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ABSTRACT

In this paper, we investigate the influence of music on
human walking behaviors in a public setting monitored by
surveillance cameras. To this end, we propose a novel algo-
rithm to characterize the frequency and phase of the walk.
It relies on a human-by-detection tracking framework, along
with a robust fitting of the human head bobbing motion.
Preliminary experiments conducted on more than 100 tracks
show that an accuracy greater than 85% for foot strike estima-
tion can be achieved, suggesting that large scale analysis is at
reach for finer music/walking behavior relationship studies.

Index Terms— tracking, gait, bobbing estimation, en-
trainment to music

1. INTRODUCTION

In recent years there has been a growing interest in the video
analysis community to go beyond the typical surveillance sce-
narios (e.g., detection of violence or left luggage) and to de-
sign algorithms to analyze a wider range of behaviors, such
as group identification, dominance [1], or characterization of
interpersonal relations (e.g. deception [2]). While such trends
allow sociologist to envision the study of human behavior “in
the wild” and thus in more ecologically valid settings, this
also creates challenges, since the quantities of interest for per-
forming such analyses are usually hard to estimate. One can
cite for instance body and head orientation [3, 4] for social
attention modeling, or the visual detection of voice activities
[5].
Goal and motivation. We are interested in the influence
of music on human walking behaviors and propose video
processing as a method for automatically characterizing such
behaviors. This study is part of a wider investigation into
context-sensitive approaches to soundscape design as it per-
tains to safety, where music and/or sounds can contribute to
well-being, and to the fostering of social cohesion. It is a fol-
low on project in the Sounding Brighton series, designed and
initiated by Brighton and Hove City Council and the Noise
Abatement Society [6]. For this reason, whereas many exper-
iments use aversive sounds to try to repel people [7, 8], our

Fig. 1. Camera view and results of the automated video anal-
ysis. The yellow lines illustrate the output of the tracking
algorithm The red dots, resulting of the bobbing analysis pro-
cess, indicate frames where people are estimated to start a
new stride/footstep.

experiment made use of non-aversive, context-appropriate
sounds in an attempt to test the scope of fostering more “per-
sonable” behavior through soundscape management. The fact
that soundscape interventions can be used in both exclusive
and inclusive ways points to a more general theoretical ac-
count of the role of sound in defining the environment [7, 8],
whereby sound is considered much more generally as a way
of defining social territory.

It is now firmly established that one of the more basic be-
havioral regulations that music can induce is “entrainment”,
where people will synchronize their activity to an external
rhythm. Relevant to the current study are the potential effects
of music intervention in the urban environment associated
with the previously documented, pro-social effects of syn-
chronized movement to music. Evidence suggests that syn-
chronized movement enhances the tendency in people to per-
ceive others as “more like self”, resulting in enhanced com-
passion [9] and results in improved cooperative ability [10].
This has been shown to occur not just in adults, but also in
children as young as four years old [11].
Approach and contributions. Using video to automatically
extract gait parameters is a promising approach to evaluate the
influence of music in the way people walk. Firstly, because it
is non-intrusive: people are not required to wear any sensor,



nor to walk along a pre-specified path. Secondly, because
this methodology allows gathering a substantial number of
samples, which might be difficult to obtain in lab settings.

Existing methods for gait analysis from video typically
require foreground segmentation [12], side cameras [13] or
more complex articulated human body analysis [14]. Recent
approaches [15] exploit the correlation of head motion and
walking motion; nonetheless they mostly rely on video cap-
tured in lab settings.

In this paper we propose a gait characterization approach
based on walking frequency and phase. Frequency is a clue
to the walking speed, whereas phase is a clue for entrainment
analysis. These parameters are estimated from the upper-
body oscillatory motion resulting from walking: in this work,
we use the term bobbing for this motion. Although similar in
spirit to [15], our approach is shown to work in surveillance
settings rather than in the lab, without foreground segmenta-
tion, and can be applied to multiple people at the same time.
Paper plan. Section 2 describes the experimental set-up.
Section 3 present the walking analysis algorithm. Finally,
section 4 presents preliminary results obtained from both an-
notated and automatically extracted data.

