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Abstract
Automatic speech recognition (ASR) systems incorporate expert knowledge of language or

the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where

each word is associated with a sequence of phones. The creation of phone pronunciation

lexicon for a new language or domain is costly as it requires linguistic expertise, and includes

time and money. In this thesis, we focus on effective building of ASR systems in the absence

of linguistic expertise for a new domain or language. Particularly, we consider graphemes as

alternate subword units for speech recognition. In a grapheme lexicon, pronunciation of a

word is derived from its orthography. However, modeling graphemes for speech recognition

is a challenging task for two reasons. Firstly, grapheme-to-phoneme (G2P) relationship can

be ambiguous as languages continue to evolve after their spelling has been standardized.

Secondly, as elucidated in this thesis, typically ASR systems directly model the relationship

between graphemes and acoustic features; and the acoustic features depict the envelope of

speech, which is related to phones.

In this thesis, a grapheme-based ASR approach is proposed where the modeling of the re-

lationship between graphemes and acoustic features is factored through a latent variable

into two models, namely, acoustic model and lexical model. In the acoustic model the re-

lationship between latent variables and acoustic features is modeled, while in the lexical

model a probabilistic relationship between latent variables and graphemes is modeled. We

refer to the proposed approach as probabilistic lexical modeling based ASR. In the thesis we

show that the latent variables can be phones or multilingual phones or clustered context-

dependent subword units; and an acoustic model can be trained on domain-independent

or language-independent resources. The lexical model is trained on transcribed speech data

from the target domain or language. In doing so, the parameters of the lexical model capture a

probabilistic relationship between graphemes and phones. In the proposed grapheme-based

ASR approach, lexicon learning is implicitly integrated as a phase in ASR system training as

opposed to the conventional approach where first phone pronunciation lexicon is developed

and then a phone-based ASR system is trained.

The potential and the efficacy of the proposed approach is demonstrated through experiments

and comparisons with other standard approaches on ASR for resource rich languages, non-

native and accented speech, under-resourced languages, and minority languages. The studies

revealed that the proposed framework is particularly suitable when the task is challenged by

the lack of both linguistic expertise and transcribed data. Furthermore, our investigations also

showed that standard ASR approaches in which the lexical model is deterministic are more
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suitable for phones than graphemes, while probabilistic lexical model based ASR approach is

suitable for both. Finally, we show that the captured grapheme-to-phoneme relationship can

be exploited to perform acoustic data-driven G2P conversion.

Keywords: Automatic speech recognition; Kullback-Leibler divergence based hidden Markov

model; lexicon; grapheme subword units; phoneme subword units; probabilistic lexical mod-

eling; grapheme-based automatic speech recognition; grapheme-to-phoneme conversion;

under-resourced speech recognition.
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Résumé
Les systèmes de reconnaissance automatique de la parole (RAP) intègrent des connaissances

poussées de la langue ou une expertise linguistique à travers l’utilisation d’un dictionnaire de

prononciation dans lequel chaque mot est associé à une séquence de phonèmes. La création

de dictionnaires de prononciation phonétique pour une nouvelle langue ou un nouveau

domaine est coûteuse car elle requiert une expertise linguistique, du temps et de l’argent. Dans

cette thèse, nous concentrons sur la construction efficace de systèmes de RAP sans aucune

expertise linguistique pour un nouveau domaine ou une nouvelle langue. En particulier, nous

considérons les graphèmes en tant qu’unités sous-mots alternatives pour la reconnaissance

vocale. Dans un dictionnaire de graphèmes, la prononciation d’un mot est obtenue depuis

son orthographe. Toutefois, modéliser les graphèmes pour la reconnaissance de parole est

une tâche difficile pour deux raisons. Premièrement, la relation graphème-à-phonème (GAP)

peut être ambigüe car une langue continue d’évoluer une fois son orthographe standardisée.

Deuxièmement, comme nous le montrons dans cette thèse, en général les systèmes de RAP

modélisent directement la relation entre les graphèmes et les caractéristiques acoustiques, et

ces caractéristiques acoustiques décrivent l’enveloppe de la parole, qui est liée aux phonèmes.

Dans cette thèse, une approche de RAP basée sur les graphèmes est proposée, où la relation

entre les graphèmes et les caractéristiques acoustiques est prise en compte à travers une

variable latente dans deux modèles, à savoir un modèle acoustique et un modèle lexical. Dans

le modèle acoustique, on modélise la relation entre les variables latentes et les caractéristiques

acoustiques, alors que pour le modèle lexical on modélise la relation probabiliste entre les

variables latentes et les graphèmes. Nous référons à l’approche proposée comme RAP basée

sur la modélisation lexicale probabiliste. Dans cette thèse, nous montrons que les variables

latentes peuvent être des phonèmes ou phonèmes multilingues, ou unités de sous-mots

groupées en fonction du contexte. Un modèle acoustique peut être entrainé sur des ressources

indépendantes du domaine ou indépendantes de la langue. Le modèle lexical est entrainé sur

de la parole transcrite de la langue ou du domaine cible. En procédant ainsi, les paramètres

du modèle lexical capturent une relation probabiliste entre les graphèmes et les phonèmes.

Dans l’approche de RAP basée sur des graphèmes, l’apprentissage du dictionnaire est intégré

implicitement comme une phase dans l’apprentissage du système de RAP, alors que dans

le cas d’une approche conventionnelle, le lexique de prononciation phonétique est d’abord

développé puis un système de RAP basé sur des phonèmes est entrainé.

Le potentiel et l’efficacité de l’approche proposée sont démontrés à travers une série d’expéri-

ences et de comparaisons avec d’autres approches standard sur des langues pour lesquelles
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les ressources sont importantes, de la parole non native et accentuée et sur des langues

minoritaires ayant peu de ressources. Nos études révèlent que le système proposé est partic-

ulièrement adapté lorsque la tâche est difficile en raison d’un manque d’expertise linguistique

et de données transcrites. De plus, nos recherches montrent également que les approches

standard de RAP pour lesquelles le modèle lexical est déterministe sont plus adaptées pour les

phonèmes que pour les graphèmes, alors qu’une approche de RAP basée sur un modèle lexical

probabiliste est adaptée aux deux. Enfin, nous montrons que la relation graphème-à-phonème

peut être exploitée pour convertir des graphèmes en phonèmes en se basant sur des données

acoustiques.

Mots clés : Reconnaissance automatique de la parole ; modèle de Markov caché basé sur la

divergence de Kullback-Leibler ; lexique ; graphème ; phonème ; modélisation lexicale prob-

abiliste ; reconnaissance automatique de la parole basée sur des graphèmes ; conversion

graphème-à-phonème ; reconnaissance de parole avec peu de ressources
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1 Introduction

The goal of automatic speech recognition (ASR) systems is to convert a speech signal into

text output. Standard ASR technology relies on the pronunciation lexicon, transcribed speech

corpora, and large collections of text data to achieve state-of-the-art performance. In a

pronunciation lexicon each word is represented in terms of subword units. Typically, phones

or phonemes, the basic sound units of a language, are used as subword units. Most often,

the lexicon is constructed by linguistic experts or linguists who carefully craft pronunciations

for each word in the vocabulary. In a transcribed speech corpora, each speech recording is

associated with a parallel word-level transcription. The recording and processing of a speech

corpora is a costly and time consuming task. The collection of text data for a language is

typically addressed using large amount of textual resources available on the web.

The predominant statistical approach used to achieve ASR is hidden Markov models

(HMM) [Rabiner, 1989]. Given the transcribed speech data, pronunciation lexicon and text

resources from the language for which we are interested to build an ASR system, the de-

velopment of HMM-based ASR system is often decomposed into two problems. First, the

relationship between subword units or “lexical units” and the acoustic feature observations

has to be learned. Second, the syntactic constraints of the language have to be incorpo-

rated. The performance of an ASR system depends on how well the above two problems are

addressed. In this thesis, we shall be concerned with the first problem.

1.1 Motivation and Objectives

ASR technology has enjoyed decades of progress, including the successful introduction of com-

mercial systems. However, most of the commercial systems are for resource-rich languages

(like English, Chinese, French) where there are adequate resources. The conventional ASR

approach is being challenged by “under-resourced domains or languages” where resources

required to build ASR systems are not available. The term under-resourced according to [Be-

sacier et al., 2014] refers to a language that lacks at least one of the following: unique writing

system, stable orthography, presence on the web, linguistic expertise, transcribed speech data,
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pronunciation dictionaries, vocabulary lists, electronic text resources, etc. However, minority

languages (that are spoken by minority of population) are not the same as under-resourced

languages.

The future of speech recognition technologies lies in their ability to deal with many languages.

Furthermore, the development of ASR technologies for under-resourced and minority lan-

guages can help in reducing the “language divide” among languages of the world.

To develop ASR systems for under-resourced languages either resources required to train an

ASR system could be developed, or approaches that leverage from the resources available in

resource-rich languages could be developed. As already mentioned, the creation of resources

to build ASR systems for a new language or a new domain is typically a costly task. In this

thesis, we will focus on the latter approach.

In the literature, the lack of transcribed speech data (or acoustic data) has been typically

addressed through multilingual and crosslingual ASR approaches [Schultz and Waibel, 2001b,

Burget et al., 2010, Thomas et al., 2012, Swietojanski et al., 2012]. These approaches are based

on the fact that the sounds produced across languages share a common acoustic space. The

usual mechanism followed is to define a lexical unit set based on universal phones using either

knowledge-based or data-driven approaches. Once the universal phone set is defined, the

relationship between lexical units and acoustic feature observations is learned on language-

independent data. To overcome the mismatch between sounds among different languages,

typically, the learned relationship is adapted on the target language data.

If the linguistic expertise and pronunciation lexical resources in the target language are not

available, then the issue of subword units and pronunciation lexicon must be addressed. One

simple way to address is through the use of graphemes, the units of written language, as lexical

units [Schukat-Talamazzini et al., 1993, Kanthak and Ney, 2002, Killer et al., 2003, Ko and

Mak, 2014]. In a grapheme lexicon, pronunciations of words are derived from their spelling.

However, modeling graphemes for ASR is not a trivial task, since the discrepancy between

graphemes and phones is considerable in many languages; and ASR systems directly model

the relationship between graphemes and acoustic feature observations that depict the short

term envelop of speech (which is more related to phones). Therefore, ASR systems using

grapheme lexicon generally perform worse compared to systems using phone lexicon.

The lack of both acoustic and lexical resources has been rarely studied in the past. In [Stüker,

2008a,b], multilingual acoustic modeling with graphemes as subword units was considered

when the language lacked both acoustic and lexical resources. For multilingual acoustic mod-

eling, phone lexical resources are indispensable, since, the approaches depend on phonetic

similarities of sounds between languages. Therefore, unlike phone subword units, it is not

trivial to share models of grapheme subword units, since the relationship between graphemes

and phones may differ considerably across languages.

The main goal of the thesis is to tackle challenges related to the building of ASR systems
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for languages and domains that lack proper pronunciation lexical resources and acoustic

data. To mitigate the dependency on both acoustic and lexical resources, we will focus on

exploiting acoustic and lexical resources available in resource rich languages and domains for

grapheme-based ASR.

1.2 Contributions of the Thesis

In this thesis, we will show that the modeling of the relationship between lexical units and

acoustic feature observations can be factored into two parts or models through a latent

variable, referred to as an “acoustic unit”, namely,

1. acoustic model where the relationship between acoustic units and acoustic feature

observations is modeled;

2. lexical model where the relationship between acoustic units and lexical units is modeled.

In the thesis, we elucidate that in standard HMM-based ASR systems, the lexical model is

deterministic (deterministic lexical modeling). This has two main implications: the lexical

units and acoustic units are the same, and are based on a type of subword units (phones or

graphemes, context-independent or context-dependent); the acoustic model directly models

the relationship between acoustic feature observations and lexical units. As a result, to build

an ASR system, acoustic and lexical resources from the target language or domain are required

to train or adapt both the acoustic model and the lexical model.

We show that, there are approaches such as, Kullback-Leibler divergence based hidden Markov

model [Aradilla et al., 2008], and tied posterior [Rottland and Rigoll, 2000] where the rela-

tionship between lexical units and acoustic units is probabilistic (probabilistic lexical model-

ing) [Rasipuram and Magimai.-Doss, 2013b]. Probabilistic lexical modeling relaxes certain

constraints imposed by deterministic lexical modeling and as a consequence, the acoustic

model and the lexical model can be independently trained on different set of resources; acous-

tic units and lexical units can be based on different kinds of subword units and different types

of contextual units can be modeled in an ASR system.

Motivated by these findings, in this thesis we propose an approach for grapheme-based ASR

in the framework of probabilistic lexical modeling, where the relationship between graphemes

and acoustic feature observations is factored into two models using acoustic units. In this

thesis, we will show that in the proposed approach,

• lexical units can be graphemes of the target language while the acoustic units can be phones,

or multilingual phones, or clustered context-dependent states;

• the acoustic model can be trained on target domain or language resources if available; or

on domain-independent or language-independent acoustic and lexical resources; and

• the lexical model, which captures a probabilistic relationship between graphemes and

acoustic units, is trained on the target language-dependent acoustic data.

In this thesis, we investigate the potential of the proposed grapheme-based ASR approach in

overcoming acoustic and lexical resource constraints in ASR system development. Progres-
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sively, we show that:

1. The proposed approach can overcome lexical resource constraints by integrating lexicon

learning as a phase in ASR system training. More precisely, in the proposed approach,

with phones as acoustic units and graphemes as lexical units, the lexical model parame-

ters capture a probabilistic grapheme-to-phoneme (G2P) relationship learned through

acoustic data. In this regard, we show that the proposed grapheme-based ASR approach

can perform better than the phone-based ASR approach where phone pronunciation

lexicon is developed using automatic G2P conversion approaches.

2. The proposed approach is particularly suitable when the task is challenged by the lack

of both acoustic and lexical resources. The approach exploits existing acoustic and

phoneme lexical resources available in other languages to improve grapheme-based

ASR in target domain or language.

3. The proposed framework can be extended to languages and domains where both acous-

tic and lexical resources are not available (zero-resourced ASR).

4. The G2P relationship captured in the lexical model parameters can be exploited to

perform acoustic data-driven G2P conversion.

5. The set of acoustic units that capture phone-like information can be derived by modeling

context-dependent graphemes on target language data. Through the use of acoustic

units derived from context-dependent graphemes, the performance of grapheme-based

ASR systems can be significantly improved.

The work presented in this thesis has been published in [Magimai.-Doss et al., 2011, Imseng

et al., 2011, Rasipuram and Magimai.-Doss, 2012a,b, Rasipuram et al., 2013a, Rasipuram and

Magimai.-Doss, 2013a, Rasipuram et al., 2013b]. Few parts of the work are in the form of

publicly available research reports [Rasipuram and Magimai.-Doss, 2013b, 2014].

1.3 Organization of the Thesis

The reminder of the thesis is organized as follows:

• Chapter 2, Background, gives an overview of standard HMM-based ASR systems followed

by the description of each of the components of an ASR system, namely, feature extraction,

pronunciation lexicon, acoustic likelihood estimator, language model and decoder.

• Chapter 3, Probabilistic lexical modeling, is devoted to the description of the probabilistic

lexical modeling framework. The chapter also describes and compares ASR approaches

where the lexical model is probabilistic.

• In Chapter 4, we first show that the deterministic lexical modeling aspect of standard HMM-

based ASR systems imposes the need for large amount of transcribed speech data and phone

pronunciation lexical resources from the target language or domain; and the probabilistic

lexical model based ASR approaches relax certain constraints of deterministic lexical model

based ASR approaches. We propose a grapheme-based ASR approach in the framework of

probabilistic lexical modeling in which the relationship between graphemes (lexical units)
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and phones (acoustic units) is learned through acoustic data. The viability of the approach

is demonstrated through a pilot study.

• Chapters 5 and 6 are devoted to studying the proposed grapheme-based ASR approach in lex-

ical resource constrained ASR scenarios, and both acoustic and lexical resource constrained

ASR scenarios, respectively. More specifically, we show the potential of the proposed ap-

proach in addressing both acoustic and lexical resource constraints.

• In Chapter 7, Zero-resourced ASR, we extend the proposed framework and show that ASR

systems for a new language could be developed without using any acoustic and lexical re-

sources from the language, i.e., zero-resourced ASR system. Furthermore, in the case where

untranscribed speech data from the target language is available, we show that the lexical

model parameters can be adapted in an unsupervised manner to improve the performance

of an ASR system.

• In Chapter 8, we show that the G2P relationship captured in the lexical model parameters

can be exploited to perform acoustic data-driven G2P conversion. The proposed G2P

approach is experimentally evaluated and compared against conventional G2P approaches

at pronunciation error level and ASR performance level.

• In Chapter 9, Improving phones-less grapheme-based ASR, we show that the clustered

context-dependent graphemes model phone-like information and the poor performance

of grapheme-based ASR systems proposed in the literature is primarily due to determin-

istic lexical modeling. We show that by incorporating probabilistic lexical modeling, the

grapheme-based ASR system (without using any phone information or cross-domain re-

sources) is more robust against possible pronunciation errors inherent in the grapheme

lexicon.

• Finally, Chapter 10, concludes with possible directions for the future research.
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2 Background

In this thesis we are concerned with the statistical ASR. In the statistical ASR approach, the

goal is to find the best matching (most likely) word sequence W ∗ = {w1, . . . ,wm , . . . ,wM } given

the acoustic observation sequence X = {x1, . . . ,xt , . . . ,xT } where M is the total number of words

in the utterance and T represents the total number of frames in the speech signal. Formally,

W ∗ = argmax
W ∈W

P (W |X ) (2.1)

= argmax
W ∈W

p(X |W )P (W )

p(X )
(2.2)

= argmax
W ∈W

p(X |W )P (W ) (2.3)

where W denotes the set of all possible word sequences and W denotes a word sequence. The

Bayes rule is applied in Eqn (2.2). In Eqn (2.3), the denominator p(X ) is dropped because it is

independent of word hypothesis and does not affect the maximization. The first term on the

right hand side of Eqn (2.3) is the likelihood of the acoustic observation sequence X given a

word sequence W and is referred to as the acoustic likelihood. The second term on the right

hand side of Eqn (2.3) is the prior probability of a word sequence W or the language model

probability.

2.1 Standard HMM-based ASR

Modeling the relationship between all acoustic observation sequences and all possible word

sequences is practically infeasible. In general, speech recognition systems model words as

a sequence of subword units, which are further modeled as a sequence of HMM states. The

sequence of subword units for a word is given by its pronunciation model as specified in the

pronunciation lexicon. Typically, the language model is an n-gram statistical model where

the probability of the current word depends only on the previous n −1 words. ASR systems

normally incorporate bi-gram (n = 2) or tri-gram (n = 3) language models. The most likely
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word sequence W ∗ is obtained by,

W ∗ = argmax
W ∈W

p(X |W,ΘA)P (W |ΘL) (2.4)

= argmax
W ∈W

[ ∑
Q∈Q

p(X ,Q|W,ΘA)
]

P (W |ΘL) (2.5)

= argmax
W ∈W

[ ∑
Q∈Q

p(X |Q,W,ΘA)P (Q|W,ΘA)
]

P (W |ΘL) (2.6)

= argmax
W ∈W

[ ∑
Q∈Q

p(X |Q,ΘA)P (Q|W,ΘA)
]

P (W |ΘL) (2.7)

≈ argmax
W ∈W

[
max
Q∈Q

p(X |Q,ΘA)P (Q|W,ΘA)
]

P (W |ΘL) (2.8)

≈ argmax
W ∈W

{[
max
Q∈Q

T∏
t=1

p(xt |qt = l i ,ΘA)P (qt = l i |qt−1 = l j ,ΘA)
]

[
P (w1|ΘL)

M∏
m=2

P (wm |wm−1,ΘL)
]}

(2.9)

• The parameter setΘ= {ΘA ,ΘL} includes the parameters of the acoustic likelihood estimator

(ΘA) and the parameters of the language model (ΘL).

• In Eqn (2.5), the acoustic likelihood is obtained by summing over all possible state sequences

Q where each Q = {q1, . . . , qt , . . . , qT } denotes a sequence of HMM states corresponding to a

word sequence hypothesis.

• In Eqn (2.6), the Bayes rule is applied. p(X |Q,W,ΘA) is the likelihood of the acoustic

observation sequence given an HMM state sequence and a word sequence, P (Q|W,ΘA)

is the probability of the HMM state sequence given a word sequence (often termed as

the pronunciation model and derived from the pronunciation lexicon), and P (W ) is the

language model probability.

• Eqn (2.7) assumes that the acoustic likelihood is independent of words given the state

sequence.

• In Eqn (2.8), a Viterbi approximation is employed where the sum over all possible state

sequences is replaced with the most probable state sequence.

• In subword unit based ASR systems, HMM states represent lexical units i.e., qt ∈ L =

{l 1, . . . , l i , . . . , l I } and I is the number lexical units. If phones are used as subword units

then the lexical unit l i can represent a context-independent phone or a context-dependent

phone and if graphemes are used as subword units then the lexical unit l i can represent a

context-independent grapheme or a context-dependent grapheme. Here, for the sake of

simplicity we assume that a lexical unit is represented by an HMM state.

• Eqn (2.9) arises from HMM and language model assumptions. The two HMM assumptions

are: (1) The output observation at time t is dependent only on the current state (i.i.d). (2)

First order Markov assumption which states that the current state is dependent only on

the previous state. Usually, p(xt |qt = l i ,ΘA) is referred to as the local emission score and

P (qt = l i |qt−1 = l j ,ΘA) is referred to as the transition score.
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2.1. Standard HMM-based ASR

In other words, a sentence model consists of a sequence of word models constrained by the

language model, a word model consists of a sequence of subword models constrained by the

pronunciation lexicon and a subword model consists of concatenation of one or more HMM

states. As a result, Eqn (2.9) can be simplified such that the most likely word sequence W ∗ is

obtained by finding the most likely state sequence Q∗, i.e.,

Q∗ = argmax
Q∈Q

p(X ,Q|Θ) (2.10)

= argmax
Q∈Q

T∏
t=1

p(xt |qt = l i ,ΘA) ·P (qt = l i |qt−1 = l j ,Θ) (2.11)

= argmax
Q∈Q

T∑
t=1

[log p(xt |qt = l i ,ΘA)+ logP (qt = l i |qt−1 = l j ,Θ)] (2.12)

Similar to Eqn (2.9), Eqn (2.11) results after i.i.d and first order Markov assumptions. Eqn (2.12)

is as a result of log transformation to Eqn (2.11). If l j is the last lexical unit of a word and l i is

the first lexical unit of next word then P (qt = l i |qt−1 = l j ,Θ) incorporates the language model

probability, otherwise it is the HMM state transition probability.

The parameters of the HMM-based ASR system include the parameters of acoustic likelihood

estimator and the parameters of the language model. The parameters of the acoustic likelihood

estimator include:

• The set of lexical units L = {l 1, . . . , l i , . . . , l I }.

• State transition probabilities {ai j }I
i , j=1 where ai j = P (qt = l i |qt−1 = l j ) for i , j = 1, . . . , I .

• The parameters of the local emission score p(xt |qt = l i ) estimator for each lexical unit.

The various components of an ASR system are illustrated in Figure 2.1. The reminder of this

chapter will briefly elaborate on each of the components.

observation

sequence

acoustic

Feature 
Extraction

Viterbi Decoder

Language

Model

Lexicon

Pronunciation

sequence of 
lexical units

word

 

sequence
speech
signal

Likelihood

Acoustic

Estimator

{lb, . . . , lg}

{x1, . . . ,xT}

Figure 2.1 – Block diagram of an ASR system
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Chapter 2. Background

2.2 Feature Extraction

The goals of feature extraction are to extract acoustic information from the speech signal

that is relevant to the identification of the underlying sounds and suppress the non-linguistic

information such as speaker and environmental variability. Feature extraction also provides a

compact representation of the speech signal. The two common features that are used in most

of the ASR systems are Mel-frequency cepstral coefficients (MFCC) [Davis and Mermelstein,

1980] and perceptual linear prediction (PLP) [Hermansky, 1990] features. These features are

computed every 10 ms in overlapping analysis windows of 25 ms duration. This is based on

the assumption that the speech signal is quasi-stationary in short-time intervals.

As described in [Gold and Morgan, 1999], for both MFCC and PLP, the first step is the compu-

tation of the power spectrum for each analysis window of the speech signal. This is done by

windowing the analysis region (typically, using a Hamming window), calculating the FFT, and

computing its squared magnitude. In the second step, the power spectrum is integrated within

critical band filter responses. In the case of MFCCs this is done using the Mel scale which is

roughly linear below 1kHz and logarithmic above 1kHz. In the case of PLPs, this is done using

trapezoidal filters applied at roughly 1-Bark intervals. In the third step, the spectrum is pre-

emphasized to account for the unequal sensitivity of human hearing at different frequencies.

In the case of MFCCs, this is done before the spectral analysis, whereas in the case of PLPs this

is implemented as explicit weighting of the critical band spectrum. In the fourth step, spectral

amplitudes are compressed. In the case of MFCCs, log transformation is applied whereas for

PLPs, the spectral amplitudes are compressed using cubic root compression. In the fifth step,

decorrelation and dimensionality reduction is performed. In the case of MFCCs, typically DCT

is applied and this step yields the cepstral coefficients. Dimensionality reduction is achieved

by cepstral truncation where the first 12 or 13 components are retained. In the case of PLPs,

an autoregressive model is used to smooth the compressed critical band spectrum. This step

in PLP has been shown to achieve better noise robustness and speaker independence than

cepstral truncation of MFCCs [Openshaw et al., 1993, Gold and Morgan, 1999].

In order to account for the dynamic behaviour of the speech signal, usually the MFCCs or PLPs

are appended with first order and second order derivatives of static features computed across

analysis frames [Furui, 1986]. In this thesis, we used MF-PLPs extracted using the hidden

Markov model toolkit (HTK) as acoustic feature observations (xt ) [Young et al., 2006]. The

MF-PLP features are PLP features but use the Mel scale filter bank in place of the Bark scale

filter bank.

2.3 Pronunciation Lexicon

In ASR systems, words are modeled in terms of subword units to address data sparsity issues

and achieve generalization towards unseen words. The use of subword units in speech recogni-

tion presents two challenges. The first challenge is the choice of subword units and the second

10



2.3. Pronunciation Lexicon

is the transcription of each word in terms of a sequence of subword units. The collection

of words and their pronunciations is usually referred to as the pronunciation lexicon or the

pronunciation dictionary. The pronunciation lexicon acts as an interface between the words

and the lexical model. All the components in an ASR system presume the availability of a

subword unit set and a pronunciation lexicon. Therefore, in practice, ASR system development

can be seen as a two stage process: development of pronunciation lexicon followed by ASR

system training.

Ideally, it is good to have subword units that associate well with the acoustic signal (acoustic

feature observations), are sufficiently frequent in the database used for ASR system training,

are robust to the changes in context, allow easy generation of lexicon and provide flexibility

for cross and multilingual portability. Unfortunately, there exists no single subword unit set

which addresses all these concerns equally well.

2.3.1 Phone Subword Units

Typically, ASR systems use linguistically motivated phones or phonemes as subword units.

Therefore, development of the subword unit set and the pronunciation lexicon is derived

mostly from linguistic theory and incorporates linguistic expertise of a language. Linguists

have categorized many of the sounds of the languages in the world into segments called

phones [Gold and Morgan, 1999]. A phoneme is the smallest contrastive unit in the phonology

of a language [O’Shaughnessy, 1987]. Therefore, a phone set is designed to cover the set of

sounds in all languages where as a phoneme set is a set of sound categories of a particular

language [Gold and Morgan, 1999]. Examples of phone sets include the international phonetic

alphabet (IPA), the speech assessment methods phonetic alphabet (SAMPA), the ARPABET 1,

and the CMUBET 2.

Phone pronunciations are typically obtained from a hand-built lexicon which the linguistic

experts have prepared. During the preparation of the pronunciation lexicon by linguists, care

is taken to minimize word level confusions and consistency is ensured across the lexicon.

The hand crafted phone pronunciation lexicon will provide optimum performance for ASR.

However, design of the phone pronunciation lexicon of significant size by linguistic experts is

a tedious and costly task. Furthermore, a finite lexicon will always have limited coverage for

ASR and text-to-speech (TTS) synthesis systems. For this reason, ASR and TTS systems use

semi-automatic pronunciation generation methods when hand crafted pronunciations fail to

cover vocabulary of a particular domain.

The phone pronunciation lexicon can also be built using phonological rules defined by lin-

guists [Kaplan and Kay, 1994]. Phonological rules are often specific to a language, sometimes

even to a dialect. Another commonly adopted way to generate or augment the phone pronun-

ciation lexicon is through automatic G2P conversion systems [Pagel et al., 1998, Bisani and

1. http://en.wikipedia.org/wiki/Arpabet
2. http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Ney, 2008]. The two main components of automatic G2P conversion systems are: a source

lexicon, and a method to capture the G2P relationship observed in the source lexicon.

2.3.2 Grapheme Subword Units

Other alternatives for subword units are graphemes [Schukat-Talamazzini et al., 1993, Kanthak

and Ney, 2002, Killer et al., 2003, Magimai.-Doss et al., 2011, Rasipuram et al., 2013a, Ko and

Mak, 2014] which make the pronunciation lexicon development easy. Graphemes are the

units of written language, e.g., alphabetic letters of English. With graphemes as subword units

the pronunciation of words is derived from their orthography. According to Omniglot 3, as

summarized in [Schultz and Kirchhoff, 2006, Chapter 4] [Stüker, 2009, Chapter 4], graphemes

can be used as subword units for a wide number of languages that use the alphabetic, or

Abugidas writing systems. However, modeling graphemes for ASR is not a trivial task because:

1. A sequence of graphemes may represent a single phoneme. In English, the grapheme

sequence [S], [H] represents a single phoneme /sh/. In Scottish Gaelic, many vowels

are present in orthography only to denote the nature of consonant next to it. These

graphemes are never pronounced. Such graphemes in a word are usually referred to as

silent letters.

2. A single grapheme at a particular instant may represent more than one phoneme. For

example, in Arabic short vowels occurring next to a consonant are often not present in

the written form.

3. The same letter at different instants can represent different phonemes. For example, in

English, grapheme [C] maps to phoneme /k/ in CAT, to phoneme /s/ in word CITE, and

to phoneme /ch/ in word CHURCH.

4. Different graphemes can represent the same phoneme. For example, in Polish, the

graphemes [u] and [ó] represent the phoneme /u/.

The relationship between graphemes and phones is highly dependent on the language of

interest. For languages such as Finnish and Spanish, the relationship is regular whereas for lan-

guages, such as English and French the relationship is irregular. As it is the case with phoneme

subword units, deviations in the relationship between graphemes and acoustics may occur

for different dialects of a language, non-native words, proper names, non-native speakers etc.

Thus, it is challenging to model grapheme subword units for speech recognition. In Chapter 4

(see Section 4.1.2), we will present an overview of grapheme-based ASR approaches proposed

in the literature.

