails and results, evaluating this approach on meeting data for

the overlapping speech detection and speaker diarization tasks.

Conclusions are given in Section 4.

2. Modeling Overlapping Speech using VTS

In our previous work [17], we proposed to use Vector Taylor

Series (VTS) to model overlapping speech in the cepstral do-

main. Just as signal and additive noise add together to obtain

the noisy signal, the speech signals from two speakers add to-

gether to obtain an overlapping speech signal. However, noise is

often stationary while speech is not. We addressed this point in

[17] by proposing a multi-class variant of the VTS framework.

On the other side, noise is usually assumed to be uncorrelated

with speech, at least in the long term. When two speakers speak

simultaneously this is hard to assume as the speech production

system is similar for human speakers. We assume that the in-

dividual speaker speech signals may be correlated to each other

in this work.

The process of superposing two speech signals, x1(t) and

x2(t) from different speakers,

y(t) = x1(t) + x2(t) , (1)

translates into a complex non-linear transformation in the cep-

stral case. For Mel-Frequency Cepstral Coefficients (MFCC)

we can arrange such expression in terms of the feature vector of

one speaker x1 and a non-linear function of the feature vectors

from both speakers x1 and x2, as



y(x1,x2) = x1 + g(x2 − x1) (2)

with

g(x2 − x1) = Cln(1 + exp(C−1(x2 − x1)

+2α · exp(C−1(x2 − x1)/2))
(3)

where α is the correlation between the spectra of the two speak-

ers, typically unknown. The term x2 is modeled using multiple

acoustic classes to deal with the phone variability expressed by

the second speaker within a speech segment. Standard VTS

uses a single Gaussian assuming noise to be stationary.

We use prior knowledge of two individual-speaker GMM,

trained using the feature vectors X1 = (x1,1, . . . ,x1,T ) and

X2 = (x2,1, . . . ,x2,T ), with T frames duration. We let the

VTS technique estimate the corrupted GMM parameters assum-

ing these two sources are overlapping.

2.1. Overlapping Speech Detection

The overlapping speech detection (OSD) system requires indi-

vidual speaker models and speech data as inputs. We assume the

speaker models are available, either trained from oracle speaker

segmentations or via automatic speaker diarization.

To detect overlapping speech, we perform a series of hy-

pothesis tests on each sliding window of the input features, as-

sessing how more likely it is for overlapping speech to occur

compared to single-speaker speech. Since we consider over-

lap from two speakers only, the number of possible overlapping

speech models is N2 − N , with N2 hypotheses to test and N
being the number of speakers. A faster approach is to assign a

main speaker to each segment, the speaker obtaining the largest

average likelihood score, to decrease the number of hypotheses

from N2 to N . In this case, if speaker i is the main speaker, we

obtain the set of likelihood ratios

p(X|S1,i)

p(X|Si)
, . . . ,

p(X|Si−1,i)

p(X|Si)
, 1, . . . ,

p(X|SN,i)

p(X|Si)
(4)

with Si,j representing the hypothesis of speaker overlap be-

tween speakers i and j, and Si representing the hypothesis of

only speaker i speaking. Overlap and non-overlap hypotheses

are modeled as follows:

• Overlap: For speaker pairs j, i in (4), we estimate the

models p(X|Sj,i) using VTS mean adaptation as de-

scribed in Section 2.

• Single-speaker: For the main speaker i, we adapt the

mean vectors of the corresponding GMM using MAP

adaptation [13] as

µ̂xm

= αEm[x] + (1− α)µxm

(5)

where Em[x] = 1

nm

∑T

t=1
γmtxt and nm =

∑T

t
γmt

. We determine the value of the interpolating factor α
experimentally.

To determine whether overlap occured in the current win-

dow, we just pick the largest likelihood ratio value and decide

on the corresponding hypothesis, i.e. single-speaker for hypoth-

esis i, overlap otherwise.

2.2. Approximating the corrupted model using VTS

The goal of VTS is to approximate an overlapping speech model

from the individual speaker models given some data assum-

ing it contains overlapping speech. Since overlapping speech

is non-stationary and several sounds might be being uttered by

the main and corrupting speakers, we use the multi-class ap-

proach proposed in [17]. The acoustic space of the corrupting

speaker is clustered into multiple classes and VTS adaptation is

performed for each class independently.