2. EXPERIMENTAL SETUP
Our analysis is conducted in a tunnel (located in Brighton,
UK) that separates a busy nightclub area from the beach. We
installed a sound system with a wall-mounted loudspeaker in
the northern and southern ends of the tunnel, and three CCTV
cameras as per Figure 2. Along the floor we placed white
stripes made of durable duct tape; these occurred every 210
cm. We focused the video analysis on camera 1, marked with
an X in Fig. 2, which camera field of view is shown Fig 1.

To test the capacity of music to induce entrainment and
modulation of walking speed at varying tempos, we took three
instrumental pieces of music from contrasting genres (clas-
sical, swing jazz, and ambient electronica) and digitally ad-
justed their tempos (without altering the pitch), so that each
were presented in a 106 bpm (a pace slightly faster than a nor-
mal walking, but still easy to walk in step with) version and
a version that was 10% faster. This resulted in set of 6 mu-
sic conditions, complemented by a silence condition. Note
that the above procedure enabled us to unambiguously con-
trol for the change in tempo by keeping the style constant;
an approach that differs substantially from the Milliman ex-
periments, where the fast tempo vs slow tempo music were
not identical music pieces differing only in tempo, but were
also distinct in character and style. Another difference, when
compared to the Milliman study, is that there was no primary
purpose other than traversing the length of the tunnel.

3. VIDEO PROCESSING

To perform automatic gait characterization in a surveillance
setting, we propose an original approach which consists in
the following steps:

Fig. 2. Schematic diagram of the tunnel. Our team in-
stalled several electronic units: W. A locked cubby with 240
VAC mains power, housing the digital video recorder, power
amp and music presentation system. The following locations
are marked on the diagram: X. Camera 1 (North-facing) +
speaker. Y. Camera 3 (South-facing) + speaker. Z. Camera 2
(Southeast-facing) + microphone for ambient noise.

Human detection: we use the deformable parts model
(DPM) detector proposed in [16]. Specifically, we use a
single mixture trained on full-bodied pictures of people [17].
Tracking by detection: Detections across frames are associ-
ated so as to form tracks identifying the walking trajectories
of people. A brief description of the tracking approach is pro-
vided in Section 3.1.
Motion Estimation. Estimating bobbing could be conducted
by analyzing the oscillating sequence of position of body
parts like the head. However, this is highly dependent on
localization accuracy, which at that resolution can be easily
affected by self-occlusion or the presence of texture or peo-
ple behind the body. Instead, motion, that contains similar
bobbing information, is less affected by such inaccuracies
since computing motion on different support regions around
a given body part produces similar estimates, esp. when a
robust estimation method is used. Thus, in this paper, we rely
on a robust multi-resolution motion estimation method [18]
to estimate an affine motion model using as support region
each of the detected body parts of a given human detection.
Bobbing estimation: Using the available detections and vi-
sual motion for each track, we estimate bobbing. Details are
provided in Section 3.2

3.1. Tracking approach
We follow the method of [19, 20], in which multi-object
tracking is formulated as a labeling problem. Namely, given
a set of detections R = {ri}i=1:Nr

within a video sequence,
the aim is to assign an identity label to each of them, so that
all detections of the same object have the same label. In other
words, the goal is to obtain the label field L = {li}i=1:Nr

such that when detections ri and rj represent the same ob-
ject, then li = lj , and li 6= lj otherwise. To that end, we
extract for each detection ri its pixel position Xi and its



Fig. 3. Parts’ estimated motions capture bobbing information.
Bounding boxes represent the detected upper body parts and
arrows show the estimated motion.

Fig. 4. Sinusoid Fitting. Dotted blue line: time series ob-
tained from head motion vectors, after fitting first order poly-
nomial. Solid red line: fitted sinusoid. Note that the DC com-
ponent has been removed for visualization purposes.

multi-resolution color histogram hi, as well as its time of
occurrence ti. These descriptors are used to measure pair-
wise similarities and dissimilarities between detections. The
labeling task is cast into a CRF formulation [19, 20], where
we directly model the posterior probability of the label field
given all the observations.