2.3.3 Context Dependency

Depending on the subword context modeled, there are two types of ASR systems, namely,

context-independent subword unit based ASR systems and context-dependent subword unit

3. http://www.omniglot.com/
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based ASR systems. In context-dependent subword unit based ASR systems each context-

independent subword unit in context is considered as a separate unit [Schwartz et al., 1985].

For example, the pronunciation of the word ‘that’ would be represented as “/dh/ /ae/ /t/”

in the case of context-independent subword units and as “/dh+ae/ /dh-ae+t/ /ae-t/” in the

case of context-dependent subword units. Context-dependent subword modeling is primarily

incorporated to model coarticulation i.e., each phone may be realized differently in different

contexts. State-of-the-art ASR systems are typically based on context-dependent subword

units.

2.4 Acoustic Likelihood Estimator

As given in Eqns (2.9) and (2.11), the estimation of acoustic likelihood P (X |W,ΘA) involves

the estimation of the local emission score p(xt |qt = l i ,ΘA) and the state transition score

P (qt = l i |qt−1 = l j ,ΘA). In this section we will briefly describe how these probabilities are

estimated and how the parameters of the acoustic likelihood estimatorΘA are learned.

Standard HMM-based ASR systems implicitly model the dependency between acoustic feature

observation xt and lexical unit l i through an intermediate set of units (see Sections 3.1 and 3.2).

In this thesis, these intermediate units are referred to as acoustic units. The set of acoustic

units is denoted as A = {a1, . . . ad , . . . aD } where D is the total number of acoustic units.

The two main approaches used in the literature to model the acoustic units are Gaussian

mixture models (GMMs) and artificial neural networks (ANNs). The resulting ASR systems

are usually referred to as HMM/GMM [Rabiner, 1989] and Hybrid HMM/ANN [Morgan and

Bourlard, 1995] systems, respectively.

2.4.1 Acoustic Units

Let K be the number of context-independent subword units in the lexicon and M is the

minimum duration constraint (typically, M = 3). There are two types of context-independent

subword unit based ASR systems one can encounter:

1. The lexical units are context-independent subword units with minimum duration con-

straint, i.e., I = K ×M and there is an acoustic unit for each lexical unit, i.e., D = I . This

is a system where the relationship between acoustic feature vectors (xt ) and lexical units

(l i ) is directly modeled.

2. The lexical units are context-independent subword units with minimum duration con-

straint, i.e., I = K ×M , however, the acoustic units are context-independent subword

units, i.e., D = K . In this case, the M lexical units associated with a context-independent

subword unit share an acoustic model. The deterministic relationship between lexical

and acoustic units is modeled by building a look-up table with I rows.

Context-independent subword unit based HMM/GMM systems are of the first kind. In the

past, context-independent subword unit based hybrid HMM/ANN systems were typically of
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the second kind [Morgan and Bourlard, 1995].

In the case of context-dependent subword unit based ASR systems, the number of lexical

units I = M ·K cr +cl+1 where cl is the preceding context length, cr is the following context

length. Generally, not all context-dependent subword units will appear sufficiently often in

the training data. Hence a sharing approach is used to enable multiple lexical units to share

an acoustic model. This is done using decision-tree based state clustering and tying technique

that uses the pronunciation lexicon, linguistic knowledge (phonetic question set) and acoustic

data [Young et al., 1994].

The number of acoustic units D vary depending on hyper parameters such as the state occu-

pancy count and the log-likelihood threshold that are used during decision-tree based state

clustering. However, the number of acoustic units D is well below the number of lexical units I .

The state tying process builds a look-up table with I rows that maps each lexical unit l i to one

of the D acoustic units. In toolkits such as HTK, this table is not explicitly seen. However, it is

obtained from decision trees and is stored in the HMM definition file or the master macro file

(MMF) and tied list after state clustering and tying [Young et al., 2006]. The resulting clustered

units or the acoustic units are modeled with GMMs or with an ANN.

2.4.2 HMM/GMM Approach

In the HMM/GMM approach, each acoustic unit is represented by a GMM. The parameters of

the acoustic likelihood estimator in the HMM/GMM system are learned by optimizing a maxi-

mum likelihood based objective function using the expectation maximization (EM) algorithm

given the pronunciation lexicon and acoustic training data [Rabiner, 1989]. There are two

EM-based approaches to estimate the model parameters, namely, Baum-Welch training or

forward-backward training [Rabiner, 1989] and embedded Viterbi training [Juang and Rabiner,

1990].

The EM algorithm is an iterative algorithm consisting of an expectation step (E-step) and a

maximization step (M-step). In the E-step, state occupancy estimates are computed from the

training data given the initial model. This involves estimating the probability distributions of

hidden variables and the expected log likelihood given an initial model. In forward-backward

training, the state occupancy estimates are described by probability distributions. In Viterbi

training, first the segmentation of data is performed in terms of states; and state occupancy

estimates are Kronecker delta distributions computed based on an explicit segmentation and

labeling of training data. In the M-step, the maximum likelihood method is applied to update

the model parameters using the state occupancy statistics computed from the training data.

The HTK toolkit was used to build all HMM/GMM systems used in this thesis.
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2.4.3 Hybrid HMM/ANN Approach

In the Hybrid HMM/ANN approach, acoustic units are modeled using an ANN. An ANN is first

trained to estimate p(ad |xt ,ΘA) and then the scaled-likelihood psl (xt |ad ,ΘA) is estimated as:

psl (xt |ad ,ΘA) = p(xt |ad ,ΘA)

p(xt )
= P (ad |xt,ΘA)

P (ad )
(2.13)

P (ad ) is estimated on the training dataset through counting.

The most common neural network used in ASR is a multilayer perceptron (MLP) [Morgan

and Bourlard, 1995]. An MLP is a layered feedforward neural network with an input layer,

zero or more hidden layers, and an output layer. The inputs to the MLP are cepstral features.

Typically, at each time frame t , a left and right context of four frames (xt−4, . . . ,xt , . . . ,xt+4)

is used as input to the MLP. The output categories of MLP are acoustic units. Each layer

of the MLP computes a set of linear discriminant functions using a weight matrix followed

by a nonlinear function, which is often a sigmoid function. Most often, in the output layer

a softmax nonlinear function is used. MLP estimates the posterior probabilities of output

classes conditioned on the input [Morgan and Bourlard, 1995]. That is, the output zt from the

MLP at time t can be written as,

zt = [z1
t , . . . , zd

t , . . . , zD
t ]T

= [P (a1|xt ), . . . ,P (ad |xt ), . . . ,P (aD |xt )]T (2.14)

where zd
t = P (ad |xt ) is the posterior probability the acoustic unit ad given an acoustic feature

observation vector xt .

The parameters of the neural network (weights and biases) can be trained using the back-

propagation algorithm [Rumelhart et al., 1986] either in online training mode or batch training

mode. In on-line training, the weights are adjusted in the direction of the error gradient with

respect to the weight vector estimated from an example. In the batch training, the weights

are adjusted after each batch of training data. The training criteria that are used most often

to train the ANN are relative entropy and cross entropy. MLPs are prone to overfitting the

training data, therefore, performance on cross-validation data (that is independent of the

training data) is used to stop the ANN training.

Training data labeled in terms of network outputs is required to train the MLP for classifica-

tion. It has been shown that the embedded Viterbi training procedure can be used for this

purpose [Morgan and Bourlard, 1995]. Initially, the MLP is trained with uniform segmentation

of training data. In the second step, this MLP is used to estimate the probabilities of acoustic

units which are converted into the scaled-likelihoods. The scaled-likelihoods are used in dy-

namic programming to determine the new labels for the next MLP training. Each MLP training

is done using labels from the previous Viterbi alignment and the procedure is iterated until

convergence. Alternatively, MLP training can be started from the labeling and segmentation
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obtained from the HMM/GMM system.

The parameters of the acoustic likelihood estimator in hybrid HMM/ANN ASR systems [Mor-

gan and Bourlard, 1995, Dahl et al., 2012] are transition probabilities ai j , weights and biases

of the trained ANN, the prior probabilities of acoustic units and the decision trees or the deter-

ministic map between lexical and acoustic units. The posterior probability of the acoustic unit

or the scaled likelihood as given in Eqn (2.13) is used directly as the local emission score. The

state transition probabilities ai j in hybrid HMM/ANN systems are usually fixed to 0.5 (unless

i is the first state of the first word, i.e., a01 = 1) [Morgan and Bourlard, 1995].

Alternatively, the posterior probabilities of acoustic units can replace conventional cepstral

features in HMM-based ASR systems via the Tandem technique [Hermansky et al., 2000].

In order to model the output of the MLP (that is typically non-Gaussian) with GMMs, the

posterior probabilities of acoustic units are Gaussianized using the log function and then

decorrelated using the Karhunen-Loeve transform (KLT). Optionally, dimensionality reduction

can also be performed by retaining only the feature components that contribute most to the

variance. In this case, ANN is used as a pre-processor for feature extraction.

In this thesis, we use three layer MLPs trained to classify context-independent subword units

with the cross entropy error criteria. The input to MLPs is the 39-dimensional PLP feature

vector with a context of four preceding frames and four following frames. The labels for the

training data were always obtained from the HMM/GMM system. All the MLPs are trained

using the Quicknet software 4.

2.5 Language Model

As given in Eqn (2.4), the language model estimates the prior probability P (W |ΘL) of a word

sequence W . The prior probability P (W ) of a word sequence W can be factored using the

chain rule of probability as:

P (W ) =
M∏

m=1
P (wm |w1,w2, . . . ,wm−1) (2.15)

ASR systems, typically use n-gram statistical language models where it is assumed that given

the previous n −1 words, the probability of a word is independent of remaining history i.e.,

P (W ) =
M∏

m=1
P (wm |wm−(n−1), . . . ,wm−1) (2.16)

If n = 2, language model is referred to as bi-gram language model and if n = 3 it is referred to

as tri-gram language model.

The parameters of the language modelΘL or the probabilities P (wm |wm−(n−1), . . . ,wm−1) are

4. http://www.icsi.berkeley.edu/Speech/qn.html
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estimated through counting using large collection of text from the language. However, even for

bi-gram and tri-gram language models, it can be difficult to make good probability estimates

for infrequent or unseen combination of words in the training data. Since, this is undesirable

and an ASR system should be able to recognize word combinations not seen in the training,

backoff smoothing method is normally employed [Katz, 1987]. In backoff smoothing, if there

are enough examples for a tri-gram then the probability obtained from relative frequencies

is used directly; if there are not enough examples then a bi-gram probability is used; if there

are not enough examples for bi-gram then unigram probability is used. Additionally, the

probability estimates for lower order n-grams are sometimes modified using methods such

as Kneser-Ney smoothing [Kneser and Ney, 1995]. In this thesis, we used bi-gram language

models employing Katz backoff smoothing. The language models are trained using the ngram-

count tool of the SRILM toolkit [Stolcke, 2002].

2.6 Viterbi Decoder

As shown in Figure 2.1, during decoding the acoustic likelihood estimates and the language

model prior probabilities are combined using Bayes rule as in Eqn (2.3) to infer the optimal

word sequence given the acoustic feature observation sequence. The Viterbi algorithm [Forney,

1973] is used to find the most possible state sequence, and thereby the most probable word

sequence (see Eqn (2.12)). According to Eqn (2.12), the acoustic likelihood and the language

model probability must be computed for all possible state sequences. Unfortunately, this full

breadth search is time consuming even for small vocabularies. Therefore, speech recognition

systems employ pruning via beam search techniques where the hypotheses with scores less

than a given threshold are discarded [Greer et al., 1982].

The acoustic likelihood and language model probability are estimated independently using

different models, model different knowledge resources (acoustic data and text data respec-

tively) and have different dynamic ranges. In practice, the acoustic likelihood scores are much

smaller than those of language model probabilities. To prevent language model probabili-

ties being dominated by acoustic likelihood, the language model probability is scaled before

combining with acoustic likelihood. Also, to reduce large number of errors due to insertion of

many short words, ASR systems also penalise the probability of transitions between words

using word insertion penalty. In this thesis, we have used the HVite decoder tool provided

with the HTK toolkit. The language model scale factor and the word insertion penalty of all

the systems in this thesis are tuned on the development set.

2.7 Evaluation

The performance of all the ASR systems in this thesis is evaluated in terms of word accuracy

computed using the HResults tool provided with the HTK toolkit [Young et al., 2006]. The

HResults tool matches the recognised and reference word label transcriptions by performing an

17



Chapter 2. Background

optimal string match using dynamic programming. Given the optimal alignment, the number

of substitution (eS), deletion (eD ) and insertion (e I ) errors are calculated. The performance in

terms of word accuracy is defined as the following:

Word accuracy = N −eD −eS −e I

N
×100% (2.17)

where N denotes the total number of words in the reference transcriptions.

2.8 Summary

In this chapter, we gave a brief overview of standard HMM-based ASR systems with its compo-

nents: feature extraction, pronunciation lexicon, acoustic model, language model and decoder.

In the next chapter, we present the framework of probabilistic lexical modeling.
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3 Probabilistic Lexical Modeling

In this chapter, we introduce the framework of probabilistic lexical modeling (Section 3.1)

and elucidate that standard HMM-based ASR approaches use a deterministic lexical model

(Section 3.2). We present three probabilistic lexical model based ASR approaches (Section 3.3)

and contrast them with the standard ASR approach where the lexical model is deterministic

(Section 3.5).

3.1 Probabilistic Lexical Modeling Framework

In HMM-based ASR systems, as seen the previous chapter (see Section 2.1 and Eqn (2.11)),

the estimation of joint density for X and Q involves the estimation of the local emission score

p(xt |qt = l i ,ΘA) and the transition score P (qt = l i |qt−1 = l j ,Θ). The local emission score

p(xt |qt = l i ,ΘA) or the dependency between acoustic feature observation xt and lexical unit

l i can be factored through a latent variable ad as following:

p(xt |qt = l i ,ΘA) =
D∑

d=1
p(xt , ad |qt = l i ,ΘA) (3.1)

=
D∑

d=1
p(xt |ad , qt = l i ,θa ,θl ) ·P (ad |qt = l i ,θl ) (3.2)

=
D∑

d=1
p(xt |ad ,θa)︸ ︷︷ ︸
acoustic model

·P (ad |qt = l i ,θl )︸ ︷︷ ︸
lexical model

(3.3)

We refer to the latent variable ad as the acoustic unit and the set of acoustic units A =
{a1, . . . ad , . . . aD } where D is the total number of acoustic units. The relationship in Eqn (3.3)

is a result of the assumption that given ad , p(xt |ad , qt = l i ,θa ,θl ) is independent of l i . In

Eqn (3.3), p(xt |ad ,θa) is the acoustic unit likelihood and P (ad |l i ,θl ) is the probability of

the acoustic unit given the lexical unit and is given by the lexical model. In this thesis, we

refer to p(xt |ad ,θa) as the acoustic model evidence and P (ad |l i ,θl ) as the lexical model

evidence. The parameters of the acoustic likelihood estimatorΘA now encompass the acoustic
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model (θa), the pronunciation lexicon (θpr ) and the lexical model (θl ) parameters, therefore,

ΘA = {θa ,θpr ,θl }.

Figure 3.1 shows the Bayesian network of an ASR system that uses the factorization of Eqn (3.3).

The lexical unit is given deterministically by the current word and its subword units. The lexical

unit is mapped to all acoustic units probabilistically and the acoustic feature observation is

conditioned on the acoustic units.

li

a1 aDad

xt

acoustic
model

lexical
model

Figure 3.1 – The Bayesian network of an ASR system based on the Eqn (3.3)

For a lexical unit l i , the lexical model evidence can be seen as a D dimensional categori-

cal variable yi = [y1
i , . . . , yd

i , . . . yD
i ]T, yd

i = P (ad |l i ,θl ) that models a probabilistic relationship

between a lexical unit l i and D acoustic units. Given the acoustic feature observation se-

quence {x1, . . . ,xT }, the acoustic model computes a sequence of acoustic unit likelihood vec-

tors {v1, . . . ,vT }, where vt = [v1
t , . . . , vd

t , . . . , vD
t ]T and vd

t = p(xt |ad ,θa). Having defined yi and

vt , Eqn (3.3) can be written as the following:

p(xt |qt = l i ,ΘA) =
D∑

d=1
p(xt |ad ,θa) ·P (ad |qt = l i ,θl ) (3.4)

= yT
i vt (3.5)

Eqn (3.5) can be seen as a match between the acoustic and lexical model evidence which

in this case turns out to be the scalar product of yi and vt . The various components of a

probabilistic lexical model based ASR system are illustrated in Figure 3.2.

The graphical model representation of a system based on Eqns (2.12) and (3.5) for the word

sequence “IS IT” is illustrated in Figure 3.3. In the figure, I and F refer to the initial and final

HMM states. The figure shows that the sequence of words constrained by the language model

are represented by a sequence of lexical units (l i h l z l i h l t ) as given by the pronunciation
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sequence
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{v1, . . . ,vT}{x1, . . . ,xT}

{lb, . . . , lg}

{yb, . . . ,yg}

Figure 3.2 – Block diagram of a probabilistic lexical model based ASR system

lexicon. For each lexical unit l i , the lexical model computes a D dimensional categorical

variable yi . For each acoustic observation sequence xt , the acoustic model computes a D

dimensional acoustic unit likelihood vector vt . The local emission score at time frame t is the

match between the acoustic model evidence vt and the lexical model evidence yi .

Lexical
model

Acoustic 

Lexicon and 
Language
model

model

Match between lexical and acoustic model 

[D] [D] [D]

[D] [D] [D]

x2

[D]

x1

l/z/ l/ih/ l/t/l/ih/

xT

FI

v1 v2 vT

y/ih/ y/z/ y/ih/ y/t/

P (W2|W1)

W1 = IS W2 = IT

P (l/z/|l/ih/) P (l/t/|l/ih/)

Figure 3.3 – The graphical model representation of a system based on Eqns (2.12) and (3.3)

21



Chapter 3. Probabilistic Lexical Modeling

3.2 Deterministic Lexical Model based ASR Approaches

In standard HMM-based ASR approaches like HMM/GMM and Hybrid HMM/ANN, the lexical

model is deterministic, i.e., each lexical unit l i is deterministically mapped to an acoustic unit

a j (l i 7→ a j ) as shown in Figure 3.4(a), i.e.,

yd
i = P (ad |qt = l i ,θl ) =

{
1, if d = j ;

0, otherwise.
(3.6)

As a result of the deterministic mapping, the only term contributing to the summation in

Eqn (3.3) is the acoustic unit that is mapped to the lexical unit at time t . The Bayesian network

of an ASR system at time frame t in which the lexical model is deterministic is illustrated in

Figure 3.4(b). The lexical unit is given deterministically by the current word and its subword

units. A lexical unit is mapped to an acoustic unit and the acoustic feature observation is

conditioned on an acoustic unit.

Lexical units

Acoustic units

a1

aD

ad

l1

li

lI

...

...

L = {l1, · · · , li, · · · , lI}

A = {a1, · · · ,ad, · · · ,aD}

Lexicon and
Language
model

Lexical 
model

Acoustic
model

aj

xt

Wt

qt = li

Figure 3.4 – Deterministic lexical modeling (a) deterministic mapping, and (b) graphical model
representation

In context-independent subword unit based ASR systems, the deterministic relationship be-

tween lexical and acoustic units is knowledge driven. Thus, lexical model training is not

involved. Therefore, in context-independent subword unit based ASR systems, the determinis-

tic map between lexical and acoustic units is the lexical model and the GMMs (in the case of

HMM/GMM) or the ANN (in the case of Hybrid HMM/ANN) is the acoustic model.

In context-dependent subword unit based ASR systems, lexical units are context-dependent

subword units whereas acoustic units are clustered context-dependent subword units. As

mentioned in Section 2.4.1, the decision trees i.e., the tree structure and the phonetic question

set are used to deterministically relate a lexical unit to an acoustic unit. Therefore, in context-

dependent subword unit based HMM/GMM systems, decision trees are the lexical model

and the GMMs are the acoustic model. Similarly, in the case of Hybrid HMM/ANN systems,

decision trees are the lexical model and the ANN is the acoustic model [Dahl et al., 2012,

Hinton et al., 2012].
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It is worth mentioning that in the HMM-based ASR literature, due to this deterministic re-

lationship, typically no distinction is made between the acoustic and lexical units, or the

acoustic and lexical models. Our main reason to refer to lexical unit l i and acoustic unit a j , or

the acoustic and lexical models distinctively here is to bring out the contributions of the thesis

clearly.

3.3 Probabilistic Lexical Model based ASR Approaches

The Eqn (3.3) with the two conditions, namely, P (ad |l i ,θl ) > 0 and
∑D

d=1 P (ad |l i ,θl ) = 1 char-

acterizes an ASR approach where each lexical unit is probabilistically related to all acoustic

units. We refer to them as probabilistic lexical model based ASR systems.

The probabilistic lexical modeling approaches presented in this chapter presume that an

acoustic unit set A is defined and a trained acoustic model is available. Therefore, in the first

step a standard HMM-based ASR system i.e., either an HMM/GMM system or a Hybrid HM-

M/ANN system is trained. The acoustic model (i.e., GMMs in the case of HMM/GMM or ANN

in the case of Hybrid HMM/ANN) is used with the pronunciation lexicon and acoustic data to

train the parameters of the probabilistic lexical model. More specifically, the parameters of

the probabilistic lexical model are learned by training an HMM, whose states represent lexical

units and each state l i is parameterized by a categorical distribution yi = [y1
i , . . . , yd

i , . . . yD
i ]T

and
∑D

d=1 yd
i = 1. The categorical distribution captures a probabilistic relationship between

a lexical unit l i and D acoustic units i.e., yd
i = P (ad |l i ,θl ). In this case, the lexical model

parameter set consists of θl = {yi }I
i=1.

We present these techniques from the perspective of hybrid HMM/ANN. That is, in this thesis

we use an ANN, more precisely, an MLP as an acoustic model. ANNs are discriminative

classifiers, and can provide invariance towards undesirable variabilities such as speaker and

environment [Zhu et al., 2004, Ikbal, 2004]. Furthermore, ANNs have been shown to be

effective for multilingual and crosslingual portability [Stolcke et al., 2006, Thomas et al., 2012,

Lal and King, 2013]. As shown in Chapter 9, these approaches are equally applicable to the

HMM/GMM framework.

3.3.1 Kullback-Leibler Divergence based HMM

In the Kullback-Leibler divergence based HMM (KL-HMM) approach [Aradilla et al., 2007,

2008], the parameters of the lexical model are learned through acoustic unit posterior

probability estimates. That is the feature observations used to train the HMM are zt =
[z1

t . . . , zd
t , . . . , zD

t )]T where zd
t = P (ad |xt ,θa).

As both feature observations and state distributions are probability vectors, the local score

or the match between acoustic and lexical model evidence at each HMM state can be the

Kullback-Leibler (KL) divergence between the feature observation zt and the categorical
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distribution yi ,

SK L(yi ,zt ) =
D∑

d=1
yd

i log
( yd

i

zd
t

)
(3.7)

The above equation represents the case where the lexical model yi is the reference distribution

and the local score is denoted as SK L . However, KL-divergence is an asymmetric measure.

Thus, there are other possible ways to estimate the KL-divergence:

1. Reverse KL-divergence (SRK L): In this case the acoustic unit probability vector zt is the

reference distribution.

SRK L(yi ,zt ) =
D∑

d=1
zd

t log
( zd

t

yd
i

)
(3.8)

2. Symmetric KL-divergence (SSK L): The local score SSK L is the average of the local scores

SK L and SRK L .

SSK L(yi ,zt ) = 1

2
· [SK L +SRK L] (3.9)

Figure 3.5 illustrates the KL-HMM approach. The acoustic model or the ANN is trained to

classify D acoustic units. Given the acoustic model, acoustic unit probability sequences of

training data are estimated. The acoustic unit probability sequences are used as feature

observations to train an HMM where states represent lexical units. The states of the HMM are

parameterized by categorical distributions.

Training

Given a trained ANN and training set of N utterances {X (n),W (n)}N
n=1, the set of acoustic unit

probability vectors {Z (n),W (n)}N
n=1 is estimated where for each training utterance n, X (n)

represents a sequence of cepstral features of length T (n), W (n) represents the sequence of

underlying words, and Z (n) represents a sequence of acoustic unit probability vectors of

length T (n).

The KL-HMM system is parameterized by Θkull = {{yi }I
i=1, {ai j }I

i , j=1}. The training data

{Z (n),W (n)}N
n=1 and the current parameter set Θkull , are used to estimate a new set of pa-

rameters Θ̂kul l using the Viterbi expectation maximization algorithm which minimizes a cost

function based on the local scores SK L or SRK L or SSK L . The lexical model parameters {yi }I
i=1

are initialized uniformly i.e., initially yd
i = 1

D ∀i ,d . In the case of the local score SRK L the cost

function minimized is,

Θ̂kull = argmin
Θkul l

[ N∑
n=1

min
Q∈Q

T (n)∑
t=1

[
SRK L(yqt ,zt (n))− log aqt−1qt

]]
(3.10)

where Q = {q1, . . . , qt , . . . , qT (n)}, qt ∈L = {l 1, . . . l i . . . l I } and Q denotes set of all possible HMM
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Figure 3.5 – Illustration of the KL-HMM approach

state sequences.

The training process involves iteration over the segmentation and the optimization steps until

convergence. Given the current set of parameters, the segmentation step yields an optimal

state sequence for each training utterance using the Viterbi algorithm. The optimization step

estimates a new set of model parameters by minimizing Eqn (3.10) subject to the constraint

that
∑D

d=1 yd
i = 1, given optimal state sequences and acoustic unit posterior vectors. The

state transition probabilities ai j are fixed to 0.5 (unless i is the first state of the first word, i.e.,

a01 = 1), as it is usually done in hybrid HMM/ANN systems [Bourlard and Morgan, 1994]. The

parameter estimation for local score SRK L is illustrated in Figure 3.6.

Each of the KL-divergence based local scores lead to a different optimal state categorical

distribution [Aradilla, 2008]. More precisely, if Z (i ) denotes the set of acoustic unit probability

vectors assigned to state i (by the segmentation step) and M(i ) is the cardinality of Z (i ) then:

1. The optimal state distribution for the local score SK L is the normalized geometric mean

of the acoustic unit probability vectors assigned to the state, i.e.,

yd
i = ȳd

i∑D
d=1 ȳd

i

where ȳd
i =

( ∏
zt (n)∈Z (i )

zd
t (n)

) 1
M(i ) ∀d (3.11)
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Figure 3.6 – Illustration of parameter estimation in the case of KL-HMM with local score SRK L

where ȳd
i represents the geometric mean of state i for dimension d .

2. The optimal state distribution for the local score SRK L is the arithmetic mean of the

acoustic unit probability vectors assigned to the state, i.e.,

yd
i = 1

M(i )

∑
zt (n)∈Z (i )

zd
t (n) ∀d (3.12)

3. For the local score SSK L , there is no closed form solution to find the optimal state

distribution. The optimal state distribution can be computed iteratively using the

arithmetic and the normalized geometric mean of the acoustic unit probability vectors

assigned to the state [Veldhuis, 2002].

Decoding

It is worth mentioning that KL-HMM was originally developed from the perspective of acoustic

modeling [Aradilla et al., 2008], as an alternative to the Tandem approach [Hermansky et al.,

2000]. As described in Section 2.4.3, in the Tandem approach, the outputs of ANN (that are
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typically non-Gaussian) are first Gaussianized using the log function and then decorrelated

using the KLT transformation. These transformed features are used as feature observations and

modeled with GMMs. Rather than transforming the output of ANN as in the Tandem approach,

in the KL-HMM approach the state distribution and the local score associated with each state

of HMM are changed to categorical distribution and KL divergence, respectively [Aradilla et al.,

2008].

However, the KL-HMM approach is a probabilistic lexical modeling approach where in

Eqn (3.5) (see Chapter 2), the acoustic unit posterior probability vector (zt ) is used in place

of the acoustic unit likelihood vector (vt ). Furthermore, given that both lexical evidence and

acoustic evidence are in the form of posterior probabilities, the loglikelihood-based score in

the standard Viterbi decoding of Eqn (2.12) is replaced with the negative of KL-divergence.

Given a sequence of acoustic unit probability vectors Z = {z1, . . . ,zt , . . . ,zT } and the trained

parameters Θkul l = {{yi }I
i=1, {ai j }I

i , j=1}, decoding involves recognition of the underlying hy-

pothesis W ∗. The most likely word sequence W ∗ is obtained by finding the most likely state

sequence Q∗, i.e.,

Q∗ = argmax
Q∈Q

T∑
t=1

[log p(xt |qt = l i ,ΘA)+ logP (qt = l i |qt−1 = l j ,Θ)] (3.13)

= argmax
Q∈Q

T∑
t=1

[−SRK L(yqt ,zt )+ log aqt−1qt ] (3.14)

= argmin
Q∈Q

T∑
t=1

[SRK L(yqt ,zt )− log aqt−1qt ] (3.15)

3.3.2 Tied Posterior

In the second approach, the probabilistic lexical model is learned through scaled-likelihood

estimates psl (xt |ad ,θa) (see Eqn (2.13)). The approach referred to as tied posterior ap-

proach [Rottland and Rigoll, 2000], was originally proposed in the framework of hybrid HM-

M/ANN to build context-dependent subword unit based ASR system using an ANN trained to

classify context-independent subword units.

In the tied-posterior based HMM (Tied-HMM) approach, the emission likelihood at each

context-dependent state qt = l i
cd is estimated as,

p(xt |qt = l i
cd ) =

D∑
d=1

wd
i ·psl (xt |ad

ci ) (3.16)

where ad
ci is a context-independent phone, D here refers to the number of context-

independent phones, psl (xt |ad
ci ) is the scaled-likelihood (see Eqn (2.13)), 0 ≤ wd

i ≤ 1 is the

weight corresponding to the context-dependent phone l i
cd and

∑D
d=1 wd

i = 1. The weights

wd
i are estimated by maximizing the log-likelihood using the EM algorithm. Comparison
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between (3.16) and (3.3) shows that l i
cd corresponds to the lexical unit l i , ad

ci corresponds to

the acoustic unit ad and wd
i corresponds to yd

i = P (ad |l i ,θl ). In other words, the Tied-HMM

approach is an HMM-based ASR approach that incorporates probabilistic lexical modeling.

The Tied-HMM approach can be interpreted along lines similar to those of the KL-HMM

approach where the states of the HMM are parameterized by yi . However, the feature obser-

vations used to train the HMM in the Tied-HMM approach are vectors of scaled-likelihood

vt = [v1
t . . . , vd

t , . . . , vD
t ]T where vd

t = psl (xt |ad ,θa), and the local score is

St i ed (yi ,vt ) = log
( D∑

d=1
yd

i .vd
t

)= log
(
yT

i vt
)

(3.17)

Training

Given a training set of N utterances {X (n),W (n)}N
n=1, the set of likelihood vec-

tors {V (n),W (n)}N
n=1 is formed where V (n) = {v1(n), . . . ,vt (n), . . . ,vT (n)(n)}, vt (n) =

[v1
t (n) . . . , vd

t (n), . . . , vD
t (n)]T(n) and vd

t (n) denotes scaled-likelihood.