Keeping these assumptions in mind, we let µym
, µx1m

and

µx2m
be the mean vectors of the mth Gaussian component of

the corrupted speech model, main speaker models and corrupt-

ing speaker model GMM respectively.

To cluster the acoustic space of the corrupting speaker, we

start assuming that all the Gaussian components are observed

for the corrupting speaker. If the average number of frames,

(γ̄mt = 1

T

∑T

t=1
γmt), assigned to a given Gaussian compo-

nent is below a threshold, η, that component joins the Gaussian

with the closest mean vector in terms of Euclidean distance. The

average gamma for the new cluster becomes the sum of the cor-

responding average gammas. We use the mean of the Gaussian

with largest gamma as the new cluster centroid. So the mean of

the cluster c of corrupting speaker is denoted by µx2c
. In prac-

tice, matrix inversion issues are avoided if η is large enough.

The first-order VTS expansion of (2) w.r.t. vectors x1 and

x2 for Gaussian m around the point (µx1m0
,µx2c0

) is

µym
≈ µx1m0

+ g(µx2c0
− µx1m0

) +Gm(µx1m
− µx1m0

)

+Fm(µx2c
− µx20

)

(6)

where Gm and Fm are the derivatives of y w.r.t. x1 and x2

evaluated at the point (µx1m0
,µx2c0

), that is,

Gm = Cdiag(
exp(β) + α · exp(β/2)

1 + exp(β) + 2α · exp(β/2)
)C−1

(7)

where

β = C
−1(µx2c0

− µx1m0
) (8)

Fm = I−Gm (9)

The mean of y for Gaussian m, i.e. µym
, can then be ob-

tained by taking the expectation operator on both sides of (6)

which can be reduced to

µym
≈ µx1m0

+ g(µx2c0
− µx1m0

) (10)

Similarly, using Σx1m
and Σx2c

the covariance matrices

for Gaussian m of the main speaker and the corrupting speaker

respectively, the corrupted covariance matrix Σym for Gaussian

m can be approximated by

Σym ≈ GmΣx1m
G

T
m + FmΣx2c

F
T
m (11)

Given that both main and corrupting speaker GMM are

MAP-adapted from the same reference GMM, we assume that

the mth gaussian of the main speaker will be corrupted by the

cluster, c, that contains the mth component of the corrupting

speaker GMM.



2.3. Estimation of VTS parameters

Given T frames of overlapping speech data X = (x1, . . . ,xT )
and an initially corrupted GMM with M mixtures and parame-

ters given by (10) and (11), the expectation-maximization (EM)

algorithm iteratively finds estimates of µym
that further maxi-

mize the likelihood function

Q =
∑

t∈T

∑

m∈M

γt,mlog(p(xt|µym
,Σym)) , (12)

eventually converging to a local maximum.

µym
is a function of µx2

and Σx2
, and their parameters

are optimized to maximize the Q function above. Replacing the

expectation of (6) into (12) and then differentiate w.r.t. µx2c
,

the follwing update equation for µx2c
can be derived

µx2c
= µx2c0

+ {
∑

t∈T,m∈C

γm,tF
T
mΣ

−1

ymFm}−1

×{
∑

t∈T,m∈C

γm,tF
T
mΣ

−1

ym
(yt − µym

)}
(13)

where µx2c0
is the previous estimate of the corrupting mean

vector.

In this work, we also experiment with covariance adaptation

of Σx2
. We use the non-linear Conjugate Gradient (NLCG) al-

gorithm [16] to update Σx2
assuming diagonal covariance ma-

trices. As in [10], we update the Cholesky decomposition of

Σx2
, the diagonal matrix Ux2

, to ensure that Σx2
is positive-

definite after the update. Using the Fletcher-Reeves variant of

the NLCG algorithm, we use the following gradient matrix:

∂Q

∂Ux2c

=
∑

t∈T,m∈C

γm,t[−Ux2c
F

T
mΣ

−1

ymFm

+Ux2c
F

T
mΣ

−1

ym
(yt − µym

)(yt − µym
)TΣ−1

ym
F

T
m]

(14)

We keep the diagonal of the matrix products in (14) to

obtain an updated covariance matrix after applying the gradient

in the NLCG optimization. The number of computations can

also be reduced by using this assumption and, it has a big

effect on the real time factor, especially when considering that

adaptation is performed on every window.