3.2. Bobbing estimation
Walking locomotion generates an ”up and down” and ”left
to right” motion in human subjects. In this work, bobbing
refers to this motion. Our hypothesis is that this motion can
be characterized by sinusoidal functions whose frequency and
phase are correlated with the walking speed and phase.

For each track, we rely on the set of motion vectors vi
t to

estimate a pair of sinusoidal functions modeling bobbing:

fx(t,Λx) = Ax +Bx sin(2πCxt+Dx)
fy(t,Λy) = Ay +By sin(2πCyt+Dy)

(1)

where coefficients Λ = {A,B,C,D} are the parameters (off-
set, amplitude, frequency and phase) that define the bobbing.

Although any detected part could be used, in this work we
limit ourselves to the head region. Let us assume that given
a time interval [t − Tb + 1, t], we have a set of head motion
estimates vx = {vx(t0), . . . , vx(tn), . . . , vx(tN − 1)}, vy =
{vy(t0), . . . , vy(tn), . . . , vy(tN − 1)}, where tn ∈ [t− Tb +

1, t]. Note that we can have missing samples, i.e., N is lower
or equal than the maximum number of samples that can be
observed in the interval Tb . The proposed bobbing estimation
method treats the x and y components independently.
Sinusoid fitting. For each of the time series of a visual mo-
tion component, the method proceeds as follows. First, we
fit a first order (linear) polynomial to the time series and then
subtracted it from the original time series. This step effec-
tively compensates perspective issues of motion estimation in
the image plane. Alternatively, we tried adding the first order
polynomial as part of the sinuoidal bobbing model of Eq. 1.
However, in practice, most of the fitting error is then due to
the main slope of the time series, and the fitting process then
result in poor estimates of the sinusoid parameters.

Second, we fit the sinusoid model of Eq. 1 to the corrected
data using non-linear least squares [21]. Due to noise, estima-
tion errors and bad initial guesses, such optimization might
get stuck in local minima. Fortunately, prior knowledge on
the average walking speed of humans can be used to robustly
fit the model Λ on the data vx,vy . Note that the x compo-
nent motion frequency is close to 1Hz whereas the vertical
component one is typically closer to 2Hz. We can thus initial-
ize C with the aforementioned values to conduct and initial
optimization. To improve robustness, we reduced this initial
guess through a geometric progression of ratio β = 0.9, and
performed an optimization run for each of the obtained value.
At the end of this process (we typically use 10 runs), we keep
as estimates the parameters with minimum fitting error.
Foot strike estimation. We formulate the hypothesis that foot
strikes occur at the local maxima and minima of the fx(t,Λx)
function. Accordingly these instants are defined as:

t̂j = {tj |
d

dt
fx(t,Λx) = 0}. (2)

4. EXPERIMENTATION

We ran a first round of data collection and annotation and we
thus provide here the preliminary results that we obtain.

4.1. Collected dataset
To conduct the analysis, a first dataset was collected. It con-
sisted of 47 short video clips (less than 2 minutes) of pedes-
trian traffic through the tunnel, gathered with motion-sensitive
CCTV recordings (see Fig. 2). To study entrainment, these
clips were selected under two music conditions, using the
same music genre under two different tempos.

We applied automated footfall data tracking to this
dataset, and kept only the tracks of pedestrians traveling
towards the camera, resulting in a total of 109 people track
samples. In a second step, we manually annotated these tracks
in two ways. First, we noted the frames when a person’s body
was crossing the 4th and 1st white lines (see Fig.1), allowing
us to measure the average speed of the person for crossing the



tunnel. Secondly, we performed the footfall information an-
notation by noting the frame number corresponding to subject
heel strikes, discounting obscured footfalls. We subsequently
compared the list of frame numbers tracking footfalls against
the automatic data collected upon the same variable.