The parameters of the modelΘt i ed = {{yi }I
i=1, {ai j }I

i , j=1} are estimated by the Viterbi expecta-

tion maximization algorithm that maximizes the cost function,

Θ̂t i ed = argmax
Θt i ed

[ N∑
n=1

max
Q∈Q

T (n)∑
t=1

[
St i ed (yqt ,vt (n))+ log(aqt−1qt )

]]
(3.18)

where Q = {q1, . . . qt , . . . , qT (n)}, qt ∈L = {l 1, . . . l i . . . l I } and Q denotes a set of all possible HMM

state sequences.

Similar to the KL-HMM approach, the training process involves iteration over the segmenta-

tion and the optimization steps until convergence. The optimization step estimates a new set

of model parameters yd
i ∀d by setting the derivative of Eqn (3.18) with respect to yd

i to zero,

subject to the constraint that
∑D

d=1 yd
i = 1, i.e.,

∂

∂yd
i

[ N∑
n=1

max
Q∈Q

T (n)∑
t=1

[
St i ed (yqt ,vt (n))

]+λi (
D∑

d=1
yd

i −1)
]
= 0 (3.19)

Replacing the local score from Eqn (3.17) and solving the above equation results in,

∑
vt (n)∈V (i )

vd
t (n)∑D

d=1 yd
i .vd

t (n)
+λi = 0 (3.20)

where V (i ) denotes the set of acoustic unit probability vectors assigned to state l i . Rearranging
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the above equation results in,

λi =− ∑
vt (n)∈V (i )

vd
t (n)∑D

d=1 yd
i .vd

t (n)
(3.21)

By multiplying on both sides by yd
i , summing over d and applying the sum to one constraint

we obtain,

λi =− ∑
vt (n)∈V (i )

1

=−M(i ) (3.22)

where M(i ) is the cardinality of V (i ). Replacing the value of λi and then rearranging results in:

yd∗
i = 1

M(i )

∑
vt (n)∈V (i )

yd
i .vd

t (n)∑D
k=1 yk

i .vk
t (n)

(3.23)

where yd∗
i refers to the updated yd

i . It can be observed from the above equation that there is

no closed form solution to compute the lexical model parameters as the update equation also

includes yd
i .

The decoding is performed by replacing the log-likelihood based score in the standard Viterbi

decoder of Eqn (2.12) with the local score given in Eqn (3.17).

The Tied-HMM approach was motivated by semi continuous HMMs [Huang and Jack, 1989,

Bellegarda and Nahamoo, 1990]. In semi continuous HMMs, the emission likelihood is

computed as the weighted sum of a pool of Gaussian densities. However, there is a key

difference between Tied-HMM and semi-continuous HMM approaches. In the Tied-HMM

approach, each acoustic unit is explicitly related to a context-independent subword unit

and has its own density function (ANN), whereas in semi-continuous HMMs, the Gaussian

densities do not have any link to context-independent or context-dependent subword units.

In that sense, Tied-HMM is equivalent to probabilistic classification of HMM states (PC-HMM)

proposed in [Luo and Jelinek, 1999] where acoustic units are clustered context-dependent

phones and acoustic units are modeled with GMMs instead of an ANN. In both Tied-HMM and

PC-HMM approaches, lexical units (context-dependent phones) are probabilistically related

to all acoustic units (context-independent phones or clustered context-dependent phones).

3.3.3 Scalar Product HMM

In the KL-HMM system, the local score is based on KL-divergence. However, two posterior

probability distributions can be compared with different cost functions such as scalar prod-

uct [Asaei et al., 2010] and Bhattacharya distance [Soldo et al., 2011]. It is possible to envisage
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an HMM where the local score is based on scalar product, i.e.,

SSP (yi ,zt ) = log
(
yT

i zt
)

(3.24)

We refer to this system as scalar product HMM (SP-HMM). Again, {yi }I
i=1 can be estimated us-

ing the embedded Viterbi training algorithm, and the decoding can be performed by replacing

the log-likelihood based score in the standard Viterbi decoder with SSP (yi ,vt ).

The SP-HMM is of particular interest for the following reasons:

1. It can be seen as a particular case of the Tied-HMM approach where the priors in the

scaled-likelihood estimation are dropped or assumed to be equal. The optimal state

distribution for the SP-HMM approach is,

yd∗
i = 1

M(i )

∑
zt (n)∈Z (i )

yd
i .zd

t (n)∑D
k=1 yk

i .zk
t (n)

∀d (3.25)

where Z (i ) denotes the set of acoustic unit probability vectors assigned to state l i and

M(i ) is the cardinality of Z (i ).

2. SP-HMM and KL-HMM differ only in terms of the cost function used for parameter

estimation and decoding.

3.4 Effect of Cost Functions on Lexical Model Parameter Estima-

tion

As seen in the previous section, the optimal state distribution is different in various proba-

bilistic lexical modeling approaches. The difference comes from the cost function optimized

during parameter estimation. In the case of KL-HMM approaches, KL-divergence based local

score between state distribution and feature observations belonging to a state is minimized,

whereas in the case of Tied-HMM and SP-HMM approaches, the respective local score (St i ed

or SSP ) between state distribution and feature observations belonging to a state is maximized.

The optimal state distributions for local scores SK L and SRK L are the geometric mean and

arithmetic mean of probability vectors assigned to a state. More specifically, the optimal

state distributions in the case of local scores SK L and SRK L are the combination of probability

vectors. Depending on the training data, the probability vectors can be seen as coming from

different lexical contexts, speakers, accents, dialects, environmental conditions etc. The

optimal state distribution is obtained by combining different sources of variability to form

an aggregate probability distribution. In that sense, the parameter estimation step in the KL-

HMM approach is similar to classifier fusion using multiple probability distributions [Genest

and Zidek, 1986, Kittler et al., 1998, Abbas, 2009]. In the classifier fusion literature,

• the geometric mean of probabilities is referred to as product combination or log-linear

opinion pool. It has been shown that product combination or log-linear pool leads to a less
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dispersive distribution, i.e., it captures the dominant decision; and

• the arithmetic mean of probabilities is referred to as sum combination or linear opinion

pool. It has been shown that sum combination leads to a dispersive distribution compared

to product combination, i.e., it captures competing decisions.

Therefore, from the point of view of lexical model parameters, the cost function based on local

score SK L leads to a less dispersive (or low entropy) distribution compared to the cost function

based on local score SRK L . Therefore, we hypothesize that the cost functions based on local

scores SK L and SRK L can model better one-to-one and one-to-many lexical-to-acoustic unit

relationships, respectively. The cost function based on local score SSK L (which is the average

of local scores SK L and SRK L) is hypothesized to model both one-to-one and one-to-many

lexical-to-acoustic unit relationships. We validate this hypothesis later in Section 4.4.2.

To understand the update equation for the Tied-HMM approach, the right hand side of

Eqn (3.23) is expanded in terms of the definition of individual variables i.e., yd
i = P (ad |l i ), and

vd
t = p(xt |ad ),

vd
t (n).yd

i∑D
k=1 vk

t (n).yk
i

= p(xt (n)|ad )P (ad |l i )∑D
k=1 p(xt (n)|ak )P (ak |l i )

(3.26)

= P (ad |xt (n), l i ) (3.27)

The Eqn (3.27) represents the probability of acoustic unit ad given the feature observation xt

and lexical unit l i . In other words, the update for Tied-HMM is given by the average probability

of the acoustic unit ad given the lexical unit l i and the feature vectors belonging to state l i .

In the case of the KL-HMM KL and KL-HMM RKL approaches, the optimal state distribution is

obtained by the classification of acoustic units (ad ) given the acoustic feature observations

(xt ) belonging to the state, while in the case of the Tied-HMM and SP-HMM approaches, it is

obtained by the classification of acoustic units (ad ) given the lexical unit (l i ) and the acoustic

feature observations (xt ) belonging to the state.

3.5 Comparison between ASR Approaches

In the previous section, we have seen the effect of various local scores on lexical model

parameter estimation. In this section, the similarities and differences between deterministic

lexical model approaches and various probabilistic lexical modeling approaches are presented

from decoding perspective.
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3.5.1 Deterministic Lexical Model and Probabilistic Lexical Model based ASR Sys-
tems

Deterministic lexical modeling based ASR systems and probabilistic lexical modeling based

ASR systems are similar in the sense that both achieve speech recognition by matching the

sequence of reference ‘latent’ symbols obtained from the pronunciation lexicon and syntactic

information with sequence of ‘latent’ symbols obtained from the acoustic speech signal. As

discussed in [Razavi et al., 2014] and summarized in Table 3.1, deterministic lexical modeling

and probabilistic lexical modeling based ASR systems can be compared using the following

four components:

1. Latent symbols: The latent symbols or the acoustic units can be either context-

independent subword units or clustered context-dependent subword units.

2. Acoustic model: The acoustic model models the relationship between latent symbols

and acoustic features through a generative model like a GMM (as in HMM/GMM sys-

tems) or through a discriminative model like an ANN (as in hybrid HMM/ANN systems).

3. Lexical model: The lexical model models the relationship between lexical units and

latent variables. In the case of deterministic lexical modeling based systems it is a

deterministic relationship (as given in Eqn (3.6)) and in the case of probabilistic lexical

model based systems it is a probabilistic relationship (as given in Eqn (3.3)).

4. Local score: The local score or the match between acoustic and lexical model evidence.

In the case of deterministic lexical model based systems like HMM/GMM and hybrid

HMM/ANN, the local score can be seen as the scalar product between the acoustic

unit likelihood vector sequence and the lexical model parameter vector sequence as

given in Chapter 2. Since the lexical model parameter vector is a Kronecker delta as

given in Eqn (3.6), the only term contributing to the score is the latent symbol that is

tied to a lexical unit. As given in this chapter, for probabilistic lexical modeling based

systems, the local score can be the KL-divergence or the scalar product between the

acoustic unit probability vector and the lexical model parameter vector (as in KL-HMM

and SP-HMM approaches) or scalar product between the acoustic unit likelihood vector

and the lexical model parameter vector (as in the Tied-HMM approach).

The language model component and the efficient search of the output word hypothesis using

dynamic programming is common to deterministic lexical modeling and probabilistic lexical

modeling based ASR systems.

Table 3.1 – Comparison between deterministic lexical modeling and probabilistic lexical
modeling based ASR systems

Deterministic Lexical Model Probabilistic Lexical Model

Latent symbols Context-independent or clustered context-dependent subword units
Acoustic model GMM or ANN
Lexical model Deterministic Probabilistic
Local score Scalar product KL-divergence, scalar product
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3.5.2 Probabilistic Lexical Model based ASR Systems

In ASR, the local score estimation at time frame t can be seen as a match between “bottom-

up” acoustic information zt or vt and “top-down” lexical information yi related to latent

variable ad , as shown in Figure 3.3. Yet another similarity between the three approaches is

that they reduce to the standard hybrid HMM/ANN system described earlier in Chapter 2

when the lexical model is deterministic, i.e., yi is the Kronecker delta distribution. However,

the KL-HMM approach has additional advantages compared to the Tied-HMM and SP-HMM

approaches. We will discuss them briefly in this section.

From the communication theory perspective [Bahl et al., 1983], the standard HMM-based

ASR approach can be seen as a communication problem where the noisy output of acous-

tic channel (i.e., a sequence of acoustic unit likelihood vectors {v1, . . . ,vT } or a sequence of

acoustic unit posterior vectors {z1, . . . ,zT }) is decoded by a linguistic decoder, which implies

comparison to possible sequences of lexical model parameter vectors ( for e.g. {yi , . . . ,yg }

where i , g ∈ {1, . . . , I }) with lexical transition constraints (P (qt = l i |qt−1 = l j )). Thus, standard

HMM-based ASR inherently gives more importance to the lexical model and consequently

relies on purity or correctness of the lexical knowledge imparted into the system. This aspect

has been particularly observed in the case of pronunciation variation modeling of conversa-

tional speech where one of the best approaches is to add pronunciation variants, i.e., improve

the deterministic lexical model [Strik and Cucchiarini, 1999].

The KL-HMM approach using the local score SK L(yi ,zt ) where yi is the reference distribution

reflects the HMM-based ASR. More specifically,

SK L(yi ,zt ) =
D∑

d=1
yd

i log
( yd

i

zd
t

)
=

D∑
d=1

yd
i log yd

i −
D∑

d=1
yd

i log zd
t (3.28)

The first part of Eqn (3.28), the entropy of probability distribution yi , takes into account the

uncertainty in the lexical model, and the second part or the cross entropy compares the

acoustic model against the lexical model. It is trivial to see the point made above about the

purity of lexical knowledge by turning yi into a deterministic lexical model i.e., Kronecker

delta distribution. In such a case, the hybrid HMM/ANN approach [Bourlard and Morgan,

1994] where the acoustic model estimates P (qt = ad |xt ,θa) rather than psl (xt |qt = ad ,θa) can

be seen as a special case of KL-HMM approach.

The KL-HMM approach, however, is capable of reversing the importance given to the acoustic
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model and the lexical model by changing the local score to SRK L(yi ,zt ), i.e.,

SRK L(yi ,zt ) =
D∑

d=1
zd

t log
( zd

t

yd
i

)
=

D∑
d=1

zd
t log zd

t −
D∑

d=1
zd

t log yd
i (3.29)

It can be observed from Eqn (3.29) that the first quantity, the entropy of probability distribution

zt , is independent of lexical unit and the matching only takes place with the second quantity,

i.e., the cross entropy between distributions zt and yi , with zt as the reference. The local score

SSK L(yi ,zt ) is the case where equal importance is given to the acoustic model and the lexical

model.

Yet another distinction between the KL-HMM and Tied-HMM/SP-HMM approaches is that, in

the KL-HMM approach the local score is discriminative [Blahut, 1974], i.e., the acoustic model

and lexical model evidence is matched discriminatively, irrespective of the type of local score

used, i.e., SK L(yi ,zt ) or SRK L(yi ,zt ) or SSK L(yi ,zt ).

3.6 Summary

In this chapter, we introduced the framework of probabilistic lexical modeling. We eluci-

dated that standard HMM-based ASR systems implicitly model the dependency between

acoustic feature observations and lexical units through latent variables. The latent variables,

also referred to as acoustic units, are either context-independent subword units or clustered

context-dependent subword units. Furthermore, in standard HMM-based ASR systems each

lexical unit is deterministically mapped to an acoustic unit i.e., the relationship is determinis-

tic.

We presented three techniques in which a probabilistic relationship between lexical and

acoustic units is learned. The KL-HMM approach was originally proposed as an acoustic

modeling approach alternative to the Tandem approach. However, as shown in this chapter it is

a probabilistic lexical modeling based ASR approach. The Tied-HMM approach was proposed

in the framework of hybrid HMM/ANN systems to build context-dependent subword unit

based systems using an acoustic model that classifies context-independent subword units.

We showed that it is a probabilistic lexical modeling based ASR approach and equivalent to

the PC-HMM approach in principle. We introduced another probabilistic lexical modeling

approach referred to as SP-HMM, that is similar to the KL-HMM and Tied-HMM approaches.

We contrasted the three probabilistic lexical modeling approaches in terms of the importance

given to the acoustic model and the lexical model during parameter estimation and decoding.
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4 Proposed Grapheme-based ASR Ap-
proach

This chapter motivates and proposes a novel grapheme-based ASR approach in the framework

of probabilistic lexical modeling which forms the core of this thesis. In Section 4.1, we present

the implications of the deterministic lexical model, the constraints arising from it and provide a

survey on how these constraints are being addressed in the literature. In Section 4.2, we present

the potential implications of probabilistic lexical modeling which relaxes the constraints

imposed by deterministic lexical modeling and provide a literature survey to motivate the

goals of this thesis.

The proposed grapheme-based ASR approach in the framework of probabilistic lexical model-

ing is presented in Section 4.3. With the help of a pilot study on the DARPA Resource Man-

agement (RM) corpus, we present a detailed analysis of the lexical model parameters learned

using different approaches (KL-HMM, Tied-HMM and SP-HMM). The analysis elucidates that

the lexical model parameters capture a probabilistic relationship between graphemes and

phones. Furthermore, the influence of the cost function and the subword context on the G2P

relationship captured by the lexical model parameters is studied.

4.1 Implications of Deterministic Lexical Model Systems

As described in Section 3.2, in standard HMM-based ASR systems the lexical model i.e., the

relationship between lexical units l i ∈L and acoustic units ad ∈A is deterministic and the

pronunciation lexicon (θpr ) determines both the lexical unit set L and the acoustic unit set

A . As a consequence,

• if L is based on phone subword units (phone-based ASR system) or grapheme subword

units (grapheme-based ASR system) then A is also based on phones or graphemes, respec-

tively;

• if L is based on context-independent subword units (context-independent subword unit

based ASR system) or context-dependent subword units (context-dependent subword unit

based ASR system) then A is also based on context-independent subword units or context-

dependent subword units, respectively.
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The performance of deterministic lexical model based systems is strongly dependent on

the accuracy of the deterministic mapping which in turn is determined by factors such as

availability of acoustic data, availability of a well developed phone lexicon and portability of

available resources. More specifically, deterministic lexical modeling imposes the following

three constraints:

1. The first constraint is the availability of sufficient and well developed acoustic data

in the target language or domain to train effectively both an acoustic model and a

lexical model. Unfortunately, many languages do not have such well developed acoustic

resources [Besacier et al., 2014].

2. The second constraint that arises as a result of deterministic lexical modeling is the

availability of a well developed phonetic lexicon as most of the ASR systems use phones

as lexical units. Again, many languages lack such well developed lexical resources [Davel

and Martirosian, 2009, Besacier et al., 2014].

3. The third constraint that the deterministic lexical model introduces is that ASR system

trained with one phone set can not be directly ported to or used as it is for a new

domain which has a lexicon based on a different phone set [Imseng et al., 2013a]. For

a language, it can happen that there are different phonetic lexicons based on different

phone sets. For instance, in English there are phonetic lexicons based on ARPABET,

CMUBET, SAMPA etc.

In the following subsections, we provide a survey of the literature on how the resource con-

straints are being addressed in the framework of deterministic lexical modeling.

4.1.1 Lack of Acoustic Resources

In the literature, the lack of acoustic resources has been typically addressed through the use

of multilingual or crosslingual acoustic and lexical resources coupled with acoustic model

adaptation techniques [Köhler, 1998, Beyerlein et al., 2000b, Schultz and Waibel, 2001b, Le

and Besacier, 2009, Burget et al., 2010]. The first step in this process is the definition of a

common or universal phone set across all out-of-domain languages and target language.

This step ensures that the phone sets match across languages, thus addressing the third

constraint mentioned earlier. The common or universal phone set can be defined either in a

knowledge-based manner [Köhler, 1998, Beyerlein et al., 2000b, Schultz and Waibel, 2001b,

Le and Besacier, 2009] or in a data-driven manner [Sim and Li, 2008, Sim, 2009]. Multilingual

acoustic models (GMMs or ANNs) are first trained on language-independent data and then

adapted on target language data.

In the framework of HMM/GMM systems, the parameters of multilingual acoustic model

are adapted on target language data using techniques such as, bootstrapping, maximum a

posteriori adaptation (MAP), maximum likelihood linear regression (MLLR) and subspace

Gaussian mixture models (SGMM). The out-of-domain lexical model (decision trees) is either

retained [Köhler, 1998, Beyerlein et al., 2000b, Le and Besacier, 2009] or redefined using target

language data [Schultz and Waibel, 2001b, Burget et al., 2010].
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• In the bootstrapping approach [Osterholtz et al., 1992], multilingual acoustic models are

used as seed models for target language [Schultz and Waibel, 2001b]. The seed models are

used only for initialization. After initialization, the acoustic and lexical model are trained on

target language data.

• MAP [Gauvain and Lee, 1994] and MLLR [Leggetter and Woodland, 1995] were initially

proposed for speaker adaptation and later shown to be useful for language adaptation [Bey-

erlein et al., 2000a]. In MLLR, the means and variances of Gaussians trained on language-

independent data are adapted through linear transformations. The transformation matrix is

usually tied over a number of Gaussians. Thus, only a relatively small amount of adaptation

data is required. In MAP adaptation, the parameters are set using the prior distribution and

the adaptation is performed at phone level. On one hand, adaptation is phone specific in

MAP while on the other hand, adaptation can only be performed for acoustic models of

phones that are observed. As a consequence, MAP needs more adaptation data than MLLR

as we will see later in Chapter 6.

• In [Schultz and Waibel, 2001b], in addition to acoustic model adaptation, polyphone deci-

sion tree specialization (PDTS) was used to perform lexical model (decision tree) adaptation.

In PDTS, the multilingual decision tree is adapted to the target language by restarting the

decision tree growing process with a limited amount of adaptation data. It was found that

PDTS based porting was beneficial compared to adaptation without using PDTS technique.

• In the SGMM approach [Povey et al., 2011], the state distributions are modeled as mixture of

Gaussians whose parameters are constrained by a shared set of subspaces. The parameters

of the SGMM system are divided into global parameters and state specific parameters. In

the case of low acoustic resources [Burget et al., 2010], the global parameters can be trained

on multilingual acoustic and lexical resources, while the state specific parameters (including

decision trees) are trained on target language data.

In the framework of hybrid HMM/ANN, multilingual and crosslingual acoustic modeling has

focussed mainly on Tandem approaches and neural network adaptation based methods [Stol-

cke et al., 2006, Thomas et al., 2012, Swietojanski et al., 2012].

• In the case of Tandem approaches, output of the multilingual neural network is transformed

to be used as feature observations to train an acoustic model (GMMs) and a lexical model

using target language data [Stolcke et al., 2006, Thomas et al., 2012]. However, as the GMMs

are trained on target language data, minimal acoustic and lexical resources from the target

language are necessary to robustly estimate the parameters.

• In other approaches, the multilingual neural network is adapted/retrained on target lan-

guage using phoneset mapping [Thomas and Hermansky, 2010, Swietojanski et al., 2012].

4.1.2 Lack of Lexical Resources

As mentioned in Section 2.3, the use of hand a labeled phone pronunciation lexicon is optimal

for ASR systems where the relationship between phone subword units and acoustic features

is modeled directly. Most often, the existing hand labeled phone pronunciation lexicon (or

seed lexicon) may not have complete coverage for a new domain (target domain) for which
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we interested to build an ASR system. Therefore, typically given an initial lexicon, a G2P

converter [Bisani and Ney, 2008, Novak, 2011] is first trained to extract pronunciations for new

words. The augmented lexicon is then used to build an ASR system. G2P convertors are also

used to augment the recognition vocabulary.

In [Gollan et al., 2005, Lööf et al., 2006], systems trained to transcribe parliamentary speeches

used a G2P convertor to produce pronunciations for words that are not present in the cross-

domain lexicon. In [Jouvet et al., 2012], the effect of using a G2P convertor based lexicon on

ASR performance was studied in a more controlled scenario. The BDLex French pronunciation

lexicon was used to generate pronunciations for ESTER2 French broadcast news transcription.

It was observed that the performance of the ASR system using a G2P convertor based lexicon

is worse than the ASR system using a baseline phone lexicon developed for the ESTER2 corpus.

Furthermore, it was also reported that the gap in ASR performance between systems using a

well developed lexicon and a G2P lexicon is bridged only when G2P pronunciations of most

frequent words was manually verified by an expert.

Some languages may not even have the seed lexicon required to train a G2P converter. There-

fore, alternate subword units like graphemes, which makes lexicon development easy, have

been explored in the literature [Schukat-Talamazzini et al., 1993, Kanthak and Ney, 2002, Killer

et al., 2003, Dines and Magimai-Doss, 2007, Ko and Mak, 2014]. The success of a grapheme-

based ASR system primarily depends on the G2P relationship of the language. The reason for

this is as follows. It can be seen in Eqn (3.3) that the acoustic model score p(xt |ad ,θa) models

the relationship between the acoustic feature observation xt and the acoustic unit ad . Due to

the deterministic lexical modeling in standard HMM-based ASR systems, both the acoustic

unit ad and the lexical unit l i are the same and represent graphemes. However, the acoustic

feature observations or the cepstral features depict the envelop of the short-term spectrum

which is more related to phones.

Context-Dependent Grapheme Modeling

In the literature, to overcome the problem of the irregular G2P relationship, modeling of

context-dependent graphemes has been explored [Kanthak and Ney, 2002, Killer et al., 2003,

Mimer et al., 2004]. The implicit assumption here being that the relationship between context-

independent graphemes and context-independent phones can be irregular, but relationship

between context-dependent graphemes and context-independent phones could be regular.

The same idea is exploited in G2P conversion systems.

As the context of grapheme subword units increases, the number of subword models to be

trained also increases and can lead to data sparsity problems. Therefore, the grapheme-based

ASR literature has focused on efficient and automatic state tying methods for grapheme

subword units.

• In [Schukat-Talamazzini et al., 1993], the context-dependent grapheme-based ASR system

was used for a train scheduling task. They employed backoff to handle unseen context-

38



4.1. Implications of Deterministic Lexical Model Systems

dependent grapheme subword units.

• In [Kanthak and Ney, 2002], manual and automatic methods for decision tree based state

tying of context-dependent grapheme subword units were compared. In manual decision

tree based state tying, a grapheme was assigned to a phonetic question if grapheme is part

of the phoneme, while in the case of automatic method, the questions were generated based

on bottom-up clustering of context-independent grapheme HMM states using likelihood

gain and observation count as merging criteria. It was found that the manually generated

question set yielded better system.

• In [Killer et al., 2003, Killer, 2003], various question sets for decision tree based state tying

were investigated. It was found that the singleton question set often yielded a better system

compared to manually derived, bottom-up entropy, and entropy distance based question

sets.

• In [Mimer et al., 2004, Stüker and Schultz, 2004], it has been shown that enhanced tree

clustering where a single decision tree is constructed for all the sub-states of all graphemes

improves grapheme-based ASR system performance. Through enhanced tree clustering

it is possible to share the parameters across context-dependent graphemes with different

central graphemes.

• More recently, in [Ko and Mak, 2014], the eigen trigrapheme approach was proposed to

robustly estimate the parameters of context-dependent graphemes with few training sam-

ples. In the eigen trigrapheme approach, first eigenbases are derived over a set of clustered

context-dependent graphemes. Later, each context-dependent grapheme is modeled as a

distinct point in the space spanned by these basis vectors.

Context-dependent modeling of graphemes has been applied for a wide range of languages like

English [Kanthak and Ney, 2002, Killer et al., 2003, Dines and Magimai-Doss, 2007, Ko and Mak,

2014], German [Kanthak and Ney, 2002, Killer et al., 2003], Dutch [Kanthak and Ney, 2002],

Italian [Kanthak and Ney, 2002], Russian [Stüker and Schultz, 2004], Spanish [Killer et al., 2003],

Vietnamese [Le and Besacier, 2009], Arabic [Biadsy et al., 2012], African languages [Schlippe

et al., 2012, Ko and Mak, 2014], etc. These studies have shown that the use of grapheme as

subword units has mainly succeeded for languages such as Spanish and Finnish for which

the G2P relationship is regular. For languages such as English that have an irregular G2P

relationship, it has been found that grapheme-based ASR systems perform worse compared

to phone-based ASR systems. In [Sung et al., 2009], it was found that even with large training

data (more than 1000 hours) grapheme subword units resulted in a poor system compared

to phone subword units for English. In [Killer et al., 2003], it was also found that modeling

context longer than the single preceding grapheme and single following grapheme did not

always yield improved ASR performance.

Combining Grapheme and Phoneme Information

In addition to modeling only grapheme subword units, there have been studies where the ASR

system uses both phone and grapheme subword units [Magimai-Doss et al., 2003, Magimai.-

Doss et al., 2004, Dines and Magimai-Doss, 2007, Schlippe et al., 2012]. The aim of these
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approaches was to improve the performance of ASR systems using graphemes in addition to

using phones rather than addressing the lack of lexical resources.

In [Magimai-Doss et al., 2003, Magimai.-Doss et al., 2004], joint modeling of phone and

grapheme information was investigated, where during training, grapheme and phone subword

units are jointly modeled, and decoding is performed using either one subword unit or both.

Experimental studies conducted on isolated word recognition tasks and small vocabulary

speech recognition tasks in the framework of hybrid HMM/ANN ASR system showed that joint

modeling of grapheme and phone information could be beneficial.

In [Dines and Magimai-Doss, 2007], in addition to context-dependent subword unit mod-

eling, the use of Tandem features was investigated. The Tandem features can be seen as a

data-driven projection of standard acoustic features along linguistic dimensions and thus

could be expected to help in modeling grapheme subword units better when compared to

standard cepstral features. ASR studies on English showed that (stand alone) Tandem features

could help in bridging the performance gap between phone-based and grapheme-based ASR

systems. Furthermore, combination of grapheme and phone information at lexical level was

investigated. In this case, models for grapheme subword units and phone subword units were

trained separately and then used/pooled together during decoding. The combined system

was found to be beneficial.

In [Schlippe et al., 2012], combination of grapheme and phone information at the ASR hy-

pothesis level was investigated. More precisely, the test speech was first decoded by both

grapheme-based and phone-based ASR systems. The hypotheses resulting from the two

systems were then combined using the confusion network combination technique. Experi-

mental studies conducted on Hausa, an under-resourced language, showed this approach to

be promising.

4.1.3 Lack of Acoustic and Lexical Resources

When the language lacks both acoustic and phone lexical resources, multilingual and crosslin-

gual grapheme-based approaches that can leverage from resources available in other lan-

guages have been explored [Kanthak and Ney, 2003, Stüker, 2008a,b]. Similar to multilingual

phone subword modeling, multilingual grapheme subword modeling is based on the uni-

versal or multilingual grapheme set formed by merging graphemes that are common across

different languages. However, unlike multilingual phone sets, it is not trivial to port multi-

lingual grapheme sets to new languages mainly because of two reasons. Firstly, grapheme

sets of all languages may not match or overlap. To overcome this issues, either transliteration

or data-driven mapping has been employed [Stüker, 2008b]. Secondly, sharing of acoustic

models of graphemic subword units across languages is not evident, as the relationship be-

tween graphemes and phones may differ considerably across languages. Investigations until

now have shown that multilingual grapheme-based ASR systems generally performed worse

compared to monolingual grapheme-based ASR systems.
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4.2 Potential of Probabilistic Lexical Modeling

In the case of probabilistic lexical modeling, each lexical unit l i is related to all acoustic units

{ad }D
d=1 in a probabilistic manner. As a consequence,

1. the parameters of the acoustic model θa and the lexical model θl can be trained on an

independent set of resources. In this light, previous works on KL-HMM such as [Imseng

et al., 2011, 2012b, Rasipuram et al., 2013a] suggest that ASR systems can be rapidly

developed using domain-independent or language-independent acoustic model and by

training only the lexical model on target language or domain data;

2. L and A can model different contextual units. For instance, as in previous works [Rott-

land and Rigoll, 2000, Magimai.-Doss et al., 2011, Imseng et al., 2011, 2012b, Rasipuram

et al., 2013a, Razavi et al., 2014], L can be based on context-dependent subword units

while A can be based on context-independent subword units. These ASR systems

have been found to yield performance comparable to or better than standard context-

dependent subword unit based HMM/GMM systems;

3. it is not necessary that the subword unit set used for defining acoustic units should be

the same as the subword unit set used for defining lexical units. The lexical model can

capture the relationship between the distinct subword unit sets through acoustics.