Finally, the algorithm used to update the VTS model for

each Gaussian m is summarized as follows:

1. Initialize the overlapping speech model parameters µym

and Σym using the main speaker model parameters

(µx1m0
,Σx1m0) and the corrupting speaker parameters

(µx2c0
,Σx2c0

) using (10) and (11). µx2c0
is mean vec-

tor of cluster c of corrupting speaker such that the mth

component of corrupting speaker GMM lies in it.

2. Update µx2c
using (13) using the current estimates of

µym
,Σym ,Gm and Fm.

3. Update Σx2
using the gradient of Eq. 14 using the cur-

rent estimates of µym
,Σym ,Gm and Fm.

4. Replace µx2c0
with µx2c

obtained in step 2 and

recompute the overlapping speech model parameters

(µym
,Σym).

5. Go to 2 until a number of iterations has been reached.

After running this algorithm, the µym
and Σym obtained

in the last iteration are retained as the optimal parameters mod-

eling the overlapping speech data X.

3. Experiments

We ran experiments for the overlap detection and speaker di-

arization tasks, the latter using the VTS system output.

3.1. Overlap Detection

We evaluated the proposed approach on 10 meeting recordings

from the AMI Meeting Corpus given in Table 1. The calibra-

tion threshold was optimized on a development data set con-

sisting of 10 other meetings from AMI, also shown on Table

1. The recordings, involving 4 participants each, vary from 17

to 57 minutes in length, with a total of 11 hours of audio, of

which 20% are overlapping speech. We use one of the single

distant microphones channels to extract 19 MFCC every 10ms

over 30ms long windows. The individual speaker models are

MAP-adapted from a reference 64-component GMM using ML

training and the speech from each recording.

Development Set

EN2004a EN2013c IS1001c IS1001d IS1005a

IS1007b IS1001c TS3006a TS3007c TS3012b

Evaluation Set

EN2003a EN2009b ES2008a ES2015d IN1008

IN1012 IS1002c IS1003b IS1008b TS3009c

Table 1: AMI corpus meetings used for development and eval-

uation of the VTS overlapping speech detection system.

We measure the precision and recall performances as well

as the overlap detection error, defined as the sum of false alarms

and miss errors in the whole recording over the number of la-

beled speaker overlap time. Note that this measure can take val-

ues over 100%, since the labeled overlap time is much shorter

than the recording length.

The system has some tuning parameters like analysis win-

dowsize W , clustering threshold η and phase-factor α. Based

on the studies done in [17], we use W = 3.2s and η = 1 frame.

Note that, although α is the cosine of the angle between the two

speaker short-term spectra, it is here considered to be constant

with the same value for all meetings. We experiment with vary-

ing values of α to evaluate overlap detection.

3.1.1. Results

The overlap detection framework can either use the oracle

speaker segmentations or the segmentation output of an au-

tomatic speaker diarization system to train the initial single

speaker GMM. As discussed and shown in [17], the system us-

ing oracle segmentations begins with the purest speaker GMMs

we can obtain and it largely outperforms the system using in-

accurate single speaker GMM. For the current work, we focus

on the case where speaker GMM are trained using the oracle

segmentations.

First, we study the effect of the phase-factor α on the over-

lap detection performance, shown on Table 2. We observe the

same trend reported in [11] for the automatic speech recogni-

tion task, with performance asymptotically improving with in-

creasing values of α w.r.t setting the phase factor to 0. These

results suggest that VTS modeling can be improved by consid-

ering cross-speaker correlation, although results also improve

when modeling noisy speech in [11], where noise and speech

can be assumed to be more uncorrelated. In any case, since the



gains obtained with α over 1 are minor we take the value of

α = 1 for further experiments.

Phase-Factor Prec./Rec. F Error
α (%) meas. (%)

-1.0 60.2/16.5 .259 94.39

-0.5 59.8/11.1 .187 96.37

0.0 65.7/41.8 .511 80.03

0.5 66.1/43.1 .522 79.02

1.0 65.7/44.6 .531 78.70

1.5 65.6/44.8 .532 78.68

2.0 65.4/45.3 .535 78.62

Table 2: Precision, Recall, F-measure and Overlap Detection

Error for varying values of the phase factor α.

Table 3 compares the results of experiments using the phase

factor, covariance adaptation and all possible overlap hypothe-

ses with the best results obtained in our previous work [17].