4.2. Tracking results
When comparing the footfall data from the automated analy-
sis with data from manual analysis, we found that only 11%
(12 tracks) were incoherent. All 97 other tracks were prop-
erly following the persons and exhibited no ID switches and
no fragmentation. These tracks were however not covering
the full tunnel length, with missing parts far from the camera
(low resolution) and very close (high distortion). The length
of the tracks was still sufficient to estimate the bobbing. Two
instances of duplicate tracks (2 tracks for one person) were
also observed.

4.3. Bobbing analysis
The bobbing estimation allows us to automatically extract
foot strike frames. To evaluate this process, we use the heel
strike annotations. As these annotation do not contain oc-
cluded heel strikes, we augmented them by interpolation to
get the missing heel strikes. A total of 1367 heel strikes were
present in the 109 people tracks. Most of the inter-strike times
are between 12 and 15 frames in the annotations.

The evaluation is done by matching detected foot strikes
with annotated heel strikes. Each strike being used at most
once. The evaluation accepts a match if the annotation and
the detection instants are at most k frames apart. We noted
(and compensated for it) that we had a consistent 1 frame dif-
ference between the annotation and the automatic detection.
This offset can be explained by the fact that the heel hits the
ground slightly before the whole foot. With k = 2 (allowing
an error of 2 frames), we obtain 77.4% of accuracy (precision
and recall). With a stricter criteria, k = 1, this accuracy drops
to 56.4% which can be due partly to imprecise annotations.
With k = 3, the accuracy reaches 86.7%.

4.4. Entrainment
Research has shown that unconscious entrainment is very
widespread. [22] was able to demonstrate that background
music of different tempos played in a supermarket signif-
icantly modulates customer velocity. Slower tempo music
was consistently associated with slower in-store traffic flow
and greater total sales volume versus faster tempo music.
Similarly, Milliman demonstrated that background music of
different tempos altered the “eating time” of restaurant din-
ers. Faster music was shown to produce faster turnover of
tables, yet slower tempo was associated with slower eating
and more spending at the bar [23]. More recent research
has also indicated that music acts as a far more effective
means of modulating walking speed than simply providing a
background metronome, suggesting that the broader features

Fig. 5. Difference in walking speed during a fast and slow
tempo version of the same musical excerpt.

of music itself, rather than a simple external tempo, play a
significant role [24]. In our study, using manual annotations,
the same piece of music at two contrasting tempos (all other
variables held constant) resulted in significantly different
walking velocities. Faster tempo music consistently made
people travel quicker through the tunnel (Fig. 5, mean veloc-
ity = 1.27m/sec, n = 52) than did slower tempo music (mean
velocity = 1.19 m/second, n = 53, unpaired T-test: P < 0.05).

These conclusions are particularly intriguing in view of
[22] investigation into the effects of ambient/background mu-
sic on shopper behavior. The difference we observed in walk-
ing speed between high and low tempo music is in agreement
with Milliman’s findings; however, whereas Milliman found
higher tempo music was associated with higher customer ve-
locity than no music, we found that both high and low tempo
music decreased walking velocity through the tunnel. This di-
vergence might either be ascribed to Milliman’s more extreme
tempo variations or to our stricter controls for tempo, elimi-
nating style and (other) variables, or alternately it may suggest
that music’s behavioral effects are highly context sensitive.
Furthermore, this general decrease in the speed of those walk-
ing through the tunnel when music was deployed might reflect
a greater sense of security, and thus a preliminary indicator of
the potential for music to support safer environments.

5. CONCLUSION

For the automatic estimation of walking velocity and phase in
a soundscape experiment in order to assess walking entrain-
ment to 6 music conditions, this first iteration of our model
yields broad correlation (87%) with manual footfall analysis.
We find this promising as an approach to automated analysis
of large video data sets, gathered passively in the wild with
close circuit video cameras. Our investigation will continue
with further iterations of the model to accommodate absence
of human detections in the tracking [25], finalize the auto-
matic speed estimation from the extracted tracks and improve
accuracy, and further data collections for finer music entrain-
ment analysis.
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