In the following section, we present a grapheme-based ASR approach that can exploit all

the above advantages of probabilistic lexical modeling to address both acoustic and lexical

resource constraints in ASR system development.

4.3 Proposed Grapheme-based ASR Approach

In the framework of probabilistic lexical modeling, the modeling of the relationship between

graphemes and acoustic features can be factored into two parts through acoustic units:

1. The acoustic model where the relationship between acoustic units and acoustic features

is modeled.

2. The lexical model where a probabilistic relationship between acoustic units and

graphemes is modeled.

In this thesis, we show that:

• Acoustic units can be phones, multilingual phones or clustered context-dependent subword

units.

• An acoustic model can be trained on either domain-independent or language-independent

resources.

• Lexical units are the graphemes of the target domain or language and it is sufficient to train

only the lexical model on the target domain or language data.

In the proposed approach with graphemes as lexical units and phones as acoustic units, the

lexical model parameters capture a probabilistic relationship between graphemes and phones

using acoustic data. Thus, the proposed grapheme-based ASR approach integrates lexicon
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Figure 4.1 – Illustration of the proposed grapheme-based ASR approach using KL-HMM

learning as a phase in ASR system training and could potentially remove the necessity of

training an explicit G2P converter.

Figure 4.1 illustrates the proposed grapheme-based ASR approach. The acoustic model (or an

ANN) is trained to classify acoustic units. Given the acoustic model, acoustic unit probability

sequences of training data are estimated. The acoustic unit probability sequences are used

as feature observations to train an HMM with graphemes as lexical units using the KL-HMM

approach. In this illustration, the HMM for the word “CAT” is composed of lexical units

representing context-independent grapheme subword units “[C]”, “[A]” and “[T]”. However,

the lexical units normally represent context-dependent subword units with a three-state

minimum duration constraint.

4.4 Pilot Study on the RM Corpus

In this section, we present a pilot study on the RM corpus where both acoustic model param-

eters θa and lexical model parameters θl are trained using acoustic and lexical resources of

target domain data. The main motivation of this pilot study is to validate our hypothesis that

lexical model parameters indeed capture a probabilistic G2P relationship. Towards that we first
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Table 4.1 – Overview of different systems. CI denotes context-independent subword units, CD
denotes context-dependent subword units and cCD denotes clustered context-dependent
subword units. P and G denote phone lexicon and grapheme lexicon, respectively. Det denotes
lexical model is deterministic and Prob denotes lexical model is probabilistic.

System
Acoustic

Lexicon
Lexical

Approach
units A units L

KL-HMM CI P or G CI or CD Prob
SP-HMM CI P or G CI or CD Prob

Tied-HMM CI P or G CI or CD Prob
HMM/GMM cCD P or G CD Det

Tandem cCD P or G CD Det

analyze the effect of the cost function and the subword context modeled on the captured G2P

relationship. We then compare the proposed grapheme-based ASR system with the following

systems:

• The phone-based ASR system using a well developed phone lexicon.

• The grapheme-based HMM/GMM system proposed in the literature [Kanthak and Ney,

2002, Killer et al., 2003].

• The phone-based Tandem system [Hermansky et al., 2000] and the grapheme-based Tandem

system [Dines and Magimai-Doss, 2007].

4.4.1 Experimental Setup

In the pilot study, we followed the setup reported in [Dines and Magimai-Doss, 2007] for the

RM corpus. In this setup a training set of 2,880 utterances was used to train the ASR systems

as opposed to 3990 utterances (formed by combining the training and development sets)

usually reported in the literature [Hain and Woodland, 1999]. The development set of 1110

utterances was used only to tune the word insertion penalty. However, the standard test set

containing 1,200 utterances was used. We also used the MLP from the same study [Dines and

Magimai-Doss, 2007]) trained on the RM corpus to classify 45 context-independent phones as

an acoustic model. This was primarily done to have ASR systems that are comparable with

ASR systems in [Dines and Magimai-Doss, 2007]. More details about the RM corpus such as

subword units and lexicon are given in Appendix A.1. In this study we used grapheme lexicon

transcribed with 29 graphemes.

As mentioned earlier, we compare the probabilistic lexical modeling systems, i.e., KL-HMM,

SP-HMM and Tied-HMM with the deterministic lexical modeling systems i.e., HMM/GMM

and Tandem systems. Three KL-HMM systems, i.e., KL-HMM K L, KL-HMM RK L and KL-

HMM SK L that are based on three KL-divergence based local scores SK L , SRK L and SSK L are

built respectively. Table 4.1 summarizes the different systems and their capabilities.

As given in Section 3.2, in the HMM/GMM approach, the lexical model is deterministic and
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thus both acoustic and lexical units should be of the same type and should model the same

subword context. In context-independent HMM/GMM and Tandem systems both acoustic

and lexical units are context-independent subword units. As given in Table 4.1, in context-

dependent HMM/GMM and Tandem systems, acoustic units are clustered context-dependent

subword units, lexical units are context-dependent subword units, and lexical and acoustic

units are deterministically related. Standard context-independent and word internal context-

dependent HMM/GMM systems are trained using either PLP features or Tandem features.

Phone-based HMM/GMM and Tandem systems use a phonetic question set for state tying,

whereas grapheme-based HMM/GMM and Tandem systems use a singleton question set. The

phonetic question set is composed of phonetic attribute values such as vowel, consonant, and

plosive. In the case of graphemes, the singleton question set is based only on the identity of

the graphemes in the preceding and following context.

The training phase of KL-HMM, SP-HMM and Tied-HMM systems involves the estimation of

lexical model parameters θl . We consider three different lexical unit sets,

• mono or context-independent subword units;

• tri or context-dependent subword units with single preceding and following context;

• quint or context-dependent subword units with two preceding and following contexts.

For context-dependent studies, we train word internal context models. Each subword unit is

modeled by a three-state left-to-right HMM.

The total number of parameters in different systems (KL-HMM, HMM/GMM and Tandem)

are compared in Tables 4.2 and 4.3 for context-independent and context-dependent subword

units, respectively.

• The three KL-HMM systems modeling different lexical units (mono, tri and quint) use the

same acoustic model. Therefore, the acoustic model complexity of these three systems is

the same and the total number of acoustic model parameters is equal to the number of MLP

parameters (≈0.5M).

• The total number of lexical model parameters for KL-HMM systems is given by the number

of lexical units times the number of acoustic units (I ×D). The number of acoustic units is

the same as the number of MLP outputs i.e., 45. The lexical model parameters in this study

are not tied. Therefore, the number of lexical units is obtained from the lexicon, the context

length and the minimum duration constraint. For example, in the case of cd phones, there

are 2269 context-dependent phones in the RM lexicon, therefore I = 2269×3.

– For mono phones, I = 45×3, D = 45 and the total number of lexical model parameters =

(45×3)×45.

– For cd phones, I = 2269×3, D = 45 and the total number of lexical model parameters =

(2269×3)×45 ≈ 0.3M .

– For quint phones, I = 3942×3, D = 45 and the total number of lexical model parameters

= (3942×3)×45 ≈ 0.5M .

– For mono, tri and quint graphemes, I = 29×3, I = 1912×3 and I = 4112×3, respectively.

The lexical model parameters of grapheme-based ASR systems can be calculated similarly

to phone-based systems.
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• The total number of acoustic model parameters of the HMM/GMM system are computed

based on the number of acoustic units and the parameters of each acoustic unit. In this

chapter, we used eight mixture Gaussians with diagonal covariance to model each acoustic

unit. For example,

– for mono phones, D = 45× 3 and the total number of acoustic model parameters =

(45×3)× (8× (39+39+1)) ≈ 0.1M ;

– for cd phones, acoustic units are clustered context-dependent subwords D = 1477 and

the total number of acoustic model parameters = (1477)× (8× (39+39+1)) ≈ 1.0M ; and

– for mono and cd graphemes, the number of acoustic units D = 29× 3 and D = 1369,

respectively.

• The total number of acoustic model parameters of Tandem system include the parameters

of ANN and the parameters of each of the acoustic units. For example,

– for mono phones, the total number of acoustic model parameters = 0.5M + (45×3)× (8×
(45+45+1)) ≈ 0.6M ;

– for cd phones, the total number of acoustic model parameters = 0.5M + (2013)× (8× (45+
45+1)) ≈ 1.9M ; and

– for mono and cd graphemes, the number of acoustic units D = 29× 3 and D = 1985,

respectively.

• The lexical model in the case of HMM/GMM and Tandem systems is deterministic and the

lexical model parameter set θl is a table which maps each lexical unit to a clustered state.

Therefore, the total number of lexical model parameters is equal to the number of lexical

units. For example,

– for mono phones, the total number of lexical model parameters = 45×3;

– for cd phones, the total number of lexical model parameters = 2269×3;

– for mono graphemes, the total number of lexical model parameters = 29×3; and

– for cd graphemes, the total number of lexical model parameters = 1912×3.

The SP-HMM and Tied-HMM systems have the same number of parameters as the KL-HMM

system. The lexical model complexity of KL-HMM systems increases with context and the

acoustic model complexity remains the same. Furthermore, for tri lexical units, it can be

observed that the KL-HMM system has fewer acoustic model parameters and more lexical

model parameters compared to the HMM/GMM system.

Table 4.2 – Number of parameters for systems modeling mono lexical units. θa denotes
acoustic model parameters, θl denotes lexical model parameters.

System
grapheme phone

θa θl Total θa θl Total

KL-HMM 0.5M 4K ≈0.5M 0.5M 6K ≈0.5M
Tandem 0.5M+0.06M 87 ≈0.56M 0.5M+0.1M 135 ≈0.6M
HMM/GMM 0.05M 87 ≈0.05M 0.1M 135 ≈0.1M
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Table 4.3 – Number of parameters for systems modeling context-dependent lexical units. θa

denotes acoustic model parameters, θl denotes lexical model parameters.

System (context)
grapheme phone

θa θl Total θa θl Total

KL-HMM (tri) 0.5M 0.2M ≈0.7M 0.5M 0.3M ≈0.8M
Tandem (tri) 0.5M+1.4M 5.7K ≈1.9M 0.5M+1.4M 6.6K ≈1.9M
HMM/GMM (tri) 0.9M 5.7K ≈0.9M 0.9M 6.6K ≈0.9M
KL-HMM (quint) 0.5M 0.5M ≈1.0M 0.5M 0.5M ≈1.0M

4.4.2 Analysis of the Lexical Model Parameters

In this section, we analyze the effect of the cost function and the grapheme context on the G2P

relationship being learned by the lexical model parameters. Part of the analysis, especially the

effect of the grapheme context on the lexical model parameters has appeared in [Magimai.-

Doss et al., 2011].

Effect of the Cost Function and the Local Score

In Section 3.4, we hypothesized that the local scores SK L and SRK L can model better one-to-

one and one-to-many lexical-to-acoustic unit relationships, respectively whereas the local

score SSK L can model both one-to-one and one-to-many lexical-to-acoustic unit relationships.

In order to analyze and visualize the effect of the cost function and the local score,

1. the lexical model parameters are trained using the KL-HMM (K L, RK L, SK L), SP-HMM

and Tied-HMM approaches with context-independent graphemes as lexical units and

context-independent phones as acoustic units. Each lexical unit is modeled by a single

state HMM;

2. the lexical model parameters (or the categorical distribution) of each grapheme lexical

unit are sorted according to their probability value and the coordinates with probability

value greater than or equal to 0.1 are picked.

The G2P relationship captured by the lexical model parameters of different grapheme-based

KL-HMM systems is presented in Table 4.4. From the table the effects of the local scores on

the captured G2P relationship can be observed to be:

1. The lexical model parameters of KL-HMM K L system capture one-to-one G2P relation-

ships (e.g., see [B], [L], [M], [P]) better than one-to-many G2P relationships (e.g., see

vowel graphemes, [C], [H], [X]).

2. The lexical model parameters of KL-HMM RK L, in addition to relevant one-to-many

G2P relationships (e.g., see vowel graphemes, [C], [G], [H]), also capture additional

confusable and spurious relations. This can be particularly seen in the case of one-to-

one G2P correspondence (e.g., see [B], [M]).
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Table 4.4 – G2P relationship captured by the lexical model parameters of the KL-HMM K L,
KL-HMM RK L and KL-HMM SK L approaches

Grapheme
phones

SK L SRK L SSK L

A ae(0.7) eh(0.2) ae(0.3) ey(0.3) eh(0.1) ae(0.5) eh(0.2) ey(0.1)
ey(0.1) ax(0.1) ax(0.1)

B b(1.0) b(0.5) ah(0.2) b(0.9)
C k(1.0) k(0.5) ch(0.2) s(0.1) k(0.6) t(0.2) ch(0.1)

t(0.1) s(0.1)
D d(0.9) t(0.1) d(0.5) t(0.2) sil(0.1) d(0.7) t(0.1)
E ax(0.4) ih(0.3) iy(0.3) eh(0.1) ax(0.1) iy(0.3) ax(0.2) ih(0.2)

eh(0.1) iy(0.1) ih(0.1) ey(0.1) eh(0.1) ey(0.1)
F f(1.0) f(0.7) v(0.1) sil(0.1) f(0.9)
G g(0.9) g(0.4) jh(0.2) sil(0.1) g(0.7) d(0.1) k(0.1)

k(0.1) d(0.1)
H t(0.7) d(0.1) sh(0.3) dh(0.2) hh(0.1) dh(0.2) sil(0.2) t(0.2)

sil(0.1) th(0.1) th(0.1) d(0.1) hh(0.1)
I ih(0.8) ax(0.1) ih(0.4) ay(0.2) ax(0.1) ih(0.5) ax(0.2) eh(0.1)

iy(0.1) ay(0.1)
J jh(1.0) jh(0.7) ch(0.1) d(0.1) jh(0.9)

t(0.1)
K k(1.0) k(0.7) sil(0.1) t(0.1) k(0.9)
L l(1.0) l(0.5) el(0.1) ao(0.1) l(0.8)

ow(0.1)
M m(1.0) m(0.7) n(0.1) m(0.9) n(0.1)
N n(0.9) n(0.5) en(0.1) ng(0.1) n(0.8) en(0.1)
O ao(0.4) aa(0.3) ao(0.2) aa(0.2) ow(0.2) ao(0.2) aa(0.2) ow(0.2)

ow(0.1) ah(0.1) sh(0.1) ah(0.1) ax(0.1) ah(0.1) ax(0.1)
P p(1.0) p(0.8) p(0.9)
Q k(1.0) k(0.5) w(0.2) uw(0.1) k(0.9)

y(0.1)
R r(0.8) axr(0.2) r(0.4) axr(0.3) aa(0.1) r(0.6) axr(0.3) er(0.1)

er(0.1)
S s(0.9) z(0.1) s(0.6) z(0.2) s(0.8) z(0.2)
T t(0.9) t(0.5) sil(0.1) d(0.1) t(0.8)

k(0.1)
U ax(0.4) uw(0.3) uw(0.3) y(0.2) ax(0.1) uw(0.3) ax(0.3) ih(0.1)

ih(0.1) ah(0.1) ah(0.1)
V ay(0.9) v(0.5) ay(0.3) v(0.9)
W w(1.0) w(0.6) aw(0.1) uw(0.1) w(0.9)
X k(0.9) t(0.1) s(0.4) k(0.4) k(0.5) s(0.3) t(0.1)
Y iy(0.8) ey(0.1) iy(0.4) ay(0.1) ey(0.1) iy(0.5) ey(0.3) ih(0.1)

oy(0.1)
Z z(0.9) ay(0.4) z(0.3) s(0.1) z(0.8) s(0.1)
sil sil(1.0) sil(1.0) sil(1.0)

3. The lexical model parameters of KL-HMM SK L tend to capture one-to-one G2P rela-

tionship similarly to the parameters of KL-HMM K L. They are also able to capture

one-to-many G2P relationships better than local score SK L but not to the same extent

as local score SRK L (e.g., see [G], [H], [N]).
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The G2P relationship captured by the lexical model parameters of the Tied-HMM and SP-

HMM approaches is given in Table 4.5. From the table it can be observed that the captured

G2P relationship is similar to or better than the KL-HMM SK L and KL-HMM RK L approaches.

For example, the G2P mapping for graphemes [A], [E] and [I] is better with the Tied-HMM

and SP-HMM approaches than KL-HMM RK L or KL-HMM SK L approaches. There is no

significant difference in the G2P relationship captured by the lexical model parameters of the

Tied-HMM and SP-HMM approaches.

Table 4.5 – G2P relationship captured by the lexical model parameters of the Tied-HMM and
SP-HMM approaches

Grapheme
phones

St i ed SSP

A ae(0.5) ey(0.4) ax(0.1) ae(0.5) ey(0.3) ax(0.1)
B b(0.7) ah(0.3) b(0.7) ah(0.3)
C k(0.6) ch(0.2) s(0.2) k(0.6) ch(0.2) s(0.2)
D d(0.9) sil(0.1) d(0.8) sil(0.1) t(0.1)
E iy(0.4) eh(0.3) ax(0.2) iy(0.4) eh(0.2) ax(0.2)
F f(0.8) v(0.2) f(0.8) v(0.1) sil(0.1)
G g(0.4) ng(0.3) jh(0.2) ey(0.1) g(0.5) jh(0.2) ey(0.1) ng(0.1) sil(0.1)
H sh(0.3) dh(0.3) hh(0.2) th(0.2) sh(0.3) dh(0.3) hh(0.1) sil(0.1) th(0.1)
I ih(0.7) ay(0.2) ih(0.7) ay(0.2) iy(0.1)
J jh(1.0) jh(1.0)
K k(0.9) sil(0.1) k(0.9) sil(0.1)
L l(0.8) el(0.2) l(0.9) el(0.1)
M m(0.9) eh(0.1) m(0.9) eh(0.1)
N n(0.8) en(0.2) n(0.9) en(0.1)
O ow(0.2) ao(0.2) aa(0.2) sh(0.1) ah(0.1) aa(0.3) ow(0.2) ao(0.2) sh(0.1) ax(0.1)
P p(1.0) p(1.0)
Q k(0.6) w(0.2) y(0.1) uw(0.1) k(0.6) w(0.2) uw(0.1) y(0.1)
R r(0.5) axr(0.3) aa(0.1) er(0.1) r(0.6) axr(0.3) aa(0.1)
S s(0.7) z(0.3) s(0.8) z(0.2)
T t(0.9) sil(0.1) t(0.9)
U uw(0.5) y(0.2) ah(0.1) ao(0.1) zh(0.1) uw(0.5) y(0.2) ah(0.1) ax(0.1) ao(0.1)
V v(0.7) ay(0.3) v(0.7) ay(0.3)
W w(0.7) aw(0.2) uw(0.1) w(0.7) aw(0.2) uw(0.1)
X k(0.5) s(0.5) s(0.5) k(0.5)
Y iy(0.6) ay(0.2) oy(0.1) y(0.1) iy(0.7) ay(0.2) oy(0.1)
Z ay(0.5) z(0.4) w(0.1) ay(0.5) z(0.5)
sil sil(1.0) sil(1.0)

In other words, for context mono the combination of one-to-one and one-to-many G2P

relationships is better captured by lexical model parameters of the Tied-HMM, SP-HMM

approaches followed by the KL-HMM RK L, KL-HMM SK L and KL-HMM K L approaches.

The analysis also validates the hypothesis given in Section 3.4 that the local scores SK L and

SRK L can model better one-to-one and one-to-many lexical-to-acoustic unit relationships,

respectively, whereas the local score SSK L can model both one-to-one and one-to-many

lexical-to-acoustic unit relationships.

48



4.4. Pilot Study on the RM Corpus

Effect of Increasing Grapheme Subword Unit Context

In this section, the lexical model parameters of consonant grapheme [C] and vowel grapheme

[A] are analyzed with increasing subword context to gain insight into the effect of contextual

modeling. The analysis is performed on the lexical model parameters of the KL-HMM SK L

approach. In English, the G2P relationship for consonant grapheme [C] and vowel grapheme

[A] is one-to-many.

Context-independent subword unit modeling: The top two components of the lexical model

parameters of three-state grapheme models [C] and [A] with the corresponding phone label

and probability values are given in Table 4.6. It can be observed that the parameters of

different states capture relationship to different phones. The parameters of the consonant

grapheme model [C] capture relationship to three phones /k/, /ch/ and /s/ in three different

states and the parameters of the vowel grapheme model [A] capture /ae/, /ey/, /ax/, /eh/ in

different states. In other words, the lexical model parameters capture crude phone information

(also observed in the previous section). Similar trends were observed for other consonant

graphemes (that have one-to-many G2P relationships) and vowel graphemes.

Table 4.6 – The first two components of the lexical model parameters arranged in descending
order for grapheme models [C] and [A], shown with the corresponding phone label and the
probability value

Model: [C] State: 1 State: 2 State: 3

1st Max /s/ (0.6) /ch/ (0.3) /k/ (0.9)
2nd Max /z/ (0.1) /t/ (0.3) /t/ (0.02)

Model: [A] State: 1 State: 2 State: 3

1st Max /ae/ (0.64) /ey/ (0.54) /ax/ (0.32)
2nd Max /eh/ (0.13) /ax/ (0.08) /ae/ (0.1)

Context-dependent subword unit modeling: The top two components of the lexical model

parameters of grapheme models [C] and [A] in different contexts with the corresponding

phone label and probability values are shown in Table 4.7. It can be observed from the table,

that by modeling the single preceding and following context, ambiguity in the G2P relationship

is resolved for three context-dependent graphemes [O-C+A], [R-C+E] and [I-C+H]. However,

the parameters of the context-dependent vowel grapheme model [V-A+R] capture more than

one phone (/ae/, /ey/ and /r/). Table 4.7 shows that the parameters of the vowel grapheme

model [b~V-A+R*I] are able to resolve the ambiguity in the G2P relationship and dominantly

capture the relationship to phone /ey/. Also, the lexical model parameters of the third state

tend to model the transition information, i.e., transition to phone /r/.

In other words, similarly to G2P conversion systems [Taylor et al., 1998, Chen, 2003, Bisani

and Ney, 2008, Novak, 2011], one-to-many G2P relationships captured by lexical model

parameters tend to become more regular or close to one-to-one as a longer grapheme context

is modeled.
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Table 4.7 – The first two components of the lexical model parameters arranged in descending
order for grapheme models [O-C+A], [R-C+E], [I-C+H], [V-A+R] and [b~V-A+R*I] (‘b’ refers to
begin of the word tag), shown with the corresponding phone label and the probability value

Model: [O-C+A] State: 1 State: 2 State: 3

1st Max /ow/ (0.87) /k/ (0.89) /k/ (0.99)
2nd Max /l/ (0.05) /t/ (0.04) /t/ (0.01)

Model: [R-C+E] State: 1 State: 2 State: 3

1st Max /s/ (0.95) /s/ (0.82) /s/ (0.90)
2nd Max /z/ (0.04) /z/ (0.12) /z/ (0.08)

Model: [I-C+H] State: 1 State: 2 State: 3

1st Max /ch/ (0.80) /ch/ (0.95) /ch/ (0.76)
2nd Max /t/ (0.14) /t/ (0.03) /t/ (0.15)

Model: [V-A+R] State: 1 State: 2 State: 3

1st Max /ae/ (0.35) /ey/ (0.74) /r/ (0.91)
2nd Max /ey/ (0.34) /eh/ (0.08) /axr/ (0.04)

Model: [b~V-A+R*I] State: 1 State: 2 State: 3

1st Max /ey/ (0.35) /ey/ (0.76) /r/ (0.62)
2nd Max /ae/ (0.34) /eh/ (0.09) /ey/ (0.20)

Global view: In order to get a global picture on the effect of context on the G2P relationship

captured by lexical model parameters, we first trained single state grapheme models for three

contexts (mono, tri and quint) using the KL-HMM SK L and Tied-HMM approaches. Then the

entropy of the lexical model parameters of each grapheme lexical unit was computed. In the

case of tri and quint, the average entropy of the lexical model parameters with the same center

grapheme was computed. Figures 4.2 and 4.3 plot the entropy of the lexical model parameters

for all the grapheme models with increasing context for the KL-HMM SK L and Tied-HMM

approaches, respectively.

From Figure 4.2 the following observations can be made:

• The lexical model parameters of vowel graphemes ([A], [E], [I], [O], [U]) and some consonant

graphemes ([C], [H], [R], [X] ) have a high entropy for context mono signifying the fact that

the parameters capture one-to-many G2P relationships. As the context increases, entropy

decreases i.e., the lexical model parameters tend to capture one-to-one G2P relationship.

• The lexical model parameters of a few consonant graphemes like [B], [K], [P], [V] have

low entropy for context mono which suggests that context-independent grapheme itself

models one-to-one G2P relationship. However, the entropy slightly increases as the con-

text increases. A closer look at the parameters revealed that this was due to the context

information captured by the lexical model parameters.

For the Tied-HMM approach, as shown in Figure 4.3, entropy of the lexical model parameters

of all the graphemes decreases rapidly with context compared to KL-HMM SK L lexical model
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Figure 4.2 – Entropy of lexical model parameters of grapheme subword units trained using
the KL-HMM SK L approach with increasing context. For contexts tri and quint, the average
entropy of all the grapheme models with the same center grapheme is displayed.
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Figure 4.3 – Entropy of lexical model parameters of grapheme subword units trained using the
Tied-HMM approach with increasing context. For contexts tri and quint, the average entropy
of all the grapheme models with the same center grapheme is displayed.

51



Chapter 4. Proposed Grapheme-based ASR Approach

parameters. This shows that with increasing context, the lexical-to-acoustic unit relationship

modeled by the Tied-HMM approach is close to one-to-one or deterministic. However, as seen

in Table 4.7 the relationship between context-dependent graphemes and context-independent

phones can be one-to-many. This suggests that as subword context increases, the lexical

model parameters of the Tied-HMM approach may not be able to capture one-to-many G2P

relationships.

4.4.3 ASR Results

The word accuracy (WA) on the test set of the RM corpus for various systems is given in

Table 4.8.

Table 4.8 – Word accuracies expressed in % on the test set of the RM corpus for various systems
with phones and graphemes as subword units. The acoustic model of the probabilistic lexical
model based systems is trained on the RM corpus. Boldface indicates the best system for each
subword unit

System
Grapheme Phone

mono tri quint mono tri quint
KL-HMM SK L 67.1 94.1 94.8 92.9 94.9 94.8
KL-HMM RK L 74.2 93.5 94.3 92.0 94.1 94.2
KL-HMM K L 57.9 92.3 93.9 92.9 94.5 94.6
Tied-HMM 78.8 93.5 94.5 93.2 94.2 94.2
SP-HMM 77.1 92.9 93.7 93.1 94.0 94.0
Tandem 78.7 93.7 – 89.4 94.3 –
HMM/GMM 64.0 92.7 – 89.5 94.3 –

The key observations from the table are as follows:

• For context mono, all the grapheme-based systems yield significantly poor performance

compared to their respective phone-based systems. As the context of grapheme lexical units

is increased, performance of the systems improve. The grapheme-based KL-HMM SK L

system modeling quint context performs comparable to the phone-based KL-HMM SK L

system modeling tri context.

• HMM/GMM systems using graphemes as subword units performed significantly worse

than systems using phones as subword units. For grapheme subword units, the perfor-

mance of the Tandem systems is better than that of the HMM/GMM systems whereas

for phone subword units, the performance of the HMM/GMM and Tandem systems were

similar. The results consistent with the literature [Dines and Magimai-Doss, 2007] show

that incorporating phone knowledge in grapheme systems could help in improving the

performance.

• For context mono, among different probabilistic lexical modeling approaches, Tied-HMM

and SP-HMM perform better than KL-HMM systems; and the KL-HMM RK L system per-

forms better than the KL-HMM SK L and KL-HMM K L systems. The ASR results are consis-
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tent with the analysis of lexical model parameters presented in the previous section where

it was observed that for context mono, the G2P relationship is better captured by lexical

model parameters trained using local scores St i ed and SSP followed by local score SRK L .

• For contexts tri and quint, the KL-HMM SK L system performs better than other probabilistic

lexical modeling based ASR systems.

• The performance of the KL-HMM SK L system with phones as subword units is better than

that of the HMM/GMM system.

• The performance of all KL-HMM systems modeling tri context increases compared to

mono context for all local scores. However, modeling the quint context helps in the case of

grapheme subword units and does not always improve over tri for phone subword units.

The results indicate that in the framework of probabilistic lexical modeling, grapheme-based

system with quint context could yield performance comparable to that of the phone-based

system modeling tri context. Furthermore, for both graphemes and phones, the performance

of KL-HMM SK L systems modeling context-independent acoustic units is better than that of

HMM/GMM and Tandem systems modeling context-dependent acoustic units.

4.5 Summary

This chapter provided a literature survey on how acoustic and lexical resource constraints are

addressed in standard HMM-based ASR systems. It emerged that the deterministic lexical

model imposes constraints such as, the acoustic units and the lexical units have to be of the

same kind; the acoustic resources from the target language or domain are required to train

or adapt both the acoustic model and lexical model. We then presented a brief literature

survey to show the potential of probabilistic lexical modeling. Probabilistic lexical modeling

relaxes certain constraints imposed by deterministic lexical modeling and, as a consequence

the acoustic model and the lexical model can be independently trained on different set of

resources; different kinds of subword units can be modeled in an ASR system and different

types of contextual units can be modeled in an ASR system.

We proposed an approach to build grapheme-based ASR systems in the framework of proba-

bilistic lexical modeling. In a pilot study, conducted on English, we showed that the parameters

of the lexical model indeed capture a probabilistic G2P relationship. The analysis also val-

idated our hypothesis that lexical model parameters learned with cost functions based on

local scores SK L and SRK L model one-to-one and one-to-many G2P relationships, respectively,

better than other cost functions based on other local scores.

The following chapters will progressively explore the potential of the proposed grapheme-

based ASR approach to build ASR systems in various resource constrained scenarios. More

specifically:

1. In Chapter 5, Lexical resource constrained ASR, we focus on ASR systems for a new

domain with inadequate lexical resources.

2. In Chapter 6, Lexical and acoustic resource constrained ASR, we focus on rapid develop-
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ment of ASR systems in both acoustic and lexical resource constraints.

3. In Chapter 7, Zero-resourced ASR, we focus on building an ASR system for a new lan-

guage without any acoustic and lexical resources.
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5 Lexical Resource Constrained ASR

In this chapter, we investigate the potential of the grapheme-based ASR approach proposed

in Chapter 4 (Section 4.3) in addressing lexical resource constraints. More specifically, the

target domain for which we are interested to build an ASR system has only acoustic data.

Cross-domain acoustic and lexical resources are available, but they do not provide complete

coverage on the target domain data. As presented in Section 4.1.2, in the literature the lack

of lexical resources has typically been addressed using either a G2P convertor or alternate

subword units like graphemes.