Although updating the covariance matrices gives significant

relative gains in likelihood terms, the F-ratio and the overlap

detection error slightly increased. On the other side, covariance

adaptation is computationally heavy, scaling the real time factor

by 10 in our implementation.

We also ran an experiment where we consider all N2

speech hypotheses (N being the number of total speakers) in-

stead of picking a main speaker as described in section 2.1. The

results show that, although we compute N times more hypothe-

ses, performance stays the same. Picking a main speaker and

finding a corrupting speaker is as good a strategy as considering

all possible hypotheses.

System Prec./Rec. F Error
(%) meas. (%)

Diarization seg. 51.0/17.5 .260 99.32

Oracle seg. 65.7/41.8 .510 80.05

Covariance adaptation 66.4/38.6 .488 80.89

α=1.0, N hyp. 65.7/44.6 .531 78.70

α=1.0, N2 hyp. 65.6/44.6 .531 78.67

Table 3: Precision, Recall, F-measure and Overlap Detection

Error for several systems. In the first block are experiments us-

ing the diarization output and the oracle segmentations to train

the speaker models. In the second block are experiments using

covariance adaptation, N and N2 hypotheses.

3.2. Speaker Labeling

Besides detecting overlapping speech segments, the VTS

framework also identifies two speakers involved in the overlap.

As discussed in the section above, we used the overlap detection

framework trained using oracle segmentations to detect over-

laps and label the active speakers in the overlapping segments.

We ran these experiments for a set of 32 meeting recordings

taken from the AMI corpus. 16 meetings were used as devel-

opment set, to find the operating point of the overlap detection

system that maximizes the performance of diarization. The re-

maining 16 meetings were used for evaluation.

For speaker labeling, we ran three experiments. First, given

the diarization output providing a single speaker label for a

given time instant, we assign multiple speaker labels to those

regions detected as overlapping speech. Second, we generate

the complete diarization output for all time instants using the

winning hypothesis of the overlapping speech detection system,

with models trained using the oracle segmentation. Third, we

generate the diarization outputs using the overlapping speech

detection system trained using the diarization output. This is

the most realistic system, and it is prone to errors because of

impurity in the initial speaker models.

3.2.1. Results

Table 4 compares the results of the three diarization experiments

described above. As the baseline, we use the diarization output

of the system described in [15], obtaining 29.2% DER. When

the two speakers involved in overlapping speech regions are la-

beled the DER is reduced by 5% relative, down to 27.6% abso-

lute. A very low DER of 10.44% is observed when all speakers

are assigned using our approach from speaker models trained

from the oracle segmentation. This confirms that the system

is able to properly label speakers, from N2 classes when the

models are pure. Note that labeling is local to the window and

no global strategy such as Viterbi decoding is used, as it is the

case in most speaker diarization systems. However, the DER

increases up to 38.6% when the speaker models are trained di-

rectly from the diarization output, highlighting the high sensi-

tivity of the algorithm to speaker model impurity.

System Missed False Alarm DER
(%) % (%)

Baseline 10.2 2.2 29.21

Label Overlap Oracle 10.7 0.3 27.62

Label All Oracle 7.9 0.8 10.44

Label All Diar. 13.2 0.1 38.62

Table 4: Precision, Recall, F-measure and Overlap Detection

Error for systems using different ways of labeling speakers in

the diarization output. We show experiments labeling overlap

regions only using speaker models trained with the oracle seg-

mentation (Label Overlap Oracle). We also consider labeling all

the data using oracle (Label All Oracle) and diarization output

(Label All Diar.) segmentations.

4. Conclusions

In this work we have shown the potential of the multi-class Vec-
tor Taylor Series (VTS) framework for overlap detection and
speaker labelling in meeting recordings. This framework ac-
counts for multiple sounds being uttered by two overlapping
speakers. In this paper, we modeled the correlation between
the sounds uttered by two speakers, decreasing the overlap de-
tection error and F-measure. We also found that assuming as
many hypotheses as the number of speakers performed as good
as considering all possible pairs of hypotheses. For the speaker
diarization task, we observed a large performance gap between
the diarization output with single-speaker labels and labeling
the data using multiple speakers using the oracle models. When
using these models, the VTS technique is able to reduce this
gap. A future line of work will focus on purifying the speaker
models generated from the diarization output to obtain a more
realistic system.
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