In the proposed grapheme-based ASR approach, first an acoustic model with phones as

acoustic units and then a lexical model with graphemes as lexical units are trained. In the

framework of probabilistic lexical modeling, the parameters of the acoustic model θa and

the parameters of the lexical model θl can be trained on an independent set of resources (as

given in Section 4.2). Therefore, it is possible to build an ASR system where the acoustic model

is trained on cross-domain acoustic and lexical resources; and the lexical model is learned

on target domain data. The resulting system is a grapheme-based ASR system that uses a

cross-domain acoustic model and a target domain lexical model.

The proposed grapheme-based ASR approach can also be used to augment the recognition

vocabulary. In this case, the grapheme-based ASR system can be trained where the acoustic

unit set A is based on phones and the acoustic model is trained on acoustic and lexical

resources of target domain data. The lexical unit set L is based on graphemes and the lexical

model is also learned on target domain data. Since the lexical units are graphemes, the

recognition vocabulary can be augmented easily.

Figure 5.1 illustrates the proposed grapheme-based ASR system. Following the analysis pre-

sented in Section 4.4.2, in the proposed approach with graphemes as lexical units and phones

as acoustic units, the lexical model parameters capture a probabilistic relationship between

graphemes and phones using acoustic data. Thus, the proposed grapheme-based ASR ap-

proach integrates lexicon learning as a phase in ASR system training.
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Figure 5.1 – Block diagram of the grapheme-based ASR system using probabilistic lexical
modeling

In the experimental evaluation on three different resource constrained ASR tasks, the proposed

approach is compared with the standard ASR approach where first a G2P convertor is trained

on cross-domain lexical resources and then a phone-based ASR system is built on target

domain resources. More specifically, we compare the following systems:

• The phone-based ASR system using well developed phone lexicon, as shown in Figure 5.2(a).

• The phone-based system using the phone lexicon obtained from a G2P convertor as shown

in Figure 5.2(b). The G2P convertor is based on joint sequence models [Bisani and Ney,

2008].

• The grapheme-based ASR system using the HMM/GMM approach proposed in the litera-

ture [Kanthak and Ney, 2002, Killer et al., 2003] as shown in Figure 5.2(c).

• The grapheme-based ASR system using Tandem features [Dines and Magimai-Doss, 2007]

as shown in Figure 5.2(d) and the phone-based ASR using Tandem features [Hermansky

et al., 2000].

• The grapheme-based ASR system using the Tied-HMM approach as shown in Figure 5.2(e)

and the phone-based ASR system using the Tied-HMM approach.

• The grapheme-based ASR system using the KL-HMM and SP-HMM approaches as shown

in Figure 5.2(f), and the phone-based ASR system using the KL-HMM and SP-HMM ap-

proaches.

All the studies are on English where the G2P relationship is irregular.
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Figure 5.2 – Graphical model representation of various systems. In the figure, P refers to phone
subword units, G refers to grapheme subword units, X refers to acoustic feature observations
and Y refers to Tandem features

Table 5.1 – Overview of different systems. CI denotes context-independent subword units, CD
denotes context-dependent subword units and cCD denotes clustered context-dependent
subword units. P and G denote the phone lexicon and the grapheme lexicon, respectively. Det
denotes the lexical model is deterministic and Prob denotes the lexical model is probabilistic.

System
Acoustic

Lexicon
Lexical

Approach
units A units L

KL-HMM CI P or G CD Prob
SP-HMM CI P or G CD Prob

Tied-HMM CI P or G CD Prob
HMM/GMM cCD P or G CD Det

Tandem cCD P or G CD Det

5.1 Experimental Evaluation

In this chapter, the probabilistic lexical modeling systems, i.e., KL-HMM, SP-HMM and Tied-

HMM are compared with the deterministic lexical modeling systems i.e., HMM/GMM and

Tandem systems. The different systems and their capabilities are summarized in Table 5.1.

ASR systems are built using the following three lexica:

1. GRAPH - grapheme lexicon transcribed using the orthography of words.

2. G2P - phone lexicon obtained by G2P conversion. We used the sequitur G2P

toolkit [Bisani and Ney, 2008] for this purpose.

3. PHONE - well developed phone lexicon that serves as an optimistic case as it is manually

built and verified.

In the pilot study all the probabilistic lexical model based systems modeled word-internal

subword contexts. However, in this section and here after, all the systems model crossword

context-dependent subword units (tri lexical units), as shown in Table 5.1. Probabilistic lexical
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model based systems used the KL-divergence based decision tree approach for state tying

and clustering [Imseng et al., 2012b]. This decision tree clustering approach optimizes a cost

function based on the local score SK L . Similarly to likelihood based decision tree criteria, the

combination of minimum state occupancy count and the minimum decrease in cost-function

threshold are used as stopping criteria.

We use MLPs trained to classify context-independent phones as the acoustic models for the

KL-HMM, SP-HMM and Tied-HMM systems. Input to all the MLPs is the 39-dimensional PLP

cepstral coefficient vector with a four-frame preceding and a four-frame following context.

Following the previous work [Pinto et al., 2011], the size of the hidden layers for all the MLPs

is determined by fixing the total number of parameters to 35% of the training data. The

parameters of the lexical model for the KL-HMM, SP-HMM and Tied-HMM systems are

trained on target domain acoustic data.

The 39-dimensional PLP feature vector used to train the MLP are also used to train the HM-

M/GMM systems. The Tandem features were extracted by transforming the output of the MLPs

(same MLPs that are used as acoustic models in probabilistic lexical model based ASR sys-

tems) with log transformation followed by KLT. Similarly to probabilistic lexical model based

systems, the Tandem system also exploits both target-domain and cross-domain resources.

The HMM/GMM system is trained on target domain data alone. The number of mixture

components for each of the tasks in the case of the HMM/GMM and Tandem systems are

tuned on the development set. In this chapter, we do not perform acoustic model adaptation

of HMM/GMM systems on cross-domain resources, as it is assumed that the tasks lack only

lexical resources.

All the phone-subword based systems use a phonetic question set and grapheme subword

based systems use a singleton question set for the decision tree state tying procedure. In

the following subsections we will describe the three ASR studies investigated. The studies

presented here reflect practical scenarios. For example, cross-domain porting where there is

a need to adapt an existing ASR system to a new application domain or to accented speech;

lexicon augmentation where there is a need to add new words to the recognition vocabulary

because the language is under-resourced etc.

5.1.1 Cross-Domain ASR Study

The goal is to build an ASR system for a new domain with lexical resource constraints by

exploiting cross-domain acoustic and lexical resources. The cross domain lexicon has a high

out-of-vocabulary rate on the new domain. In that regard, we present an experimental study

where the RM corpus (see Appendix A.1) is considered as the target domain and the WSJ1

corpus (see Appendix A.2) as the cross-domain. The standard RM setup with 3990 train

utterances and 1200 test utterances is used in this study. Though RM and WSJ are similar

domains, among the 1000 words present in the RM task, the WSJ task includes only 568 words.

That is, the RM task has 432 words that are not seen in the WSJ pronunciation lexicon.
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We use an off-the-shelf MLP [Aradilla et al., 2008] trained on the WSJ1 (to classify 45 context-

independent phones) as the acoustic model for all the probabilistic lexical model based

systems.

The G2P lexicon was built by training a joint n-gram based G2P convertor on the WSJ lexicon

using the sequitur G2P toolkit [Bisani and Ney, 2008]. The width of the graphone (a grapheme

phoneme pair) context was tuned on the development set (5% of the WSJ1 lexicon). The

optimal n-gram context size was 5. The performance of the G2P lexicon compared to the

PHONE lexicon given in the RM task was 92.2% phone accuracy. Furthermore, systems

are also built with the GRAPH lexicon (transcribed using 79 graphemes, details are given in

Appendix A.1) and the well developed PHONE lexicon given in the RM task.

5.1.2 Multi Accent Non-Native ASR Study

The goal is to build an ASR system for non-native speech including multiple accents in a lexical

resource constrained scenario. In this study, cross-domain acoustic and lexical resources

are from native language speakers. The spoken words in non-native speech are pronounced

differently from native pronunciations. Capturing these variations through multiple pronun-

ciations is not a trivial task [Strik and Cucchiarini, 1999]. Therefore, the approaches should

implicitly handle lexical resource constraints and model the pronunciation variability.

We study multi-accent non-native speech recognition using the HIWIRE corpus (details are

given in Appendix A.4). As cross-domain resources we use the SpeechDat(II) British English

(see Appendix A.3) corpus that includes acoustic and lexical resources from native language

speakers.

The acoustic model or the MLP for probabilistic lexical model based systems was trained on the

SpeechDat(II) British English corpus to classify 45 context-dependent phones. SpeechDat(II)

is a telephone speech corpus, hence, the HIWIRE speech was down sampled to 8kHZ before

extracting PLP cepstral features and then forward passed through the SpeechDat(II) English

MLP.

The G2P lexicon was built by training a joint n-gram based G2P convertor on the SpeechDat(II)

British English lexicon using the sequitur G2P toolkit [Bisani and Ney, 2008]. To extract

pronunciations of abbreviated words using the G2P convertor, the spelling of the word was

modified according to the way the word is pronounced (similar to the pronunciations of

abbreviated words in grapheme lexicon as given in Appendix A.4). For example, the word

“S.I.D” is presented as “ES-EYE-DEE” to the G2P convertor. The optimal width of the graphone

context was found to be 6. The performance of the G2P lexicon compared to the PHONE

lexicon of the HIWIRE task was 89.4% phone accuracy.
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5.1.3 Lexicon Augmentation Study

In this study our goal is to augment the test vocabulary with new words that are not present

in the training vocabulary. The training data includes limited transcribed speech data with

the phone pronunciations of words seen in the training data. The study is performed on

the PhoneBook speaker-independent task-independent 600 word isolated word recognition

corpus (details are given in Appendix A.5) where none of the words in the test vocabulary are

present in the training vocabulary.

The acoustic model or the MLP for probabilistic lexical model based systems was trained on

limited training data of the PhoneBook corpus to classify 42 context-independent phones. For

MLP training, we followed the same setup as in [Dupont et al., 1997], where 19421 utterances

are used for training and 7920 utterances for cross validation. Thus, the data used to train the

MLP did not contain any of the test words.

Probabilistic lexical model systems and deterministic lexical model systems are built using

both training and cross validation utterances consisting of 27341 utterances covering 2183

words. Phone-based probabilistic lexical model systems used the phone lexicon given in the

PhoneBook corpus with acoustic units as context-independent phones and lexical units as

context-dependent phones. Grapheme-based probabilistic lexical model systems are trained

with acoustic units as context-independent phones and lexical units as context-dependent

graphemes. In the case of the PhoneBook task word-internal context-dependent systems are

built (as it is an isolated word recognition task).

The G2P lexicon for the test set was built by training a G2P convertor on the training and

cross-validation pronunciation lexicon (consisting of pronunciations for 2183 words) using

the sequitur toolkit [Bisani and Ney, 2008]. The performance of the G2P lexicon compared

to the PHONE lexicon given in the PhoneBook task was 89.2% phone accuracy. Furthermore,

systems are also decoded with the PHONE lexicon given in the PhoneBook corpus.

5.2 Results

5.2.1 Baselines

To study the effect of lexicon on ASR accuracy, in this section, we compare the performance of

HMM/GMM systems using three different lexica, namely, GRAPH, G2P and PHONE on the

RM, HIWIRE and PhoneBook tasks. Word accuracies of the HMM/GMM systems for the three

tasks are given in Table 5.2. Results show that for all the three tasks, the system using PHONE

lexicon performs better than the systems using the GRAPH or G2P lexicon. ASR results indicate

that the standard HMM/GMM system that uses deterministic lexical modeling is not able to

handle the pronunciation errors present in the GRAPH and G2P lexica.

The results also show that on the RM and HIWIRE tasks, systems using the GRAPH lexicon and
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Table 5.2 – Word accuracies (expressed in %) of the crossword context-dependent HMM/GMM
systems using the GRAPH, G2P and PHONE lexica on the RM, HIWIRE and PhoneBook tasks.
Boldface indicates the best system for each task.

Task GRAPH G2P PHONE

RM 94.8 95.1 95.9
HIWIRE 96.4 96.1 97.2
PhoneBook 91.0 87.1 97.0

the G2P lexicon perform similarly. However, on the PhoneBook task where the recognition

vocabulary is entirely different from the train vocabulary, the system using the GRAPH lexicon

performs significantly better than the system using the G2P lexicon.

5.2.2 Probabilistic Lexical Modeling based Systems

The performance in terms of word accuracy of the various systems using three different lexica

on the RM, HIWIRE and PhoneBook tasks is given in Tables 5.3, 5.4 and 5.5, respectively.

Table 5.3 – Word accuracies (expressed in %) of the crossword context-dependent ASR systems
on the test set of the RM corpus. Boldface indicates the best system for each lexicon.

System GRAPH G2P PHONE

KL-HMM SK L 95.5 95.6 95.9
KL-HMM RK L 95.3 95.0 95.3
KL-HMM K L 94.5 95.0 95.5
Tied-HMM 94.0 94.3 94.5
SP-HMM 93.5 94.0 94.2
Tandem 94.5 94.6 95.4
HMM/GMM 94.8 95.1 95.9

Table 5.4 – Word accuracies (expressed in %) of the crossword context-dependent ASR systems
on the test set of the HIWIRE corpus. Boldface indicates the best system for each lexicon.

System GRAPH G2P PHONE

KL-HMM SK L 97.5 96.8 97.3
KL-HMM RK L 97.4 97.2 97.4
KL-HMM K L 97.3 96.1 96.8
Tied-HMM 95.9 94.6 95.9
SP-HMM 95.4 93.6 95.0
Tandem 96.6 96.2 97.0
HMM/GMM 96.4 96.1 97.2

The main observations from the three tasks are as follows:
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Table 5.5 – Word accuracies (expressed in %) of the context-dependent ASR systems on the
test set of the PhoneBook corpus. Boldface indicates the best system for each lexicon.

System GRAPH G2P PHONE

KL-HMM SK L 93.6 89.1 97.8
KL-HMM RK L 93.3 88.3 97.7
KL-HMM K L 92.3 88.8 97.9
Tied-HMM 91.6 86.7 96.8
SP-HMM 90.5 86.7 96.6
Tandem 92.7 84.9 97.4
HMM/GMM 91.0 86.7 97.0

• In the framework of probabilistic lexical modeling, especially using the KL-HMM SK L

approach, the ASR system using the GRAPH lexicon performs similar to or better than the

ASR system using the G2P lexicon. Furthermore, in the case of the RM and HIWIRE tasks,

the KL-HMM SK L system using the GRAPH lexicon achieves performance comparable to

the system using the optimistic well developed PHONE lexicon.

• For the GRAPH and G2P lexica, among different probabilistic lexical modeling approaches,

the KL-HMM SK L system generally performs better followed by the KL-HMM RK L, KL-

HMM K L, SP-HMM and Tied-HMM systems. The best performing probabilistic lexical

modeling approach for systems using the PHONE lexicon varied with the task.

• The Tied-HMM and SP-HMM systems perform worse compared to the KL-HMM or deter-

ministic lexical model based systems. The analysis presented in Section 4.4.2 suggested

that the lexical model parameters of the Tied-HMM system are not able to capture well the

one-to-many G2P relationships with increasing context. Given that the acoustic model is

trained on cross-domain data, and there exist inherent pronunciation errors in the GRAPH

and G2P lexica, the lexical-to-acoustic unit relationship can be one-to-many. This could be

the reason for the poor performance of the Tied-HMM systems compared to the KL-HMM

systems.

• For the GRAPH and G2P lexica, performance of the KL-HMM SK L system is always better

than that of the HMM/GMM systems. For the PHONE lexicon, the performance of the

KL-HMM SK L system is similar to that of the HMM/GMM systems.

• The performance of the Tandem system, that also exploits cross-domain resources is worse

(for all the three lexica) than the best performing probabilistic lexical model based ASR

system. The performance of the Tandem and HMM/GMM systems are comparable.

The results confirm our hypothesis that the proposed grapheme-based system can perform

better than or similarly to the phone-based system using the phone lexicon from a G2P

convertor. Furthermore, the proposed grapheme-based system performs better than the

grapheme-based HMM/GMM and Tandem systems proposed in the literature.
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5.3 Summary

In this chapter, we evaluated the potential of the proposed grapheme-based ASR approach

in addressing lexical resource constraints on three different ASR studies. In the first study,

cross-domain acoustic and lexical resources are available but they do not provide a complete

coverage for the target domain. In the second study, cross-domain resources are from native

language speakers and include telephone speech whereas the target domain includes non-

native speakers and clean speech. In the third study, the recognition vocabulary includes

words that are not seen during training; therefore, there is a need to add new words to the

system vocabulary.

Our studies have shown that the proposed grapheme-based ASR approach which implicitly

integrates lexicon learning performs better than or comparably to the conventional two stage

approach where G2P training is followed by ASR system development. Furthermore, the

studies show that the proposed grapheme-based ASR approach that incorporates probabilistic

lexical modeling outperformed the grapheme-based ASR approaches with deterministic lexical

modeling.
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6 Lexical and Acoustic Resource Con-
strained ASR

The previous chapter showed that it is possible to build a grapheme-based ASR system using

probabilistic lexical modeling where the acoustic model is trained on cross-domain data

and the lexical model is trained on target domain data with graphemes as lexical units. It

has been observed that this grapheme-based ASR approach could perform better than or

comparably to the two stage approach where phone lexicon development (through automatic

G2P conversion) is followed by ASR system development, even for languages such as English.

In this chapter, we extend the proposed approach for rapid development of ASR systems

for new domains or languages with both acoustic and lexical resource constraints. In the

proposed approach:

• First, an acoustic model that models multilingual phones is trained on language-

independent acoustic and lexical resources.

• Then, the lexical model which captures a probabilistic relationship between target lan-

guage graphemes and multilingual phones is trained on a relatively small amount of target

language-dependent acoustic data.

The first advantage of the proposed grapheme-based ASR approach is that it capitalizes on

both acoustic and lexical resources of resource-rich languages other than the target language.

As discussed earlier in Section 4.1.3, other multilingual and crosslingual grapheme-based

ASR approaches proposed in the literature focussed on sharing grapheme models across

languages [Kanthak and Ney, 2003, Stüker, 2008a,b]. The second advantage of the proposed

approach is that lexicon learning is integrated as a phase in ASR system training.

We hypothesize that, compared to the conventional approach of rapid development of ASR

system through acoustic model adaptation of deterministic lexical model based ASR systems,

ASR systems can be rapidly and effectively built with the proposed grapheme-based prob-

abilistic lexical modeling approach. To validate our hypothesis, the proposed approach is

compared with standard deterministic lexical modeling based approaches such as, a) the HM-

M/GMM approach, where the acoustic and lexical model are trained on target language data

and b) acoustic model adaptation based approaches (MAP and MLLR) that exploit language-

independent resources and c) the Tandem approach that also exploits language-independent
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resources.

The hypothesis is validated by training a single language-independent multilingual acoustic

model and conducting ASR studies on the following three different resource-constrained tasks

where only the lexical model is trained:

• Non-native accented speech recognition task that lacks both acoustic resources and “well

developed” phonetic lexical resources (typically, the phone lexicon includes native speaker

pronunciations). In the literature, non-native accented ASR research has mainly focused

on acoustic model adaptation. We investigate it on English where the G2P relationship is

irregular. The HIWIRE multi-accent non-native ASR corpus used in the previous chapter

(see Section 5.1.2) is also used in this chapter.

• Rapid development of an ASR system for a new language that is not present in language-

independent data using minimal acoustic and lexical resources. We demonstrate this aspect

on a Greek ASR task.

• Development of an ASR system for a minority and under-resourced language, particularly,

Scottish Gaelic which has only 60,000 speakers. The endangered status of Gaelic makes

low-cost speech technology important for language conservation efforts. Gaelic also lacks

sufficient acoustic resources and does not have any phonetic lexical resources.

6.1 Experimental Setup

In this section, we describe the different databases and the setup of the systems used.

6.1.1 Databases and Setup

The information about the various corpora used is summarized in Table 6.1.

Language-Independent Dataset

A part of the SpeechDat(II) corpus, particularly, British English, Italian, Spanish, Swiss French

and Swiss German, is used as the language-independent dataset. Each language has approxi-

mately 12 hours of speech data, totally amounting to 63 hours. All the SpeechDat(II) lexica use

SAMPA symbols. A multilingual phone set of 117 units obtained by merging phones that share

the same symbols across the above mentioned five languages, serves as the acoustic (or the

subword) unit set.

Non-native HIWIRE

To study non-native accented speech recognition we revisit the HIWIRE task (details are given

in Appendix A.4) used in the previous chapter. Additionally, to simulate limited resources,

the amount of adaptation data of HIWIRE is reduced from 150 min to 3 min (specifically,
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Table 6.1 – Overview of the tasks and the respective corpora used in the study

Corpus (Description) Language
# of Subword units Training data Test data
Phones Graphemes (in min) (in min)

SpeechDat(II) English 45 27 744 n.a
(Native speech French 42 43 810 n.a
sampled at 8K German 59 42 846 n.a
used to train Italian 52 34 690 n.a
the acoustic model) Spanish 32 34 690 n.a
(language-independent data 117 47 3780 n.a
used to train multilingual
acoustic model)
HIWIRE English 42 27 0 to 150 150
(Non-native speech from
natives of France, Spain,
Italy and Greece)
SpeechDat(II) Greek 31 25 5 to 800 360
(Native Greek speech)
Scottish Gaelic Scottish n.a. 83 or 32 180 60
(Broadcast news data) Gaelic

150 min, 120 min, 90 min, 64 min, 32 min, 16 min, 10 min and 3 min) by picking a subset of

utterances as in [Imseng et al., 2011]. The standard adaptation set of HIWIRE consists of 50

sentences per speaker. The amount of adaptation data is decreased by considering 40, 30, 20,

ten, five and three sentences per speaker. Furthermore, to ensure full coverage in terms of

context-independent subword units, we picked different sentences for grapheme and phone

based systems in the case of 32 min, 16 min and 10 min scenarios. For the three min case,

utterances are randomly picked until all the context-independent phones or graphemes are

covered.

As described in Appendix A.4, we use the phone lexicon based on the SAMPA phone set. With

the SAMPA phone set, the HIWIRE and language-independent datasets have a shared subword

unit set. This allowed the evaluation of acoustic model adaptation based systems (MAP

and MLLR) discussed later in Section 6.1.2. Also, native English is present in out-of-domain

resources. Therefore, in the case of the KL-HMM, SP-HMM and Tied-HMM approaches,

the lexical model parameters trained on SpeechDat(II) English are adapted using HIWIRE

adaptation data. Additionally, we could also investigate the case where no lexical model or

acoustic model adaptation is performed.

Other details about the task such as grapheme lexicon, language model are given in Ap-

pendix A.4.

Greek SpeechDat(II)

Rapid development of an ASR system for a new language is studied using the Greek Speech-

Dat(II) corpus (details are given in Appendix A.3). The experimental setup is based on [Imseng
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et al., 2012b]. Since the database does not include a standard language model, two optimistic

bi-gram language models, one from the sentences in the development set and other from

the sentences in the test set are built. To simulate limited resources, the amount of available

training data is reduced from 13.5 hours to 5 minutes (specifically, 800 min, 300 min, 150 min,

75 min, 37 min, 18 min, 9 min and 5 min). All the systems were evaluated on the same test set.

The test set contains 10k unique words. The performance of the phone-based KL-HMM, MAP,

MLLR and HMM/GMM systems presented in [Imseng, 2013, Figures 4.3 and 4.4] is taken as

reference in this thesis.

The acoustic model adaptation systems impose the constraint that subword unit sets of

language-independent data and target language data match. As a result, grapheme-based

acoustic model adaptation systems were not directly applicable to the Greek ASR task, as Greek

graphemes are different from Roman graphemes. This necessitated transliteration of Greek

alphabets in terms of English (Roman) alphabets, as given in Table 6.2, for grapheme-based

acoustic model adaptation systems described later in Section 6.1.2.

Table 6.2 – Greek graphemes and their transliterated format (Trans.)

Grapheme Trans. Grapheme Trans.

α a ν n
β b ξ x
γ g o o
δ d π p
ε e ρ r
ζ z σ s
η h τ t
θ th υ y
ι i φ f
κ k χ ch
λ l ψ ps
µ m ω w

More details about the database such as the standard phone lexicon and the grapheme lexicon

are given in Appendix A.3.

Scottish Gaelic

To study the development of an ASR system for a minority and under-resourced language

we use the Scottish Gaelic speech corpus collected by CSTR, University of Edinburgh 1. The

details about the corpus are given in Appendix A.6. We use two grapheme lexica in this study,

namely, orthography-based and knowledge-based as given Appendix A.6. Since, the corpus

does not include a language model, as done in the Greek ASR study, we trained two bi-gram

language models, one from the sentences in the development set and other from the sentences

in the test set.

1. http://forum.idea.ed.ac.uk/idea/gaelic-speech-recognition-and-scots-gaelic-sound -archive
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Table 6.3 – Overview of different systems. CI denotes context-independent subword units, cCD
denotes clustered states of the context-dependent subword-unit based HMM/GMM system
and CD denotes context-dependent subword units. LI denotes language-independent data
is used to train or adapt the model, LD denotes language-dependent data is used to train or
adapt the model and LI+LD denotes both language-independent and language-dependent
data is used to train the model. In Tandem, the ANN trained to classify context-independent
acoustic units is used to extract features for the HMM/GMM system. This is indicated through
(CI+), (ANN+) and (LI+) notation. Det denotes the lexical model is deterministic and Prob
denotes the lexical model is probabilistic.

System
Acoustic model Lexical Model

Acoustic
Approach

Train/ Lexical
Approach

Train/
units Adapt units Adapt

KL-HMM CI ANN LI CD Prob LD
SP-HMM CI ANN LI CD Prob LD
Tied-HMM CI ANN LI CD Prob LD
Tandem (CI+)cCD (ANN+)GMM (LI+)LD CD Det LD
MAP cCD GMM LI+LD CD Det LI
MLLR cCD GMM LI+LD CD Det LI
HMM/GMM cCD GMM LD CD Det LD

6.1.2 Systems

We compare systems based on probabilistic lexical modeling approaches with standard HMM-

based systems with different capabilities. Table 6.3 provides an overview of the systems that

are investigated. The non-native and minority language ASR studies build on top of our

preliminary investigations that focussed on KL-HMM and the use of word-internal context-

dependent subword units [Imseng et al., 2011, Rasipuram et al., 2013a]. In this section, we

provide details about the different systems given in Table 6.3 by grouping them into three

categories.

Probabilistic Lexical Modeling based Systems

We use an off-the-shelf three layer MLP [Imseng et al., 2011] trained on the language-

independent dataset to classify 117 context-independent multilingual phones as the acoustic

model. The input to the MLP was 39-dimensional PLP feature vectors with nine frame tempo-

ral context as input. The total number of parameters was set to 10% of the number of available

training frames. The lexical model is trained for each of the probabilistic lexical modeling

systems, namely, KL-HMM, SP-HMM and Tied-HMM as described Chapter 3. The acoustic

units are multilingual phones from the language-independent dataset and the lexical units

are graphemes of the target language. Since, the acoustic units outnumber the lexical units, it

is likely that the lexical-to-acoustic unit relationship is one-to-many. In Section 4.4.2, it was

observed that the local score SRK L captures one-to-many G2P relationship better than other
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local scores. Therefore, in this chapter, we use the KL-HMM RK L systems.

Acoustic model adaptation based systems

We present ASR systems based on standard MAP and MLLR adaptation techniques. For this

purpose, multilingual context-dependent phone-based and grapheme-based HMM/GMM

systems were trained on the language-independent data set. The phone-based HMM/GMM

system used multilingual phones as subword units.

All the five considered European languages use Roman alphabet. Therefore, the multilingual

grapheme-based HMM/GMM system was developed by forming a multilingual grapheme

set of 47 units by merging graphemes that are common across the languages in the language-

independent data set. Accents and diacritics are treated as separate graphemes.

Each context-dependent subword unit was modeled using 3 HMM states and each HMM state

was modeled using a mixture of 16 Gaussians. Then, MAP adaptation or MLLR adaptation 2

is performed using speech data from the target language or domain. As described earlier in

Section 6.1.1, for the Greek task the transliterated grapheme-based lexicon was used while

performing MAP or MLLR adaptation.

Standard language-dependent acoustic model and lexical model based ASR systems

These are HMM/GMM ASR systems where both the acoustic model and the lexical model

are trained on the language-dependent data. We investigate two systems, the first system

uses standard cepstral features as feature observations (HMM/GMM system) and the second

system uses Tandem features as feature observations (Tandem system) [Hermansky et al.,

2000]. As indicated in Table 6.3, the Tandem system exploits both language-dependent and

language-independent resources similarly to probabilistic lexical model based systems and

acoustic model adaptation based systems.

The Tandem features were extracted by transforming 117-dimensional outputs of the same

multilingual MLP described earlier in Section 6.1.2, with log transformation followed by

principal component analysis. The dimensionality of the output features is either kept the

same or reduced to 39.

The HMM/GMM systems used 39-dimensional PLP cepstral feature vectors as acoustic fea-

tures. All the phone subword based systems use a phonetic question set and grapheme

subword based systems use a singleton question set for the decision tree state tying procedure.

The number of mixture components for each of the tasks and the training conditions were

tuned on the development set. Additionally, for tandem systems, the dimensionality of the

feature observations (either 117 or 39 dimensions) was tuned on the development set.

2. In [Imseng et al., 2012a], it was observed that constrained MLLR [Digalakis et al., 1995] performed worse
compared to MLLR for acoustic model adaptation. Therefore, in this work we investigated only MLLR adaptation.
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6.2 Results

The results section is organized as follows. First, we present results on the rapid development

of ASR with both acoustic and lexical resource constraints on the HIWIRE and Greek ASR tasks.

Later, we present results on minority language speech recognition using the Scottish Gaelic

task. Since, for the Scottish Gaelic task there are no phone-based ASR systems to compare

with, we did not consider rapid development of ASR systems. The performance of all the

systems is reported in terms of word accuracy.

6.2.1 Rapid ASR Development

The performance in terms of word accuracy on the HIWIRE and Greek tasks is summarized

in Tables 6.4 and 6.5 for the KL-HMM, SP-HMM, Tied-HMM, Tandem, MAP, MLLR and HM-

M/GMM systems. The results are analyzed using Figures 6.1, 6.2, 6.3 and 6.4 along two aspects,

namely, comparison of different probabilistic lexical model based systems, comparison of

probabilistic lexical model based systems against acoustic model adaptation based systems

and standard HMM/GMM systems.

Table 6.4 – Performance in terms of word accuracy on the HIWIRE test set for various crossword
context-dependent ASR systems trained on varying amounts of the HIWIRE adaptation data.

System
3 min 10 min 120 min 150 min

Graph Phone Graph Phone Graph Phone Graph Phone
KL-HMM 90.7 93.3 94.0 94.6 98.0 98.0 98.1 98.1
SP-HMM 91.4 93.3 92.1 94.2 95.0 95.6 95.0 95.6
Tied-HMM 86.4 92.5 88.6 93.2 94.3 95.3 94.4 95.4
MAP 86.7 91.6 88.9 92.6 96.7 97.9 96.9 98.0
MLLR 86.2 92.4 87.3 94.3 92.2 96.0 91.9 96.0
Tandem 39.5 55.3 68.9 85.4 95.4 96.2 95.9 96.5
HMM/GMM 26.7 48.3 64.8 82.6 95.8 96.6 96.4 96.8

Table 6.5 – Performance in terms of word accuracy on the Greek test set for various crossword
context-dependent ASR systems trained on varying amounts of the Greek data.

System
5 min 37min 300 min 800 min

Graph Phone Graph Phone Graph Phone Graph Phone
KL-HMM 78.0 80.3 81.4 83.0 83.8 84.4 84.5 84.8
SP-HMM 71.3 73.8 75.9 76.3 77.8 79.3 78.7 79.6
Tied-HMM 66.6 68.6 71.3 73.6 74.8 76.3 76.4 77.6
MAP 54.7 77.4 68.7 79.3 78.0 82.7 78.0 83.9
MLLR 50.0 77.3 52.6 78.7 52.8 79.1 52.8 78.7
Tandem 55.7 66.9 76.0 79.7 81.6 83.8 82.4 84.9
HMM/GMM 54.6 63.5 74.5 81.2 82.3 84.5 83.5 85.2
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Probabilistic Lexical Modeling based Systems

The performance on the HIWIRE and Greek tasks is given in Figures 6.1 and 6.2, respectively, for

the phone- and grapheme-based KL-HMM, SP-HMM and Tied-HMM systems with increasing

amounts of training data. The figures show that the KL-HMM system consistently performs

better compared to the SP-HMM and Tied-HMM systems for both phone and grapheme

subword units. Furthermore, on the HIWIRE task the difference is more pronounced when

the systems use graphemes as subword units.

Comparison of probabilistic lexical modeling based system with other Systems

The performance on the HIWIRE and Greek tasks is plotted in Figures 6.3 and 6.4, respectively,

with varying amount of training data for the phone-based and grapheme-based KL-HMM,

MAP, MLLR, Tandem and HMM/GMM systems. We can draw the following inferences from

the figures:

1. KL-HMM based systems irrespective of the type of subword units used, phones or

graphemes, tend to perform better than (when the training data is less) or comparable

to (when training data is increased) phone-based or grapheme-based deterministic

lexical model based systems. On both the HIWIRE and Greek tasks, the difference in

performance between phone and grapheme-based systems is minimal for the KL-HMM

approach compared to all other approaches.

2. On both the HIWIRE (where G2P relationship is irregular) and Greek (where G2P rela-

tionship is regular) tasks it can be been observed that deterministic lexical model based

systems are more suitable for phones than graphemes.

(a) On the HIWIRE task where lexical units and acoustic units match or have shared

unit set, the acoustic model adaptation based systems perform better than the

HMM/GMM or Tandem systems. However, the performance of acoustic model

adaptation systems using graphemes is worse than with phones as subword units.

On the Greek task where the transliterated grapheme-based lexicon was used,

grapheme-based acoustic model adaptation systems perform significantly worse

than phone-based acoustic model adaptation or HMM/GMM or Tandem sys-

tems. The results also show that in case of grapheme subword unit set mismatch,

transliteration may not be the best possible alternative. In such cases, data-driven

mapping of grapheme subword units could potentially be investigated [Stüker,

2008b].

(b) When the available training data is larger, phone-based deterministic lexical model

systems for both the HIWIRE and Greek tasks perform comparably to the phone-

based KL-HMM system (though not using the same technique, on the HIWIRE task

it is MAP and on the Greek task it is HMM/GMM and Tandem). However, in case

of grapheme-based systems, this trend is not observed. The results, inline with

the other multilingual grapheme-based ASR studies [Kanthak and Ney, 2003, Killer
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Figure 6.1 – Comparison of various probabilistic lexical modeling based systems with in-
creasing amount of target domain training data on the HIWIRE non-native accented speech
recognition task
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Figure 6.2 – Comparison of various probabilistic lexical modeling based systems with increas-
ing amount of target language training data on the Greek ASR task
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Figure 6.3 – Comparison of the phone-based and grapheme-based KL-HMM systems against
the acoustic model adaptation based systems and the standard HMM/GMM system with
increasing amount of target domain training data on the HIWIRE non-native accented speech
recognition task
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Figure 6.4 – Comparison of the phone-based and grapheme-based KL-HMM systems against
the acoustic model adaptation based systems and the standard HMM/GMM system with
increasing amount of target language training data on the Greek ASR task
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et al., 2003, Stüker, 2008a] show that the use of multilingual grapheme models

across languages does not appear evident.

3. Monolingual HMM/GMM systems and acoustic model adaptation based systems with

the shared unit set (i.e., on HIWIRE task) that exploit multilingual speech tend to con-

verge with the increase in acoustic resources.

4. Compared to the HMM/GMM approach, the Tandem approach is beneficial mainly in

low acoustic resource conditions.

5. Comparing MAP and MLLR approaches, it can be observed that MLLR is better than

MAP mainly in very low acoustic resource conditions.

As mentioned in Section 6.1.1, it is possible to directly decode the HIWIRE test set using

language-independent acoustic and lexical models without any adaptation. The performance

on the HIWIRE task for the KL-HMM, SP-HMM, Tied-HMM and the language-independent

HMM/GMM systems is given in Table 6.6. The lexical model for the KL-HMM, SP-HMM

and Tied-HMM systems is trained on the SpeechDat(II) English data. It can be observed

that for both phone and grapheme subword units the KL-HMM system performs better than

the SP-HMM, Tied-HMM and LI HMM/GMM systems. Also, it is interesting to note that

irrespective of the subword units used, the performance of all the probabilistic lexical model

based systems (that use context-independent phones as acoustic units) is better than that of

the LI HMM/GMM system (that uses context-dependent phones as acoustic units).

Table 6.6 – Performance in terms of word accuracy on the HIWIRE test set using system trained
on the SpeechDat(II) data. The LI HMM/GMM system refers to the multilingual HMM/GMM
system trained on the language-independent (LI) data

System Grapheme Phone
KL-HMM 90.0 94.0
SP-HMM 87.3 93.2
Tied-HMM 86.0 91.6
LI HMM/GMM 84.2 91.3

6.2.2 Scottish Gaelic ASR

The performance on the test set of the Scottish Gaelic corpus for the KL-HMM, SP-HMM, Tied-

HMM, Tandem and HMM/GMM systems for the orthography-based and knowledge-based

grapheme lexica is given in Table 6.7. The MAP system was not investigated for the knowledge-

based lexicon due to the mismatch between the acoustic unit set and the lexical unit set. It can

be observed that the systems using the knowledge-based grapheme lexicon perform better

than the systems using the orthography-based grapheme lexicon. This shows that integrating

orthographic knowledge specific to the language in a grapheme lexicon can help in improving

the performance of the grapheme-based ASR system. The KL-HMM systems perform better

than all other systems. The Tandem system performs better than the HMM/GMM system.

Furthermore, the MAP, SP-HMM and Tied-HMM systems perform worse than the Tandem and
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HMM/GMM systems. Finally, in the case of the orthography-based lexicon, the MAP system is

not able to capitalize on the language-independent data.

Table 6.7 – Performance in terms of word accuracy on the Gaelic test set for the various
crossword context-dependent ASR systems.

System
Orthography-based Knowledge-based

lexicon lexicon
KL-HMM RKL 67.9 72.7
SP-HMM 52.0 56.7
Tied-HMM 54.5 59.7
MAP 55.1 –
Tandem 66.5 69.9
HMM/GMM 64.2 68.0

6.2.3 Analysis

From the experiments presented earlier in this section, it can be observed that despite using

exactly the same acoustic model, the performance trends of the various probabilistic lexical

modeling approaches KL-HMM, SP-HMM and Tied-HMM are different. The KL-HMM system

performs better than the deterministic lexical model based systems in both under-resourced

and well resourced conditions. The SP-HMM and Tied-HMM systems show gains over the

deterministic lexical model based systems mainly in under-resourced conditions (see Tables

6.4 and 6.5).

In Section 3.5, we discussed the similarities and dissimilarities between the probabilistic

lexical modeling approaches and contrasted them to the conventional HMM-approach. More

specifically, we pointed out that the Tied-HMM, SP-HMM and KL-HMM K L systems are

close to the conventional HMM-based ASR approach where the lexical model serves as the

reference when matching the acoustic model and the lexical model or estimating the local

score. While, in the KL-HMM RK L system, the acoustic model serves as the reference. In

addition, KL-divergence is a discriminative local score. In this chapter, the KL-HMM system

was based on local score SRK L(yi ,zt ). So, we attribute this superiority of the KL-HMM system

to its ability to give more importance to the acoustic model evidence than the lexical model

evidence through the use of the local score SRK L(yi ,zt ).

In order to ascertain the reason for difference in performance trends among the various

probabilistic lexical modeling approaches, we conducted a study on the HIWIRE task with

the 150 minute target data condition where the lexical model is trained using the KL-HMM

RK L approach and decoding is performed with different local scores, namely, SK L(yi ,zt ),

SSK L(yi ,zt ), St i ed (yi ,vt ) and SSP (yi ,zt ). The study was conducted for both grapheme-based

and phone-based systems. The results of this study are given in Table 6.8.

It can be observed that decoding with KL-divergence based local scores SRK L(yi ,zt ),
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Table 6.8 – Comparison across different local scores used during decoding. The system trained
with the KL-HMM RK L approach is decoded with all the other local scores.

Local score
grapheme phone

for decoding

SRK L(yi ,zt ) 98.1 98.1
SK L(yi ,zt ) 97.8 97.6

SSK L(yi ,zt ) 98.1 98.1
SSP (yi ,zt ) 96.5 96.7

St i ed (yi ,zt ) 97.3 97.1

SSK L(yi ,zt ) and SK L(yi ,zt ) results in better performance compared to decoding with SSP (yi ,zt )

and St i ed (yi ,vt ) local score, ascertaining the fact that KL-divergence is a better local score com-

pared to scalar product. Furthermore, decoding with SK L(yi ,zt ), SSP (yi ,zt ) and St i ed (yi ,vt )

yields lower performance than decoding with SRK L(yi ,zt ). However, decoding with SSK L(yi ,zt ),

that gives equal importance to the acoustic and lexical model yields performance similar to

SRK L(yi ,zt ). It can also be noted that decoding the KL-HMM lexical model with SSP (yi ,zt )

and St i ed (yi ,vt ) results in better performance compared to the SP-HMM trained and Tied-

HMM trained lexical model, respectively (see Table 6.4). This indicates that the KL-HMM

approach with the local score SRK L is yielding a better lexical model compared to the SP-HMM

or Tied-HMM approaches. The results are consistent with the analysis of lexical model param-

eters presented in Chapter 4, where it was observed that as the context of subword units is

increased, the lexical model parameters of the KL-HMM approach captured the one-to-many

lexical-to-acoustic units relationships better than the Tied-HMM approach.

6.2.4 Comparisons with the Literature

In the literature, there are studies that have been reported on the HIWIRE task [Segura et al.,

2007, Gemello et al., 2007]. Despite using the same adaptation and test sets, the studies

reported in this thesis and the literature differ in terms of the sampling frequency of speech

data, type and amount of the out-of-domain data used. First, we compare with studies in

which no kind of adaptation was performed.

• In [Segura et al., 2007], the TIMIT trained monophone HMM/GMM system without adapta-

tion was found to achieve a performance of 91.4% word accuracy.

• In [Gemello et al., 2007], the monophone hybrid HMM/ANN system using an MLP trained

on the TIMIT, WSJ0, WSJ1 and Vehiclus-ch0 corpora was found to achieve a performance of

90.5% word accuracy. Furthermore, the monophone hybrid HMM/ANN system using MLP

trained on the LDC Macrophone and SpeechDat Mobile corpora on the HIWIRE speech

downsampled to 8kHz was found to achieve performance of 88.4% word accuracy.

As shown in Table 6.9, the phone-based KL-HMM system performs better than the approaches

reported in the literature and grapheme-based KL-HMM system performs comparable to the
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approaches reported in the literature. It can also be observed from Tables 6.9 and 6.6 that the

phone-based LI HMM/GMM system performs similarly to the above mentioned systems from

the literature, whereas the grapheme-based LI HMM/GMM system performs worse.

Table 6.9 – Comparison of word accuracies on the HIWIRE test set without any adaptation.

System
Out-of-domain Sampling

Performance
data frequency

HMM/GMM TIMIT 16kHz 91.4

Hybrid HMM/ANN
TIMIT, WSJ0,

16kHz 90.5
WSJ1, Vehiclus-ch0

Hybrid HMM/ANN
LDC Macrophone,

8kHz 88.4
SpeechDat Mobile

KL-HMM Grapheme SpeechDat(II) 8kHz 90.0
KL-HMM Phone SpeechDat(II) 8kHz 94.0

There are also studies on HIWIRE that report results with acoustic model adaptation where

150 min of HIWIRE adaptation data is used.

• In [Segura et al., 2007], it has been found that the TIMIT trained HMM/GMM system with

MLLR adaptation achieves performance of 97.25% word accuracy.

• In [Gemello et al., 2007], linear hidden network (LHN) based adaptation in the hybrid

HMM/ANN framework achieved performance of 98.2% on 16kHz sampled HIWIRE data.

MLP trained on data from TIMIT, WSJ0, WSJ1 and Vehiclus-ch0 was adapted on HIWIRE

data using LHN.

As shown in Table 6.10, the hybrid HMM/ANN system using LHN based adaptation performs

similarly to the phone-based and grapheme-based KL-HMM systems.

Table 6.10 – Comparison of word accuracies on the HIWIRE test set with adaptation

System
Out-of-domain Sampling

Performance
data frequency

MLLR TIMIT 16kHz 97.25

LHN
TIMIT, WSJ0,

16kHz 98.2
WSJ1, Vehiclus-ch0

KL-HMM Grapheme SpeechDat(II) 8kHz 98.1
KL-HMM Phone SpeechDat(II) 8kHz 98.1

Furthermore, for both grapheme and phone subword units, the performance of ASR systems

on the HIWIRE task (150 min adaptation data case) from this chapter is better than the

performance in the previous chapter. The results indicate that using language-independent

resources from multiple languages is more advantageous compared to using resources from

only one language. In [Imseng et al., 2011], on the HIWIRE task, the performance of the

grapheme-based KL-HMM system using low amounts of HIWIRE adaptation data (3min,

10min) was significantly worse than that of the phone-based KL-HMM system. In this work
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the gap is significantly reduced as the lexical model parameters trained on SpeechDat(II)

English are adapted using HIWIRE adaptation data whereas in [Imseng et al., 2011], lexical

model parameters were directly trained on limited HIWIRE adaptation data.

In the case of the Greek task, as previously mentioned phone-based KL-HMM, MLLR, MAP

and HMM/GMM systems reported in [Imseng et al., 2012b] and [Imseng, 2013, Figure 4.3 in

Page 59 and Figure 4.4 in Page 60] have been used as reference. However, the phone-based

Tandem systems reported in [Imseng, 2013] and this chapter differ. Unlike [Imseng, 2013], in

our studies the dimensionality of the Tandem features was either 117 (all the dimensions) or

39 (same as the dimension of standard cepstral feature vector). The dimension of features was

tuned on the development set for each of the training conditions. We found dimensionality

reduction to be beneficial, especially in the low acoustic resource conditions. For example,

on the 5 min acoustic resource case, performance of phone-based Tandem system reported

in [Imseng, 2013] was 30.2% word accuracy, whereas in this chapter with reduced feature

dimensionality we achieved 66.9% word accuracy.

In our previous study on Scottish Gaelic ASR [Rasipuram et al., 2013a], the knowledge-based

grapheme lexicon that tagged word beginning and end graphemes was used and word-internal

context-dependent graphemes were modeled. The KL-HMM and HMM/GMM systems

achieved a word accuracy of 72.8% and 64.8%, respectively. In this work, the same knowledge-

based grapheme lexicon was used but without any word begin and end tags. As a result, the

total number of grapheme subword units is smaller. Furthermore, in this thesis we mod-

eled crossword context-dependent subword based systems. As it can be seen from Table 6.7,

the knowledge-based HMM/GMM system yields an absolute improvement of 3.2% WER

compared to the previous work and the grapheme KL-HMM system achieves performance

comparable to that of the previous study.

6.3 Summary

Our studies in this chapter showed that with probabilistic lexical modeling, especially using

the KL-HMM approach, ASR systems can be rapidly developed for new languages and domains

by training the language or domain independent acoustic model and learning the grapheme-

to-phone relationship on small amount of target language or domain data. In doing so, we not

only address the lack of adequate acoustic resource (speech data with transcription) problem

but also the lack of lexical resource (phone pronunciation lexicon) problem.
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As discussed earlier, standard ASR systems rely on acoustic resources (or transcribed speech),

lexical resources (or the phone pronunciation lexicon), and text data to achieve state-of-the-art

performance. In Chapter 5, we focussed on building ASR systems in lexical resource con-

strained scenarios whereas in Chapter 6, we focussed on building ASR systems in both acoustic

and lexical resource constrained scenarios. More specifically, in the previous two chapters, we

showed that in the framework of the proposed grapheme-based ASR approach, the acoustic

model can be trained on domain-independent or language-independent resources and the

lexical model alone on target domain or language resources.

In this chapter, we will show that the lexical model can be knowledge driven and ASR systems

could be developed for a new language without using any acoustic and lexical resources from

the language, i.e., (near) zero-resourced 1 ASR system. In the case where untranscribed speech

data from the target language is available then an approach for unsupervised adaptation of

the lexical model parameters is proposed. The potential of the proposed approach is studied

on the Greek ASR task, that was also used in the previous chapter.

7.1 Related Work

There have been attempts in the past to build ASR systems without using any acoustic re-

sources from the target language through cross language transfer of acoustic models [Schultz

and Waibel, 2001a, Lööf et al., 2009, Vu et al., 2010]. In cross-language transfer, first a mapping

between phones of source language(s) and target language is defined. In [Schultz and Waibel,

2001a], two techniques for cross-language mapping of phones were proposed. In the first

method, mapping is developed manually and is based on knowledge of phones in source lan-

1. The use of the term zero-resourced is debatable. For example, in the JHU workshop [Jansen et al., 2013a], zero-
resourced speech technologies referred to systems that operate without the expert provided linguistic knowledge
and transcriptions. However, untranscribed speech data was assumed to be available. In [Besacier et al., 2014],
any language that lacks one or more resources required to build an ASR system is referred to as under-resourced
language. In this thesis, by zero-resourced we meant expert-provided linguistic knowledge, phone lexical resources,
and transcription speech data are not available.
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guage(s) and target language. In the second method, mapping is derived automatically using

a small amount of target language acoustic data. It was shown that language-independent

acoustic models trained on multiple languages perform better for cross-language transfer

than acoustic models trained on a language [Schultz and Waibel, 2001a, Vu et al., 2010]. Given

the mapping, the phone pronunciation lexicon, acoustic models of source language(s) and

language models, the decoding of the target language speech data is possible, albeit with high

error rate [Schultz and Waibel, 2001a, Lööf et al., 2009, Vu et al., 2010].

In the case where untranscribed speech data from the target language is available, then un-

supervised acoustic model training/adaptation can be performed to improve the acoustic

models. Typically, cross-language transfer is used as the starting point for unsupervised adap-

tation. That is, the cross-language acoustic models are used to recognize target language

data. The recognized transcriptions with speech data are used in conventional acoustic model

training or adaptation techniques like MAP or MLLR to retrain or update the models. Also,

confidence measures are used to select or weight the utterances for effective use. Unsuper-

vised training or adaptation of crosslingual or multilingual models can result in substantial

performance improvements for ASR [Lööf et al., 2009, Vu et al., 2010].

Most of the ASR approaches that did not use any acoustic data from the target language assume

that phone lexica in all source language(s) and target language are available. In addition to

the acoustic data, if the target language has no available phone lexical resources, the above

mentioned approaches are not directly applicable.

Other approaches that focussed on building speech applications from untranscribed speech

data without any phone lexical resources are mostly based on the sound pattern structure of

speech.

• In [Park and Glass, 2005], acoustic patterns in speech were discovered by matching subse-

quences between pairs of utterances.

• In [Jansen and Church, 2011, Jansen et al., 2013b], first the automatically discovered ex-

amples of word clusters are used to train whole word HMMs. Then, the word HMMs are

clustered across HMM states to produce context-independent subword unit models.

• In [Gish et al., 2009, Siu et al., 2014], untranscribed speech is transcribed into self-organized

units and the HMM training is optimized over both the parameter space and the transcrip-

tion sequence space.

However, the approaches have been validated only on topic classification and spoken term

detection tasks.

In this chapter, we show that the proposed grapheme-based ASR approach can be extended

to zero-resourced conditions i.e., for languages where acoustic and lexical resources are not

available.
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7.2 Proposed Zero-Resourced ASR Approach

In this chapter, we present a zero-resourced grapheme-based ASR approach and assume

that no transcribed speech data, and no phone lexical resources of the target language are

available. However, we assume that we have knowledge of the possible words in the language

and therefore its character or grapheme set is also known.

7.2.1 Knowledge-based Lexical Model Parameters

In the proposed zero-resourced approach various components i.e., the acoustic model, the

lexical model and the pronunciation lexicon required to build a probabilistic lexical based

system are obtained in the following way:

• Acoustic model: It is an ANN trained on language-independent data from multiple lan-

guages. The acoustic units or the outputs of ANN represent multilingual phones. Given the

acoustic model, acoustic unit probability sequence for the test utterance is estimated.

• Pronunciation lexicon: The grapheme lexicon and the grapheme subword unit set are

obtained from the list of possible words in the target language. The lexical units are context-

independent graphemes of the target language.

• Lexical Model: An initial knowledge-based lexical model parameter set Θkn
l = {{yi }I

i=1} is

defined in the following way:

1. Associate each grapheme lexical unit to one or more phone outputs of the ANN.

2. The knowledge-based lexical model parameter set Θkn
l = {{yi }I

i=1} is defined in the

following way: if a lexical unit l i is mapped to R of the D acoustic units where R << D

then

∀d ∈ {1, . . . ,D} yd
i = P (ad |l i ) =


s
R , if l i 7→ ad ;

1− s
R

I−R , otherwise. (7.1)

where I is the total number of acoustic units and s is chosen such that s ≥ 0.5.

3. Each context-independent grapheme is modeled as a three-state HMM.

The block diagram of the proposed zero-resourced ASR system is illustrated in Figure 7.1.

7.2.2 Unsupervised Adaptation of Lexical Model Parameters

In addition to the word list, if we assume that untranscribed speech data from the target

language ({X (n)}N
n=1) is available, then the knowledge-based lexical model parameter set can

be updated in an unsupervised manner. More specifically, we replace the strong top-down

constraints used during lexical model training in the form of transcribed speech data with weak

top-down constraints obtained from grapheme sequence decoder. The grapheme sequence

decoder is an ergodic HMM constructed with all graphemes of the target language and their

knowledge-based lexical model parameters. The transition probabilities of the ergodic HMM

are derived from an n-gram grapheme language model trained on the grapheme lexicon
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Figure 7.1 – Block diagram of the proposed zero-resourced ASR system

obtained from the word list. In this thesis, we used a bi-gram grapheme language model.

Given the ergodic grapheme HMM, the unsupervised adaptation is performed as shown in

Figure 7.2 and involves the following three steps:

1. The acoustic unit probability sequences {Z (n)}N
n=1 are computed given the acoustic

model and the acoustic feature observations {X (n)}N
n=1 of the target language data.

2. The resulting acoustic unit probability sequences are decoded using the grapheme

sequence decoder to generate grapheme level transcriptions of the speech data. In the

first iteration, the ergodic HMM in the grapheme sequence decoder uses knowledge-

based lexical model parameters.

3. The decoded grapheme transcriptions and their acoustic unit posterior probability

estimates {Z (n)}N
n=1 are used to update the lexical model parameters.

The lexical model parameter set can be updated iteratively by repeating the second and third

steps.

The unsupervised lexical model parameter estimation can be extended to context-dependent

subword units in the following way: use the decoded context-independent grapheme se-

quences to obtain context-dependent grapheme sequences for all the utterances in the train-

ing data; update/train the lexical model parameters of context-dependent graphemes using

acoustic unit probability sequences {Z (n)}N
n=1 and context-dependent grapheme sequences.

The grapheme-based zero-resourced ASR approach proposed in this chapter can also be

extended to phone subword units if phone lexical resources are available. However, in this

chapter we always consider that phone lexical resources are not available.
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Figure 7.2 – Unsupervised lexical model parameter estimation

7.3 Experimental Setup and Results

To evaluate the proposed approach we consider Greek as the target language for which we

are interested to build an ASR system, but we assume that acoustic and lexical resources

are not available. We revisit the Greek SpeechDat(II) ASR task presented in the previous

chapter and consider five other European languages from the SpeechDat(II) corpus namely

British English (EN), Swiss French (SF), Swiss German (SZ), Italian (IT) and Spanish (ES) as

language-independent resources.
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Acoustic model: The three-layer multilingual MLP used in the previous chapter trained on

the above mentioned five languages of the SpeechDat(II) corpus is used as an acoustic model.

Additionally, we also trained another multilingual MLP but with five-layers using the data

from the same five languages of the SpeechDat(II) corpus. The input features and output units

of the five-layer MLP are the same as that of the three-layer MLP. The size of each hidden layer

of the five-layer MLP was set to 2000 units.

Grapheme sequence decoder: The transition probabilities of the ergodic HMM in the

grapheme sequence decoder are obtained from the bi-gram language model trained on the

available word list. We use the list of 35146 words from the SpeechDat(II) Greek corpus for this

purpose. The bi-gram grapheme language model built from the orthography of 35146 words

has a perplexity of 9. Also, the grapheme lexicon built using 35146 words of the SpeechDat(II)

Greek corpus is used as the pronunciation lexicon in all the experiments.

Lexical model: We present this study on KL-HMM RK L systems. More specifically, we evaluate

the following two systems:

1. RKL_MLP-3: The KL-HMM RK L system using the three-layer multilingual MLP as the

acoustic model

2. RKL_MLP-5: The KL-HMM RK L system using the five-layer multilingual MLP as the

acoustic model

There are two main reasons to select the local score SRK L . From a training perspective, it was

chosen because one-to-many G2P relationships are better captured with the local score SRK L

than with other local scores (according to the analysis presented in Section 4.4.2). From a

decoding perspective, as discussed in Section 3.5.2, the local score SRK L has the capability to

give more importance to acoustic model evidence than to lexical model evidence. Since in

the zero-resource ASR approach the lexical model can be weak, it is preferable to give more

importance to acoustic model evidence during decoding.

Evaluation: For evaluating the systems we report grapheme accuracy (GA) on the training set

and word accuracy (WA) on the test set of the Greek SpeechDat(II) corpus. In a real world

zero-resourced ASR scenario, it may not be possible to compute the GA on the training set

as reference transcriptions are not available. However, since this is a simulated study (i.e.,

reference transcriptions are available), we report grapheme accuracy on the training set. To

clarify, we did not tune the insertion penalty and the language scale factor while reporting the

GA on the training set. As mentioned in the previous chapter, two optimistic language models

trained from sentences in the development set and test set are used during decoding.

7.3.1 Evaluation of Knowledge-based Lexical Model Parameters for ASR

In this case only the list of possible words from the target language is assumed to be available.

The knowledge-based lexical model parameter set is defined following the procedure given

in Section 7.2.1. Columns 1 and 2 of Table 7.1 provide the grapheme-to-multilingual phone
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map used in defining the knowledge-based lexical model parameter set. Empirically it was

observed on the development data that the value of s above 0.7 did not significantly effect the

grapheme sequence decoded using the ergodic HMM. So, we only present ASR results for the

case with s = 0.8.

Table 7.1 – Greek graphemes with their transliterated format (Trans.), knowledge-based G2P
map and automatic G2P map learned by unsupervised adaptation of lexical model parameters

Grapheme (Trans.) Knowledge-based map
Unsupervised map
RKL_MLP-3 RKL_MLP-5

α (a) a, a: a a
β (b) b, v b, v b, v
χ (ch) c, x x, R, C x, R, C
δ (d) d, D d, D d, D
ε (e) e e, E e
φ (f) f f, s f
γ (g) g, G, j g, j g, j
η (h) E:, i i i
ι (i) i, i: i i
κ (k) k k k
λ (l) l l l
µ (m) m m, n m
ν (n) n n n
o (o) o o o
π (p) p p p
ψ (ps) s s, S s, S
ρ (r) r R, r r, rr
σ (s) s s s
θ (th) T T, s T
τ (t) t t t
ω (w) o, O: u o
ξ (x) x k k
υ (y) i, y, y: i i
ζ (z) dz, z s, z, Z z

The performance in terms of GA and WA of the two systems when the zero-resourced ASR

approach uses knowledge-based lexical model parameters is given in Table 7.2. The systems

using the five-layer MLP as the acoustic model perform better than the systems using the

three-layer MLP as the acoustic model. The results indicate that the proposed approach can be

used to build ASR systems in zero-resourced setup with minimal knowledge. This is interesting

because the proposed zero-resourced ASR approach can serve as a practical starting point

while building ASR systems for new languages without any acoustic and lexical resources.
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Table 7.2 – Grapheme accuracy (GA) on the training set and word accuracy (WA) on the test set
of the zero-resourced KL-HMM systems. Lexical units are context-independent graphemes

System GA on training set WA on test set

RKL_MLP-3 43.3 50.4
RKL_MLP-5 45.2 54.4

7.3.2 Evaluation of Unsupervised Adaptation of Lexical Model Parameters

In this case, untranscribed Greek speech data is also assumed to be available along with the

list of words from the target language. The speech data corresponding to the training set of

the Greek SpeechDat(II) corpus is used for this purpose. The speech data is forward passed

through the acoustic model to obtain acoustic unit probability sequences. The knowledge-

based lexical model parameter set is updated in the unsupervised training procedure described

earlier in Section 7.2.2.

The performance in terms of GA and WA of the systems when the lexical model parameters

are adapted in an unsupervised way is reported in Table 7.3. For the systems reported in this

table lexical units are context-independent graphemes. The results show that the unsuper-

vised adaptation of the knowledge-based lexical model parameters significantly improves the

performance of the RKL_MLP-3 system compared to the performance of the system using

knowledge-based lexical model parameters given in Table 7.2. We updated the parameters

of the lexical model iteratively. However, the unsupervised adaptation converged in just one

iteration as GA and WA on train and test sets do not change significantly. This can be due to

the relatively small number of lexical model parameters (3∗25∗117). Similarly to the case

of knowledge-based lexical model parameters, systems using the five-layer MLP as acous-

tic model perform better than the respective systems using the three-layer MLP as acoustic

model.

The columns 1, 3 and 4 of Table 7.1 provide the graphemes, and the G2P map obtained from

the updated lexical model parameters of the systems RKL_MLP-3 and RKL_MLP-5, respectively.

There are differences in the G2P map captured by the lexical model parameters compared to

the knowledge-based map (given in column 2). For example, the grapheme [α] is not mapped

to phone /a:/ after the unsupervised adaptation procedure; the grapheme [ψ] is mapped to /S/

in addition to /s/ after the unsupervised adaptation procedure. The table also shows that the

G2P relationship captured by the lexical model parameters of the system RKL_MLP-5 is better

than the G2P relationship captured by the lexical model parameters of the system RKL_MLP-3.

The performance in terms of GA and WA of the two KL-HMM systems with context-dependent

graphemes as lexical units is given in Table 7.4. The context-independent grapheme transcrip-

tions of the respective systems given in Table 7.3 are turned to context-dependent grapheme

transcriptions, as done regularly when training context-dependent subword unit based ASR

systems. Results show that the unsupervised adaptation of the lexical model parameters of

context-dependent lexical units improves the performance of the RKL_MLP-3 and RKL_MLP-5
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Table 7.3 – Grapheme accuracy (GA) on the training set and word accuracy (WA) on the test set
of the KL-HMM systems when the lexical model parameters are adapted in an unsupervised
way. Lexical units are context-independent graphemes

System GA on training set WA on test set

RKL_MLP-3 45.2 66.3
RKL_MLP-5 47.8 70.5

systems compared to the respective systems using context-independent lexical units. It was

again observed that only one iteration of unsupervised training was sufficient and subsequent

iterations did not improve the ASR performance on the test set. Hence, we did not report those

results here.

Table 7.4 – Grapheme accuracy (GA) on the training set and word accuracy (WA) on the test set
of the KL-HMM systems when the lexical model parameters are adapted in an unsupervised
way. Lexical units are context-dependent graphemes

System GA on training set WA on test set

RKL_MLP-3 48.2 68.1
RKL_MLP-5 50.2 72.0

7.4 Summary

In this chapter, we have shown that the lexical model can be knowledge driven in the proposed

grapheme-based ASR approach. Therefore, ASR systems for a new language could be devel-

oped without using any acoustic and lexical resources from the language. More specifically,

the acoustic model or an ANN is trained on language-independent resources. Furthermore, if

untranscribed speech data from the target language is available, the knowledge-based lexical

model parameters can be adapted in an unsupervised manner using graphemic constraints

learned from the available word list.
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8 Acoustic Data-Driven G2P Conversion

In the previous chapters, we focussed on grapheme-based ASR in the framework of prob-

abilistic lexical modeling in various resource constrained ASR scenarios. In the proposed

grapheme-based ASR approach, the acoustic model models the relationship between phones

and acoustic features, while the lexical model models a probabilistic relationship between

graphemes and phones. In this chapter, we show that the G2P relationship captured in the

lexical model parameters can be exploited together with the sequence information in the

orthographic transcription of the word to extract pronunciation models/variants.

In the following section, we will first present a brief overview of G2P approaches proposed in

the literature. Then, the proposed G2P approach is presented in detail in Section 8.2 and the

experimental studies are presented in Section 8.3.

8.1 Related Work

Automatic G2P conversion techniques can be broadly classified into rule-based approaches

and data-driven approaches. Rule-based G2P conversion approaches are typically formulated

in the framework of finite state automata[Kaplan and Kay, 1994]. The primary advantage of

rule-based approaches is that they can provide complete coverage. However, the two main

drawbacks of rule based approaches are: (1) Natural languages exhibit irregularities. Therefore,

it is necessary to cross-check if the rules are applicable to all the entries. Often rule-based G2P

systems also need an exception list. (2) Design of rules requires specific linguistic skills that

may not be always available. The unavailability of linguistic skills in many languages rules out

the use of rule-based G2P conversion for lexicon generation.

Lexical data-driven approaches for G2P conversion are based on the fact that given enough

examples (or the seed lexicon) it should be possible to predict the pronunciation of an unseen

word. The first step in most of the automatic G2P conversion approaches is the alignment

of training data constituting sequences of graphemes and their corresponding sequences of

phonemes. Given the alignments, a decision tree [Pagel et al., 1998] or a neural network [Se-
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jnowski and Rosenberg, 1987] can be trained to learn the G2P relationship from the training

data. In both decision-tree and neural-network based G2P conversion, the prediction of an

output phoneme is based on the context of the current grapheme. Also, the decision for each

grapheme takes place before proceeding to the next one. Therefore, these methods are based

on local classification.

The G2P conversion problem has also been approached through probabilistic and sequence

classification methods. Given a sequence of graphemes G = {g1, g2, . . . , gN }, the most likely

sequence of phonemes S∗ = {s1, s2, . . . , sM } can be found by,

S∗ = argmax
S

P (S|G) (8.1)

In [Taylor, 2005], the G2P conversion problem was formulated in the standard HMM way as:

S∗ = argmax
S

P (G|S)P (S) (8.2)

where P (S) is the prior probability of a sequence of phonemes, P (G|S) is the likelihood of the

grapheme sequence given the phoneme sequence. Each HMM represented one phoneme

which can generate up to four graphemes in four different emitting states. After emitting an

observation, the path moves to the next state or the exit state. The algorithm finds the most

probable sequence of phonemes that could have generated the input grapheme sequence.

In joint multigram or joint n-gram approaches [Bisani and Ney, 2008], a model that represents

the joint probability distribution over sequences of graphone (a grapheme-phoneme pair)

units is used for G2P conversion,

S∗ = argmax
S

P (G ,S) (8.3)

The parameters of the joint n-gram model are estimated using the EM algorithm on an existing

pronunciation lexicon.

In [Wang and King, 2011], the G2P conversion was achieved through conditional random fields

that are discriminative models and are capable of global inference. A CRF directly models the

conditional probability of phoneme sequence S given grapheme sequence G as in Eqn (8.1).

The pronunciations derived from automatic G2P convertors reflect the ambiguity and variation

found in the lexical resources used to train the model. Therefore, their main drawback is that

pronunciations or its variants may not reflect the natural phonological variation. For example,

this can happen when a G2P convertor trained on native pronunciations is used to extend the

vocabulary of a non-native ASR system; or when the new vocabulary has unusual words. To

overcome this limitation acoustic samples of words were used to refine expert-provided or

G2P-convertor based pronunciations.

• In [Xiao et al., 2007], the parameters of the G2P convertor were adapted using spoken
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examples for a name recognition task.

• In [McGraw et al., 2013], the pronunciation variants of words given by the graphone-based

G2P approach [Bisani and Ney, 2008] were given pronunciation weights using acoustic

samples of words. The approach assumes that an expert provided pronunciation lexicon is

available.

• In [Lu et al., 2013], an approach to enlarge the expert phonemic lexicon is proposed where

the pronunciations of additional words are generated using their acoustic samples and

a trained G2P convertor. More precisely, first a G2P convertor is trained using an expert

lexicon. The G2P convertor is used to generate pronunciation variants for new words. The

weights for these multiple pronunciations are estimated based on acoustic evidence using

the WFST-based EM algorithm. Finally, the acoustic model is updated using the augmented

lexicon. The process is repeated until convergence.

As shown in Figure 8.1, the above three G2P conversion approaches rely on a seed lexicon

and a G2P convertor. The acoustic samples are used only to weigh or select the alternate

pronunciations given by a G2P convertor.

G2P

Convertor

Update the 

lexicon

Seed

lexicon

Acoustic

data

lexicon

weighted 

Figure 8.1 – Acoustic data-driven G2P conversion approaches proposed in the literature. The
dotted line illustrates that some approaches iterate the G2P conversion process

In this chapter, we propose an acoustic data-driven G2P conversion algorithm that extracts

pronunciations using acoustic data and word level transcriptions of the target domain. The

approach is not constrained by the availability of acoustic samples of the words for which we

are interested to generate phone pronunciations.

8.2 Proposed Approach

One of the key issue involved in the development of a G2P converter is to effectively capture

the relationship between graphemes and phones. As discussed in Chapter 4, when using

graphemes as lexical units in probabilistic lexical modeling based systems this relationship

is captured in the lexical model parameters and is learned from acoustic data of the target

domain.

The proposed G2P approach that builds upon this observation consists of two phases: a

training phase and a decoding phase. In the training phase a probabilistic lexical model based
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system with graphemes as lexical units is trained. Given the lexical model parameters of

grapheme subword units and the orthographic transcription of a word, the decoding phase

involves inferring a phone sequence. Figure 8.2 illustrates the block diagram of the proposed

G2P approach.

Orthographic

transcription

of words
Probablistic
grapheme−to−

phoneme
relation

conversion

G2P
Speech data

Transcriptions

Phoneme

sequences

Training Decoding

Grapheme−based

probabilistic lexical

model system

Figure 8.2 – Block diagram of the proposed acoustic data-driven G2P conversion approach.

8.2.1 Training Phase

In the training phase a grapheme-based probabilistic lexical model system is trained. There-

fore this phase includes the training of an acoustic model and a lexical model as described in

previous chapters.

Acoustic Model: Similar to previous chapters, the acoustic model is a well trained MLP with

acoustic units or output classes as context-independent phones; and the acoustic model can

be trained either on target-domain or target-language resources if available, or on domain-

independent and language-independent acoustic and lexical resources.

Lexical Model: The speech data of the target language or domain is forward passed through the

MLP to obtain acoustic unit probability sequences that are then used as feature observations

to train an HMM (or the lexical model) with context-dependent graphemes as lexical units.

8.2.2 Decoding Phase

As illustrated in the block diagram of Figure 8.3, the decoding phase involves inference of a

phone sequence given lexical model parameters of grapheme subword units and orthographic

transcription of the word. More precisely, the decoding phase involves the following steps:

1. The orthographic transcription of a given word is parsed to extract the (context-

independent) grapheme sequence. For example, the word AREA is expanded as [A] [R]

[E] [A].

2. The context-independent grapheme sequence is then turned to the context-dependent

grapheme sequence. For example, the sequence [A] [R] [E] [A] is expanded into the

sequence [A+R] [A-R+E] [R-E+A] [E-A].
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Figure 8.3 – Acoustic data-driven G2P conversion using lexical model parameters and ortho-
graphic transcription of words.

3. A word level HMM is created by concatenating the HMMs of context-dependent

graphemes in the sequence. A sequence of acoustic unit probability vectors is then

obtained by stacking the categorical distributions of the states in the (left-to-right) order

in which the states are connected. In other words, the grapheme HMM sequence acts as

a generative model where each state (in the left-to-right sequence) generates a single

probability vector.

For example, in the case of the context-dependent grapheme sequence [A+R] [A-R+E]

[R-E+A] [E-A] the sequence of acoustic unit probability vectors starts with the lexical

model parameters (categorical distribution) of the first HMM state of [A+R] followed by

the lexical model parameters of the second HMM state of [A+R], and so on till the lexical

model parameters of the final HMM state of [E-A].

4. Finally, the acoustic unit posterior probabilities in the sequence are used as local scores,

exactly like in the case of the hybrid HMM/MLP system [Bourlard and Morgan, 1994],

and decoded by a fully ergodic HMM system (that connects all D acoustic units with

a uniform transition probability matrix) to infer the acoustic unit sequence. Since,

the acoustic units in our case are context-independent phones, a phone sequence is

inferred.

5. Multiple pronunciations for a word could be extracted using n-best decoding. However,

in this thesis we only used 1-best decoding, i.e. single pronunciation model for each

word.
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8.2.3 Links to other G2P Approaches

Broadly, the proposed G2P approach can be considered to be similar to conventional G2P

approaches that are based on decision trees and joint multigrams. In all the three of them,

the phone sequence given the grapheme sequence is obtained based on the G2P relationship

learned on the training data. The proposed approach learns the G2P relationship on acoustic

data of the target language, while the conventional approaches learn the G2P relationship

on a seed lexicon of the target language. However, the training and decoding algorithms are

different in the conventional and the proposed G2P conversion approaches.

Specifically, the proposed G2P approach is similar to the decision-tree based G2P ap-

proach [Pagel et al., 1998], as they both learn the relationship between context-dependent

graphemes and context-independent phones. The joint-multigram based G2P conversion

approach [Bisani and Ney, 2008] jointly models context-dependent graphemes and context-

dependent phones using graphones. Furthermore, the context of graphemes or phones

considered in the proposed G2P approach is generally smaller than the context of graphemes

and/or phones considered in decision-tree based or joint-multigram based G2P conversion

approaches. On the other hand, unlike the decision-tree based G2P approach that is based on

local classification, the proposed G2P approach is based on sequence classification like the

joint-multigram based G2P conversion approach.

We hypothesize that,

• the ASR system using the phone lexicon generated from the proposed G2P approach should

perform similarly to or better than the one generated from the decision-tree based G2P

approach as it uses acoustic data and is a sequence classification approach; and

• the ASR system using the phone lexicon generated from the proposed G2P approach may

perform similarly to or worse than the phone lexicon generated from joint-multigram based

G2P approach as the context of subword units considered in the proposed approach is

smaller than the joint-multigram approach.

8.2.4 Advantages of the Proposed G2P Approach

The advantages of the proposed G2P approach are:

• The proposed G2P approach is capable of generating phone lexical resources given only

acoustic data from the target language. Furthermore, it can exploit the target language (as

seen in Chapter 5) and/or language-independent (as seen in Chapter 6) resources for G2P

conversion.

The conventional G2P approaches [Taylor et al., 1998, Bisani and Ney, 2008, Novak, 2011,

Chen, 2003] are only applicable if a seed lexicon from the target language is available.

Therefore, they can only exploit phone lexical resources of the target language.

• Probabilistic lexical model based systems have a relatively small number of lexical model

parameters (i.e., I ∗D) that can be learned on either a small amount of training data (Chap-

ters 5 and 6) or can be knowledge driven (Chapter 7). The proposed G2P approach that is
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based on lexical model parameters is of particular interest when there is less transcribed

data.

• The approach uses acoustic data to generate phone lexical resources for the target domain.

As a result it is expected to capture the natural phonological variation in the extracted

pronunciations. However, unlike other acoustic G2P approaches [Xiao et al., 2007, McGraw

et al., 2013, Lu et al., 2013], the proposed approach does not presume the availability of

acoustic samples of words for which we are interested to generate phone pronunciations.

• The search involved during decoding to infer the phone sequence is relatively simple.

• In this thesis, we focus only on the generation of pronunciations with phones. However, the

approach could be extended to other unit representations, such as syllables, automatically

derived acoustic units and articulatory features.

8.3 Experimental Studies

To demonstrate the potential of the proposed G2P approach, we consider the following two

cases:

1. In the first case, the goal is to build an ASR system for a domain that does not have any

prior lexical resources, i.e., neither phone set nor pronunciation lexicon. However, we

have access to a second domain that has acoustic and lexical resources. The lexicon of

the second domain has a high out-of-vocabulary rate on the new domain for which we

are interested to build ASR system. To study this case we consider the RM task that was

also used in Chapter 5.

2. In the second case, we consider a scenario where limited transcribed speech data with

its pronunciation lexicon constituting pronunciations of words seen in the speech data

is available. The goal is to infer pronunciation models for words which are not seen

in the training data (For example, to augment the system vocabulary with a new set

of words). This scenario is likely to occur while developing ASR systems for under-

resourced languages. To study this case we consider the PhoneBook task that was also

used in Chapter 5.

The two cases presented here build on top of our preliminary investigations [Rasipuram and

Magimai.-Doss, 2012a,b] where we focussed on extracting pronunciations using a grapheme-

based KL-HMM system modeling word internal context-dependent subword units. In [Rasipu-

ram and Magimai.-Doss, 2012a], pronunciations were generated using the grapheme-based

KL-HMM system modeling context-dependent subword units either with the single preceding

and the single following subword context (tri) or with the double preceding and the double fol-

lowing subword context (quint). In this chapter, we focus only on context-dependent subword

units with tri context. Furthermore, in our previous work [Rasipuram and Magimai.-Doss,

2012b], we used back-off to handle unseen context-dependent graphemes, i.e., the context of

unseen context-dependent graphemes encountered is decreased gradually until we encounter

an observed grapheme. In the thesis, for the sake of consistency with the previous chapters,

we use decision-tree based state clustering and tying approach to handle unseen context-
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dependent graphemes. It is worth mentioning that there is no difference in performance

either at pronunciation level or at ASR performance level between employing backoff and

decision-tree method to handle unseen graphemes.

8.3.1 Experimental Setup

In the case of the RM and PhoneBook tasks we compare the following three lexica:

1. acoustic-G2P: Pronunciation lexicon generated using the proposed acoustic data-driven

G2P approach.

2. decision-G2P: Pronunciation lexicon generated using a decision tree based G2P con-

vertor [Pagel et al., 1998]. We use the G2P convertor in the festival toolkit [Taylor et al.,

1998] for this purpose. The G2P convertor was trained on either the WSJ lexicon (RM

task) or the PhoneBook train lexicon.

3. graphone-G2P: Pronunciation lexicon generated using the joint-multigram ap-

proach [Bisani and Ney, 2008]. We use the Sequitur G2P toolkit. The G2P convertor was

trained on either the WSJ lexicon (RM task) or the PhoneBook train lexicon.

RM task: Similar to Section 5.1.1, we consider the DARPA RM corpus as the target domain for

which we are interested to build a phone-based ASR system. However, we assume that phone

lexical resources are not available. Wall Street Journal (WSJ) is used as the out-of-domain

corpus where acoustic and lexical resources are available. Out of 1000 words in the RM lexicon

only 568 words are seen in the WSJ pronunciation lexicon. In this case, the acoustic model

is trained on the WSJ corpus and the grapheme-based probabilistic lexical modeling system

is trained on the RM corpus. The phone-based pronunciation lexicon for the RM task is

generated using the grapheme lexical model parameters and the orthography of the words.

PhoneBook task: To study the second case we use the PhoneBook task because the test

vocabulary consists of words and speakers which are unseen during training. As done in

Chapter 5, the acoustic model or the MLP for probabilistic lexical model based systems was

trained on limited training data of the PhoneBook corpus to classify 42 context-independent

phones. The phone-based pronunciation lexicon for the test vocabulary is generated using

the grapheme lexical model parameters and the orthography of the words.

For both the RM and PhoneBook tasks, we use the context-dependent grapheme-based

probabilistic lexical model systems trained using the local score SSK L described in Section 5.1

as it resulted in minimum KL-divergence on the training data compared to other local scores.

In the case of the Sequitur G2P the width of graphone context was tuned on the development

set (5% of WSJ1 lexicon or the development set of the PhoneBook task). The optimal graphone

context size was 5 for both tasks. In the case of the festival G2P, the width of grapheme context

was set to 5 in both cases. The pronunciation models of words generated with different

methods are evaluated in terms of pronunciation errors and ASR performance. In the phone

HMM decoder of the proposed G2P approach, each phone was modeled by a three-state
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HMM.

8.3.2 Pronunciation Error Analysis

The pronunciation models of a few words generated using the proposed G2P approach with

their respective pronunciation from the RM lexicon are given in Table 8.1.

Table 8.1 – Pronunciation models of a few words generated using the proposed acoustic data-
driven G2P approach on the RM task. By actual pronunciation, we refer to the pronunciation
given in the RM lexicon.

Word Actual Extracted
pronunciation pronunciation

WHEN+S /w//eh//n//z/ /w//eh//n//z/
ANCHORAGE /ae/ /ng/ /k/ /er/ /ih/ /jh/ /ae/ /ng/ /k/ /ch/ /ao/ /r/ /ih/ /jh/

ANY /eh/ /n/ /iy/ /ae/ /n/ /iy/
CHOPPING /ch/ /aa/ /p/ /ih/ /ng/ /ch/ /aa/ /p/ /iy/ /ng/

ADDING /ae/ /dx/ /ih/ /ng/ /ae/ /t/ /ih/ /ng/

The generated pronunciations were compared with the pronunciations given in the well

developed lexicon of the RM or PhoneBook corpora. Tables 8.2 and 8.3 present this comparison

in terms of phone accuracy (PA) and word accuracy (WA) on the RM and PhoneBook tasks

respectively. It can be observed that the decision-G2P and graphone-G2P lexica perform better

than the acoustic-G2P lexicon in terms of phone accuracy.

Table 8.2 – Evaluation of the extracted pronunciation models in terms of phone accuracy (PA)
and word accuracy (WA) for three different approaches on the RM task.

Lexicon PA WA
acoustic-G2P 81.5% 34.6%
decision-G2P 86.6% 53.8%
graphone-G2P 92.2% 72.4%

Table 8.3 – Evaluation of the extracted pronunciation models in terms of phone accuracy (PA)
and word accuracy (WA) for three different approaches on the PhoneBook task.

Lexicon PA WA
acoustic-G2P 72.4% 11.0%
decision-G2P 81.5% 31.0%
graphone-G2P 89.2% 50.6%
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8.3.3 ASR Performance Analysis

We built context-dependent phone-based ASR systems using the pronunciation lexica gener-

ated with various G2P convertors. In the case of the RM task, crossword context-dependent

systems are built whereas in the case of the PhoneBook task word-internal context-dependent

systems are built (as it is an isolated word recognition task). Two types of ASR systems are

trained, namely, HMM/GMM and KL-HMM SK L systems. In the case of the RM task, the

KL-HMM systems use the MLP trained on the WSJ corpus as the acoustic model and in the

case of the PhoneBook task, the MLP trained on the PhoneBook corpus is used as the acoustic

model. The performance of the systems using G2P-convertor based lexica is compared with

the performance of ASR systems using the GRAPH lexicon and the well developed PHONE

lexicon from Chapter 5

RM Task

The ASR performance of different systems in terms of word accuracy on the RM task is pre-

sented in Table 8.4. It is interesting to note that the systems using the acoustic-G2P lexicon

(that has correct pronunciations for only 34.6% words) perform better than the systems using

the decision-G2P lexicon (that has correct pronunciations for 53.8% of words). It can be also ob-

served that the ASR performance difference between systems using the G2P-convertor based

lexicon and the PHONE lexicon is lower for the KL-HMM approach than the HMM/GMM

approach.

Table 8.4 – The ASR performance in terms of word accuracy on the RM task for various
crossword context-dependent systems using different lexica

Lexicon
System

HMM/GMM KL-HMM
acoustic-G2P 94.7% 95.3%
decision-G2P 91.7% 94.0%
graphone-G2P 95.1% 95.6%
PHONE 95.9% 95.9%
GRAPH 94.8% 95.5%

Part of the words in the RM task are present in the WSJ lexicon. Therefore, we built three lexica

(Mixed-WSJ-acoustic-G2P, Mixed-WSJ-decision-G2P and Mixed-WSJ-graphone-G2P) where

the pronunciation for common words is obtained from the WSJ lexicon and the rest using the

G2P-convertor based lexicon (acoustic-G2P, decision-G2P and graphone-G2P, respectively).

Table 8.5 presents the ASR performance of these three systems in terms of word accuracy. It

can be observed that the performance of systems using Mixed-WSJ-acoustic-G2P and Mixed-

WSJ-decision-G2P lexica is better than the systems using acoustic-G2P and decision-G2P

lexica, respectively. However, the performance of systems using Mixed-WSJ-graphone-G2P

and graphone-G2P lexica system is the same. This could be because the multigram G2P
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approach memorizes the pronunciations of words seen in the training data. Furthermore, the

performance of systems using the Mixed-WSJ-acoustic-G2P and Mixed-WSJ-graphone-G2P

lexica is the same.

Table 8.5 – The ASR performance in terms of word accuracy on the RM task for various
crossword context-dependent systems using different lexica. The systems use a lexicon where
the pronunciation of RM words present in the WSJ lexicon are retained and the pronunciations
for rest of the RM words are generated using G2P conversion.

Lexicon
System

HMM/GMM KL-HMM
Mixed-WSJ-acoustic-G2P 95.1% 95.6%
Mixed-WSJ-decision-G2P 92.8% 94.9%
Mixed-WSJ-graphone-G2P 95.1% 95.6%
PHONE 95.9% 95.9%
GRAPH 94.8% 95.5%

PhoneBook task

The performance of systems using acoustic-G2P, decision-G2P and graphone-G2P lexica in

terms of ASR word accuracy on the test set of the PhoneBook task is presented in Table 8.6.

Results show that the performance of the HMM/GMM system using the acoustic-G2P lexicon

is worse than that of the HMM/GMM system using the decision-G2P lexicon. However, the

performance of KL-HMM systems using acoustic-G2P and decision-G2P lexica is the same. The

systems using the graphone-G2P lexicon performs better than the systems using acoustic-G2P

and decision-G2P lexica. However, the performance of the system using any of the G2P-

convertor based lexica is poor than that of the system using the optimistic PHONE lexicon.

Unlike the RM task, the reason for the large ASR performance difference between systems

using the PHONE and acoustic-G2P lexica on the PhoneBook task could be the following:

1. In the RM task, the MLP is trained on large amount of domain-independent data (about

66 hours of speech). While, in the PhoneBook task the MLP is trained on only 5 hours of

speech. Moreover, in the RM task, the speech data is from a microphone, whereas in the

PhoneBook task it is a telephone speech.

2. In the case of the RM task, the grapheme-based probabilistic lexical model system is

trained on words for which the pronunciations are to be extracted. For the Phone-

Book task the words are neither seen during MLP training nor during grapheme-based

probabilistic lexical model system training.

Two more systems using acoustic-decision-G2P and acoustic-graphone-G2P lexica are built

that use the pronunciation lexicon consisting of two pronunciations for each word, one

from the acoustic-G2P lexicon and one from either the decision-G2P or the graphone-G2P

lexicon. Results show that combination of pronunciations from different methods yields

significant performance improvement over the systems using pronunciations from only one
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Table 8.6 – The ASR performance in terms of word accuracy on the PhoneBook task for various
context-dependent systems using different lexica

Lexicon
System

HMM/GMM KL-HMM
acoustic-G2P 83.4% 86.7%
decision-G2P 85.4% 86.7%
graphone-G2P 87.1% 89.1%
acoustic-decision-G2P 89.3% 91.5%
acoustic-graphone-G2P 89.7% 91.7%
PHONE 97.0% 97.8%
GRAPH 91.0% 93.6%

of the method. This shows that the pronunciation models learned from acoustic-G2P and

decision-G2P or graphone-G2P provide complementary information to ASR. It is encouraging

to observe that combining pronunciations from different G2P approaches is beneficial for

ASR performance. Also, by combining the two lexica, we combine a lexical knowledge driven

approach (decision-G2P or graphone-G2P) and an acoustic data-driven approach (acoustic-

G2P).

On both the RM and PhoneBook tasks, despite having high pronunciation error rate, the ASR

system using the lexicon from the proposed approach performs better than or similarly to the

systems using the lexicon from the decision-tree or joint n-gram based G2P convertors. In

the acoustic G2P approach pronunciations are based on the probabilistic G2P relationship

learned through both acoustic and lexical resources, whereas decision-G2P and graphone-

G2P are based on the G2P relationship learned using lexical resources. Therefore, in the

acoustic G2P approach errors at the pronunciation level could be due to substitution with

acoustically similar phone (reflected in the target domain data) and thus are not affecting the

ASR performance.

Furthermore, on both the RM and PhoneBook tasks, the performance of the proposed

grapheme-based ASR system (i.e., KL-HMM system using the GRAPH lexicon) is similar to or

better than that of the phone-based ASR systems using phone lexicon from either conventional

G2P approaches or the proposed acoustic data-driven G2P approach.

8.4 Summary

In this chapter, we presented an acoustic data-driven G2P conversion approach that exploits

the G2P relationship captured in the lexical model parameters of a grapheme-based prob-

abilistic lexical model system. The approach has been investigated on two lexical resource

constrained ASR tasks and compared with the decision-tree based G2P approach and the joint

sequence model based G2P approach.
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8.4. Summary

In terms of the pronunciation errors compared to the well developed lexicon, the proposed

approach performs worse than the decision-tree based or joint n-gram based G2P approaches.

On ASR tasks, as hypothesized, the system using the phone lexicon generated from the pro-

posed G2P approach performed similarly to or better than the one generated from the decision-

tree based G2P approach; and the ASR system using the phone lexicon generated from the

proposed G2P approach performed similarly to or worse than the phone lexicon generated

from the joint-multigram based G2P approach. Furthermore, it was also shown that the

proposed G2P approach can complement decision-tree based or joint n-gram based G2P

approaches for ASR.
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9 Improving Phone-less Grapheme-
based ASR

In the literature, as summarized in Section 4.1.2, research in the field of grapheme-based

ASR has primarily focussed on context-dependent modeling and decision-tree based state

tying within the framework of deterministic lexical modeling. The implicit assumption being

that the relationship between context-independent graphemes and context-independent

phones can be irregular, but the relationship between context-dependent graphemes and

context-independent phones could be regular. In the previous chapters, we have shown that by

modeling the relationship between context-dependent graphemes and context-independent

phones, effective grapheme-based ASR systems could be built. Also, G2P conversion sys-

tems exploit this notion and model relationship between context-dependent graphemes and

context-independent phones through decision trees or the joint n-gram model, for example.

In this chapter, we make the following two hypotheses:

• The clustered context-dependent graphemes model phone-like information, because, the

decision-tree clustering in addition to the subword context is based on acoustic feature

observations (which capture phone information).

• The effect of pronunciation errors in the grapheme lexicon on ASR performance could be

mitigated through the use of probabilistic lexical modeling.

We validate our hypothesis by focussing on the grapheme-based HMM/GMM system incorpo-

rating probabilistic lexical modeling.

We will start the chapter with a brief motivation and related work. The details of the proposed

approach are given in Section 9.2. In Section 9.3, we present experimental studies on two

English ASR tasks.

9.1 Motivation and Related Work

As elucidated in Chapter 2, standard HMM-based ASR systems directly model the relationship

between lexical units and acoustic feature observations. As a result HMM-based ASR systems

rely on a well developed phone lexicon and subword units to handle the variability in the
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acoustic training data. However, when the pronunciations in the lexicon do not reflect the

underlying speech data then such a model may poorly represent the training data. For example,

this can happen in the case of non-native speakers (where pronunciations normally reflect

native speakers) or in the case of spontaneous and conversational speech (where spoken

words are pronounced differently from lexicon pronunciations) or in the case of a grapheme

lexicon (where pronunciations are based on the spelling of the word). To account for such

variation, typically, phone-based ASR systems add pronunciation variants to the lexicon.

In the context of modeling pronunciation variability, the limitation of the standard HM-

M/GMM system imposed by deterministic mapping has been handled by modeling a proba-

bilistic relationship between lexical and acoustic units [Luo and Jelinek, 1999, Saraclar et al.,

2000, Hain and Woodland, 1999, Hain, 2005]. It is important to note that the notion of acoustic

units and lexical units was not explicitly defined in these previous works. As described below,

these approaches can be viewed from the point of view of probabilistic lexical modeling.

The PC-HMM approach [Luo and Jelinek, 1999], as described in Section 3.3.2, is a probabilistic

lexical modeling approach where the decision-tree clustered context-dependent phones are

the acoustic units and the lexical-to-acoustic unit probabilities are estimated using the EM

algorithm along with the GMM parameters. In [Saraclar et al., 2000], this approach was

applied to model pronunciation variability in spontaneous speech. The technique starts with

standard GMMs trained using decision-tree based state tying, and then combines Gaussians

from phones that are found to be frequent variants of each other in phonetic transcriptions.

In [Hain and Woodland, 1999, Hain, 2005], hidden model sequences HMM (HMS-HMM) was

proposed, where the deterministic mapping between phone-to-HMM or phone-to HMM-

state was replaced with a stochastic model. More specifically, each phone was represented

by a mixture of HMM state sequences corresponding to different variants. In [Hain, 2005],

multiple pronunciations of a word in a lexicon were collapsed to a single pronunciation. It was

shown that an HMM/GMM system using a pronunciation lexicon with single pronunciation

for each word resulted in similar or better performance compared to an HMM/GMM system

using a pronunciation lexicon with multiple pronunciations for words on both read and

conversational ASR tasks. The use of pronunciation lexicon with single pronunciation for each

word in the HSM-HMM system further improved the ASR performance.

In [Yu and Schultz, 2003], the limitation imposed by deterministic lexical modeling has been

addressed through “enhanced tree clustering” that allows efficient parameter sharing across

phones. In standard HMM/GMM systems, a decision-tree is trained for each phone, whereas

in enhanced tree clustering a single decision-tree is constructed for all the sub-states of all

phones. The clustering procedure starts with all polyphones at the root. The decision-tree

can ask questions regarding the identity and phonetic properties of the center phone and the

neighbouring phones plus the sub-state identity. Nevertheless, as discussed in Section 4.1.2,

the enhanced tree clustering based ASR approach uses a deterministic map between lexical

and acoustic units.
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In [Mimer et al., 2004], it has been shown that enhanced tree clustering improves the perfor-

mance of grapheme-based ASR systems. Through enhanced tree clustering it is possible to

capture the fact that different graphemes may be pronounced in a similar manner depend-

ing on their context. On both German and English ASR tasks, the enhanced tree clustering

procedure was able to improve the performance of grapheme-based ASR systems. However,

even with enhanced tree clustering, for English the performance of the grapheme-based ASR

system was significantly worse than that of the phone-based ASR system.

9.2 Proposed Approach

In this chapter, we show that the set of acoustic units can be based on context-dependent

graphemes; and the performance of a grapheme-based ASR system can be improved by incor-

porating probabilistic lexical modeling. To be consistent with our previous work [Rasipuram

and Magimai.-Doss, 2013a], the studies in this chapter used GMMs as acoustic models. How-

ever, the approach is not restricted to GMM acoustic models. For example, in [Rasipuram

et al., 2013a] we used an ANN classifying context-independent graphemes as acoustic model.

The proposed approach is implemented in the following two stages:

• A standard context-dependent grapheme-based HMM/GMM system using decision tree

based state tying is trained.

• As acoustic units A , we use the decision-tree clustered states modeled using GMMs. The

probabilistic relationship between lexical units and acoustic units is learned using the

KL-HMM approach. The states of the KL-HMM system (or the lexical units) are context-

dependent grapheme subword units. The acoustic unit probability sequence is estimated

given the set of acoustic units and their corresponding GMMs as,

zd
t = P (ad |xt ) = p(xt |ad )∑D

j=1 p(xt |a j )
(9.1)

where p(xt |ad ) is the likelihood of acoustic unit ad . The above equation assumes equal

priors for the acoustic units.

The resulting system is a grapheme-based ASR system that incorporates a probabilistic lexical

model. Furthermore, the proposed grapheme-based ASR approach does not use any phonetic

information or out-of-domain resources.

9.3 Experimental Setup and Results

In this section, we compare deterministic lexical modeling and probabilistic lexical modeling

in the context of both grapheme-based and phone-based HMM/GMM systems. ASR studies

are conducted on the DARPA RM and si-84 WSJ0 tasks. The details of the two tasks are given

in Sections A.1 and A.2 of the Appendix.
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For both tasks, the phone lexicon was obtained from the UNISYN lexicon [Fitt, 2000]. The

grapheme lexicon was transcribed using 79 graphemes where the first and last graphemes of a

word are treated as separate units.

In our initial study on the RM corpus [Rasipuram and Magimai.-Doss, 2013a] we have used

the grapheme lexicon transcribed using 29 graphemes, i.e., first and last graphemes of words

were not treated as separate graphemes. As a result, the performance presented in the pa-

per [Rasipuram and Magimai.-Doss, 2013a] and this chapter for grapheme-based ASR systems

differs.

9.3.1 Deterministic Lexical Model based ASR System

We build crossword context-dependent HMM/GMM systems with decision-tree based state

tying using the HTK toolkit [Young et al., 2006]. Each context-dependent subword unit is

modeled by three HMM states. The acoustic feature xt is the 39-dimensional PLP cepstral

feature vector. The phoneme-based HMM/GMM system uses a phonetic question set whereas

the grapheme-based HMM/GMM system uses a singleton question set. For the RM task,

state tying resulted in 1611 clustered/acoustic units for the phone-based system and 1536

clustered/acoustic units for the grapheme-based system. For SI-84 task, state tying resulted in

1900 clustered/acoustic units for the phone-based system and 2190 clustered/acoustic units

for the grapheme-based system.

9.3.2 Probabilistic Lexical Model based ASR System

Given the GMMs of acoustic units, the training of a probabilistic lexical model based system

involves,

1. the estimation of the acoustic unit posterior feature vector zt = [z1
t , . . . , zd

t , . . . , zD
t ]T as-

suming equal priors for the acoustic units according to the Eqn (9.1); and

2. the estimation of the lexical model parameters using the KL-HMM RK L approach. As

hypothesized in the beginning of the chapter, for grapheme lexical units, the lexical-

to-acoustic unit relationship is expected to be one-to-many. Therefore, following the

analysis in Chapter 3 and ASR results in previous chapters, SRK L was chosen as the local

score.

We train and test crossword context-dependent probabilistic lexical model systems where the

lexical units impose three-state minimum duration constraint.

9.3.3 Systems

We built the following six systems:

1. BASE-PHONE: The phone-based ASR system with a deterministic lexical model, where

lexical units are context-dependent phones and acoustic units are the clustered states.
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2. BASE-GRAPH: The grapheme-based ASR system with a deterministic lexical model,

where lexical units are context-dependent graphemes and acoustic units are the clus-

tered states.

3. PROB-PHONE: The phone-based ASR system with a probabilistic lexical model, where

lexical units are context-dependent phones and acoustic units are the clustered states

of the system BASE-PHONE.

4. PROB-GRAPH: The grapheme-based ASR system with a probabilistic lexical model,

where lexical units are context-dependent graphemes and acoustic units are the clus-

tered states of the system BASE-GRAPH.

5. PROB-PHONE-CROSS: The phone-based ASR system with a probabilistic lexical model,

where lexical units are context-dependent phones but the acoustic units are the clus-

tered states of the system BASE-GRAPH.

6. PROB-GRAPH-CROSS: The grapheme-based ASR system with a probabilistic lexical

model, where lexical units are context-dependent graphemes but the acoustic units are

the clustered states of the system BASE-PHONE.

The system PROB-GRAPH-CROSS is somewhat similar to the grapheme-based ASR system

presented in Section 5.1, in the sense that both use phone information. More precisely, in

Section 5.1 acoustic units were context-independent phones and acoustic model was an

MLP trained on cross-domain data. In the system PROB-GRAPH-CROSS, the acoustic units

are clustered context-dependent phones and the acoustic model includes a set of GMMs

learned on target-domain data. The system PROB-GRAPH that derives acoustic units from

context-dependent graphemes does not use any phone information.

9.3.4 Results

The ASR performance of the various systems in terms of word accuracy is given in Table 9.1.

The following observations are made:

• On both the RM and WSJ tasks, the system PROB-GRAPH performs significantly better than

the system BASE-GRAPH. Furthermore, on the RM task, the system PROB-GRAPH performs

better than the system BASE-PHONE. The results show that the probabilistic lexical model

based ASR systems handled the errors in a grapheme pronunciation lexicon, as well as the

mismatch between grapheme pronunciations and acoustic feature observations better than

the deterministic lexical modeling based systems.

• The performance of the system PROB-PHONE is significantly better than that of the system

BASE-PHONE on the RM task, while similar to the system BASE-PHONE on the WSJ task.

This difference in improvement among the two tasks could be attributed to the size of

the data and the implicit pronunciation variation modeling capability of GMM acoustic

models. That is, given enough data and a well developed pronunciation lexicon, the GMM

acoustic models should be capable of modelling and capturing the pronunciation variability

implicitly [Hain, 2005].

• On the RM task, the performance of the system BASE-PHONE is same as the performance
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Table 9.1 – The performance in terms of word accuracy of various crossword context-
dependent systems on the RM and WSJ tasks

System Lexical Model RM WSJ0

1 BASE-PHONE deterministic 95.9 91.1
2 PROB-PHONE probabilistic 97.1 91.3

3 BASE-GRAPH deterministic 94.8 85.4
4 PROB-GRAPH probabilistic 96.5 88.0

5 PROB-PHONE-CROSS probabilistic 97.1 88.8
6 PROB-GRAPH-CROSS probabilistic 96.7 88.8

reported in the literature [Hain and Woodland, 1999, P et al., 2011]. Furthermore, on the

RM task, the system PROB-PHONE performs better than the system based on HSM-HMM

approach [Hain and Woodland, 1999]. The performance of the system based on the HSM-

HMM approach was reported as 96.6% word accuracy [Hain and Woodland, 1999].

• On the WSJ task, the performance of the system BASE-PHONE is same as the performance

of the HMM/GMM system using the same train and test sets as reported in the litera-

ture [Woodland et al., 1994].

The results validated our hypothesis that the performance of grapheme-based ASR systems

can be significantly improved by incorporating probabilistic lexical modeling.

The systems PROB-PHONE-CROSS and PROB-GRAPH-CROSS were built to validate the hy-

pothesis that context-dependent graphemes model phone-like information.

• On the RM task, it can be observed that the performance of the system PROB-PHONE-

CROSS and the system PROB-PHONE are the same. Furthermore, the performance of the

system PROB-GRAPH-CROSS and the system PROB-GRAPH are similar. This indicates that

clustered states of the system BASE-PHONE and the system BASE-GRAPH are modeling a

similar kind of acoustic information, and the poor performance of the system BASE-GRAPH

is primarily due to the use of a deterministic lexical model.

• On the WSJ task, the performance of the system PROB-PHONE-CROSS is worse than that

of the system PROB-PHONE while the performance of the system PROB-GRAPH-CROSS is

better than that of the system PROB-GRAPH. The results indicate that to further improve the

performance of PROB-GRAPH it may be necessary to improve the decision-tree clustering

of graphemes and to model graphemes with context longer than the usual single preceding

and single following one (to capture the irregular G2P relationship of English).

9.4 Summary

In this chapter, we showed that the performance of grapheme-based ASR systems can be sig-

nificantly improved by incorporating probabilistic lexical modeling. The studies validated the

hypothesis that the clustered context-dependent graphemes model phone-like information

and the poor performance of grapheme-based ASR systems is primarily due to deterministic
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lexical modeling. Furthermore, the studies indicated that the acoustic units, instead of being

purely knowledge driven as in Chapters 5, 6 and 7, can also be derived using context-dependent

graphemes and data-driven methods.
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10 Conclusions and Future Directions

This thesis has focussed on addressing challenges related to the building of ASR systems for

languages and domains that lack proper acoustic and lexical resources. In this thesis, the

problem of modeling the relationship between lexical units and acoustic feature observations

has been factored into two models using latent variables referred to as acoustic units: an

acoustic model which models the relationship between acoustic feature observations and

acoustic units, and a lexical model which models the relationship between lexical units and

acoustic units. We have seen that in standard HMM-based ASR approaches like HMM/GMM

and hybrid HMM/ANN, the relationship between lexical units and acoustic units is one-to-one

and the lexical model is deterministic. We showed that in approaches like KL-HMM, Tied

posterior proposed in the literature and SP-HMM proposed in this thesis, the lexical model

models a probabilistic relationship between lexical units and acoustic units. The framework

of probabilistic lexical modeling has been pivotal to the rest of the thesis.

Motivated by the three main advantages of probabilistic lexical modeling, i.e., 1) acoustic

model and lexical model can be trained on independent set of resources, 2) lexical units and

acoustic units can be different, and 3) lexical units and acoustic units can model different

subword contexts, we proposed a novel grapheme-based ASR approach where the lexical

units are graphemes and acoustic units can be phones or multilingual phones or clustered

context-dependent subword units. In Chapter 4, we showed that the parameters of the lexical

model capture a probabilistic G2P relationship. In Chapter 8, we proposed an acoustic data-

driven G2P conversion approach in which the probabilistic G2P relationship captured in the

lexical model parameters was exploited for G2P conversion. It has been observed that the

performance of the proposed grapheme-based ASR system is similar to or better than that of

the phone-based ASR system using phone lexicon from either conventional G2P approaches

or proposed acoustic data driven G2P approach. The analysis in Chapter 4, and the studies

in Chapters 5, and 8 revealed that the approach integrates lexicon learning as a phase in ASR

system training and could potentially prevent the need for an explicit G2P convertor.

In Chapters 5, 6 and 7, we investigated the potential of the proposed grapheme-based ASR

approach in addressing the lexical and acoustic resource constraints for ASR system devel-
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opment. The studies showed that with probabilistic lexical modeling, especially using the

KL-HMM approach, ASR systems can be rapidly developed for new languages and domains by

training a language or domain independent acoustic model and learning the lexical model on

a small amount of target language or domain data. Also, it was observed that irrespective of

the type of subword units used, phones or graphemes, KL-HMM based systems performed

better than (when training data is in-sufficient) or comparably to (when training data is suffi-

cient) deterministic lexical model based systems. Our findings on phone-based ASR using the

KL-HMM approach are inline with previous work on KL-HMM [Imseng, 2013]. Furthermore,

in Chapter 7, we showed that in the proposed grapheme-based ASR approach, the lexical

model parameters can be initialized based on the knowledge of the G2P relationship of the

language. Therefore, the proposed framework can serve as a practical starting point while

building ASR systems for new languages without any acoustic and lexical resources.

Among the various probabilistic lexical modeling approaches studied, it has been observed

that the KL-HMM RK L approach is robust than the Tied-HMM and SP-HMM approaches. In

Chapter 3, we showed that, from the parameter estimation point of view, the local score SRK L

has the capability to better model one-to-many G2P relationships than other local scores; from

the decoding perspective it is capable of giving more importance to the acoustic model evi-

dence than the lexical model evidence. In Chapter 4, where acoustic model and lexical model

were trained on the same task, the KL-HMM RK L and Tied-HMM approaches performed

similarly. However, in Chapters 5 and 6, where the acoustic model and the lexical model

were trained on an independent set of resources, the KL-HMM RK L approach resulted in

better performance. This suggests that the KL-HMM RK L approach can handle the mismatch

between language-independent and target language resources better than other probabilistic

lexical modeling approaches.

In Chapter 9, we showed that the acoustic units, instead of being purely knowledge driven as

in Chapters 5, 6 and 7, can also be data-driven. In particular, our investigations in Chapter 9

indicated that a) the clustered context-dependent graphemes model phone-like information;

b) the poor performance of grapheme-based ASR systems could be primarily due to determin-

istic lexical modeling; and c) the performance gap between grapheme-based and phone-based

ASR systems can be significantly reduced by probabilistic lexical modeling.

In conclusion, our studies showed the following:

1. The demand for well-developed acoustic and phonetic lexical resources from the target

language can be considerably reduced by replacing the deterministic lexical model with

a probabilistic model learned on acoustic data.

2. The deterministic lexical model based ASR approaches are more suitable for phone-

based ASR than grapheme-based ASR, while the probabilistic lexical model based ASR

approach is suitable for both.

3. The proposed approach can effectively address the lack of both acoustic and lexical

resources. More specifically, ASR systems can be rapidly developed for new languages

and domains in the framework of probabilistic lexical modeling, especially using the
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KL-HMM approach.

10.1 Directions for Future Research

In this thesis, we focussed mainly on the lexical model of an ASR system. Mostly, a three-layer

MLP classifying context-independent phones was used as an acoustic model. The approach

proposed in this thesis can be improved along the following directions.

Acoustic model: More recently, ANNs with deep architectures classifying context-dependent

clustered phone units have gained lot of attention [Dahl et al., 2012, Hinton et al., 2012]. The

proposed approach can be improved by:

• Improving the acoustic model using deep ANN architectures. In Chapter 7, we observed that

the KL-HMM system using a five-layer MLP performs better than the KL-HMM system using

a three-layer MLP as acoustic model. In recent works, it has been shown that KL-HMM

retains its benefit over the standard hybrid HMM/ANN system even when deep neural

networks are used [Imseng et al., 2013b, Razavi et al., 2014].

• Improving the acoustic unit set. In Chapter 9, where GMMs were used as acoustic model,

we observed that the acoustic unit set can be clustered context-dependent subword units.

The acoustic model could be further improved by using deep ANN architectures in place of

GMMs.

Acoustic and lexical model adaptation: In this thesis, we compared probabilistic lexical

model based systems (where only the lexical model is trained on target language data) with

deterministic lexical model based systems (where either acoustic model is adapted on target

language data or both acoustic model and lexical model are trained on target language data).

In Chapter 6, we observed that with increase in target language acoustic data, the gap between

KL-HMM system and acoustic model adaptation based systems reduces. This suggests that

there may be benefits in combining acoustic model adaptation and probabilistic lexical

modeling.

• When using ANN-based acoustic model, this can be achieved by training a hierarchical

neural network [Pinto et al., 2011] or adapting a neural network with target language

data [Swietojanski et al., 2012]. A study on Scottish Gaelic in the framework of KL-HMM has

shown the potential of acoustic model adaptation using the hierarchical neural network

approach [Rasipuram et al., 2013a].

• The KL-HMM approach is not restricted to ANN-based acoustic modeling alone as shown

in Chapter 9. Therefore, using GMMs as acoustic model this can be achieved by adapting

the GMMs through the MAP technique followed by KL-HMM training ; or the parame-

ters of GMM and probabilistic lexical model can be jointly estimated using the PC-HMM

approach [Luo and Jelinek, 1999],

As mentioned earlier in Section 4.1, in the framework of deterministic lexical modeling, acous-

tic model adaptation and lexical model adaptation can be combined in different ways. For

instance, (a) by combining acoustic model adaptation with polyphone decision tree state tying
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(PDTS) [Schultz and Waibel, 2001b], or (b) using the SGMM approach [Burget et al., 2010].

Comparing probabilistic lexical modeling and deterministic lexical modeling along these lines

with graphemes as subword units would be interesting.

Acoustic data-driven G2P conversion: In Chapter 8, we discussed the potential of the pro-

posed acoustic G2P approach. The proposed acoustic G2P approach could be further im-

proved along the following directions:

• Acoustic model: as discussed above, the acoustic model (or the MLP) could be improved

either using deep ANN architectures or by modeling clustered context-dependent phones.

Given an acoustic model that classifies context-dependent phones, it is possible to learn

the relationship between context-dependent graphemes and context-dependent phones

through lexical model parameters. In such a case, the proposed G2P approach can be

considered as similar to the joint-multigram based G2P approach and still carry the benefits

of the proposed approach.

• Lexical model: following the conventional G2P approaches, it may be beneficial to model

grapheme contexts longer than the single preceding and single following context.

• G2P conversion: it is possible to incorporate phonotactic constraints during the G2P con-

version process if phone lexical resources from the language are available.

• Multiple pronunciations: it would be interesting to see the use of multiple pronunciations

extracted with the help of N-best list. However, in that case it may be important to learn the

weights for each pronunciation. Furthermore, the multiple pronunciations extracted could

be weighted if the acoustic samples are also available. In this way, the proposed acoustic

G2P approach could be combined with other acoustic G2P approaches (that combine

conventional G2P approaches and acoustic samples, as discussed in Section 8.1) [McGraw

et al., 2013, Lu et al., 2013].

Automatically derived subword units: In Chapter 9, we observed that acoustic models of

clustered context-dependent graphemes model phone-like information. Therefore, clustered

context-dependent graphemes can be used as acoustic units in the proposed acoustic G2P

approach to derive automatic subword units and the corresponding lexicon using transcribed

speech.

Unifying ASR and TTS: Statistical ASR and TTS systems have three components in common:

pronunciation lexicon, lexical model and acoustic model. The advancements made in ASR

technologies have shown to be effective for TTS systems [King et al., 2008, Dines et al., 2010,

Saheer et al., 2012]. For example, speaker adaptation techniques developed for HMM-based

ASR are effective in adapting HMM-based TTS to target speaker [King et al., 2008]. In a similar

vein, the probabilistic lexical modeling techniques used in this thesis could be used to unify

acoustic and lexical model components of ASR and TTS systems.
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In this appendix, we will summarize different databases used in the thesis. Brief details of all

the databases used in thesis are given in Table A.1. The tasks studied are diverse in terms of

complexity, lexicon size, recording conditions etc.

Table A.1 – Overview of the tasks and the respective corpora used in the thesis

Corpus (Description) Language
Lexicon size # of Subword units Train data Test data
(in words) Phones Graphemes (in min) (in min)

RM English 991 42 79 or 27 228 66
(Read speech)
WSJ0 English 10000 42 79 or 27 840 160
(Read speech)
WSJ1 English 13000 42 79 or 27 3960 160
(Read speech)
SpeechDat(II) English 11855 45 27 744 270
(Native speech French 34867 42 43 810 290
sampled at 8K German 48446 59 42 846 318
used to train Italian 29936 52 34 690 258
the acoustic model) Spanish 24522 32 34 690 258

Greek 35148 31 25 800 360
HIWIRE English 130 42 27 150 150
(Non-native speech from
natives of France, Spain,
Italy and Greece)
PhoneBook English 2783 42 27 300 72
(isolated words)
Scottish Gaelic Scottish 5082 n.a. 83 or 32 180 60
(Broadcast news data) Gaelic

A.1 Resource Management

The DARPA Resource Management (RM) corpus consists of read queries on the status of Naval

resources [Price et al., 1988]. The task is artificial in aspects such as speech type, range of
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vocabulary, and grammatical constraint. The training set and development set consists of

3’990 utterances spoken by 109 speakers corresponding to approximately 3.8 hours of speech

data.

There are four test sets provided by DARPA, namely, feb89, oct89, feb91, and sep92. Each of

the test set contains 300 utterances spoken by 10 speakers. The test set used in this work is

obtained by combining the four test sets and thus contains 1,200 utterances amounting to 1.1

hours in total. The test set is completely covered by a word pair grammar included in the task

specification.

The lexicon consists of 991 words. The phone-based lexicon was obtained from UNISYN 1

lexicon. There are 42 context-independent phones including silence. About 35 words in phone

lexicon have more than one pronunciation.

In the literature, performance of the standard crossword context-dependent HMM/GMM sys-

tem using phones as subword units on this test set was reported as 95.9% word accuracy [Hain

and Woodland, 1999, P et al., 2011].

We built two grapheme lexica. The first grapheme lexicon was transcribed using 29 context-

independent graphemes (which includes silence, symbol hyphen and symbol single quotation

mark). The second grapheme lexicon was transcribed using 79 graphemes. The first grapheme

and the last grapheme of a word are treated as separate graphemes. Therefore, the grapheme

set included 26 English graphemes ({[A],[B],...[Z]}), 26 English graphemes occurring at the

begin of word ({[b_A],[b_B],...[b_Z]}), 26 English grapheme occurring at the end of word

({[e_A],[e_B],...[e_Z]}) and silence. The introduction of word begin and word end graphemes

was motivated by reasons such as: the grapheme-to-phoneme relationship of few graphemes

in English can differ based on the position of grapheme. For example, the grapheme [E] at the

word end in words such as ‘hope‘, ‘drive‘ is not pronounced. Also,

A.2 Wall Street Journal

The DARPA wall street journal corpus (WSJ) corpus was designed to provide speech data with

large vocabularies [Paul and Baker, 1992]. The WSJ corpus [Paul and Baker, 1992, Woodland

et al., 1994] has two parts - WSJ0 with 14 hours of speech (7,193 utterances from 84 speakers)

and WSJ1 with 66 hours of speech (29322 utterances from 200 speakers). Systems can be

built using the WSJ0 (also referred to as SI-84 training material), or WSJ1, or WSJ0+WSJ1

(also referred to as the SI-284 training data) formed by combining data from both WSJ0 and

WSJ1 training utterances which contains approximately 80 hours of speech data (or 36,515

utterances from 284 speakers).

As test set we used Nov’ 93 Hub 2 5K speech material containing 215 sentences from 10

speakers. The 5K word closed vocabulary bigram language model was used for decoding. The

1. http://www.cstr.ed.ac.uk/projects/unisyn/
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test set includes words which are not seen in the training set. In the literature, performance

of the standard crossword context-dependent HMM/GMM system using phones as subword

units on this test set was reported as 91.3% word accuracy [Woodland et al., 1994].

Phoneme based lexicon was obtained from UNISYN lexicon [Fitt, 2000]. Phoneme lexicon

consists of 46 context-independent phones including silence.

Grapheme lexicon was transcribed using 79 graphemes where along with 26 English alphabets,

the first grapheme and the last grapheme of a word are treated as separate graphemes.

A.3 SpeechDat

SpeechDat is a series of databases created for voice driven teleservices 2. SpeechDat(II) which

is one of the SpeechDat projects that includes speech recorded over telephone network for

speech recognition and speaker verification tasks. The database is recorded at 8kHz and stored

in uncompressed 8 bit µ-law. In this work, data of six languages, namely, British English, Swiss

French, Swiss German, Greek, Italian and Spanish is used. We only use the part of the corpus

which contains phonetically rich sentences (10 sentences per speaker). Furthermore, the

data is gender-balanced, dialect-balanced according to the dialect distribution in a language

region, and age-balanced.

The same number of speakers (2000) were chosen from all the languages to avoid any bias in

terms of available data from each language. The data from 1350 speakers is chosen as training

set, data from 150 speakers as development set and data from 500 speakers as test set. Each

language has approximately 12 hours of training data and 1.5 hours of development data.

British English, Swiss French, Swiss German, Italian and Spanish have about 4 hours of test

data while Greek has about 7 hours of test data. All the SpeechDat(II) lexicons use SAMPA 3

symbols. The phone sets of different languages in the SpeechDat(II) corpus used in this thesis

are given in Table A.2.

A.4 HIWIRE

HIWIRE is a non-native speech corpus that contains utterances spoken by natives of France

(31 speakers), Greece (20 speakers), Italy (20 speakers) and Spain (10 speakers) [Segura et al.,

2007]. The utterances contain spoken pilot orders made of 133 words. The database provides

grammar with a perplexity of 14.9. The database contains both clean (recorded in a quite room

using close talking microphone) and noisy speech (obtained by adding real cockpit noise to

clean data) speech material. In this thesis we only use the clean part of the database.

The HIWIRE task does not have training data. It only includes adaptation data (50 utterances

2. http://www.speechdat.org/
3. http://www.phon.ucl.ac.uk/home/sampa/
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Table A.2 – Phone sets in the SAMPA format of various languages in the SpeechDat(II) corpus.
Table also gives the multilingual phoneset used in the thesis.

Language Phone set # of phones
English {, @, 3:, A:, aI, aU, b, d, D, dZ, e, e@, eI, f, g, 45

h, i:, I, I@, j, k, l, m, n, N, O:, OI, p, Q, r, s, S,
t, T, tS, u:, U, @U, U@, v, V, w, z, Z, sil

Swiss French &/, 2, 9, 9 , @, A, E, E/, H, J, N, O, O/, R 42
S, Z, a, a , b, d, e, e , f, g, i, j, k, l, m, n
o, o , p, r, s, t, u, v, w, y, z, sil

Swiss German ?, @, 2:, 2:6, 9, 96, a, a:, a6, a:6, aI, aU, b, C, 59
d, e:, E, E:, e:6, E6, E:6, f, g, h, i:, I, i:6, I6,
j, k, l, m, n, N, o:, O, o:6, O6, OY, p, pf, R,
s, S, t, ts, tS, u:, U, u:6, U6, v, x,
y:, Y, y:6, z, Z, sil

Italian @, a, b, bb, d, dd, ddz, ddZ, dz, dZ, e, E, f, ff, 52
g, gg, i, j, J, JJ, k, kk, l, L, ll, LL, m, mm,
n, nn, o, O, p, pp, r, rr, s, S, ss, SS,
t, ts, tS, tt, tts, ttS, u, v, vv, w, z, sil

Spanish a, b, B, d, D, e, f, g, G, i, j, J, jj, k, l, L, m, n, N, 32
o, p, r, rr, s, t, T, tS, u, w, x, z, sil

Greek a, b, c, C, d, D, dz, e, f, g, G, gj, i, j, jj, k, l, m, n, 31
o, p, r, s, t, T, ts, u, v, x, z, sil

Multilingual ?, {, @, &/, 2, 2:, 2:6, 3:, 9, 9 , 96, a, a , a:, A, A:, 117
phone set a6, a:6, aI, aU, b, B, bb, C, d, D, dd, ddz, ddZ,

dz, dZ, e, e , e:, e@, E, E:, E/, e:6, E6, E:6, eI, f, ff,
g, G, gg, h, H, i, i:, I, I@, i:6, I6, j, J, jj, JJ, k, kk,
l, L, ll, LL, m, mm, n, N, nn, o, o , o:, O, O:, O/,
o:6, O6, OI, OY, p, pf, pp, Q, r, R, rr, s, S, ss,
SS, t, T, ts, tS, tt, tts, ttS, u, u:, U, @U, U@,
u:6, U6, v, V, vv, w, x, y, y:, Y, y:6, z, Z, sil

per speaker, approx. 150 min) and test data (50 utterances per speaker, approx 150 min).

The distribution of the database according to the native language of the speaker is given in

Table A.3.

The phone lexicon supplied with the HIWIRE corpus contains pronunciations based on

ARPABET (US English).

A noticeable difference between other works on HIWIRE and this thesis is that, we use lexicon

based on SAMPA phone set while in the previous studies lexicon based on ARPABET phone set

supplied with HIWIRE corpus was used. The lexicon based on SAMPA phone set was created

by borrowing pronunciations of 102 words that are in common from the SpeechDat(II) English

lexicon. For the remaining 31 words, we obtained pronunciations by mapping ARPABET

phones to SAMPA phones. The main reason to use SAMPA phone set based lexicon in this
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Table A.3 – Speaker distribution in HIWIRE corpus by country and number of utterances.

Country # of speakers # of utterances
France 31 3100
Greece 20 2000
Italy 20 2000
Spain 10 999
Total 81 8099

thesis is to have a shared subword units set between HIWIRE and SpeechDat(II) corpora.

SpeechDat(II) corpus is used as domain-independent resource (in Chapter 5) and language-

independent resource (in Chapter 6) for HIWIRE ASR tasks conducted in this thesis.

We transcribed the grapheme lexicon using 27 graphemes (26 English alphabets, and silence).

HIWIRE includes about 30 abbreviated words in the lexicon. The abbreviated words present

in the lexicon were transcribed using a look up table given in Table A.4 specifying the way

individual graphemes are pronounced 4. For instance, the graphemic transcription of the

word “S.I.D” according to the lookup table is “[E] [S] [E] [Y] [E] [D] [E] [E]”.

A.5 PhoneBook

PhoneBook is speaker-independent task-independent isolated word recognition cor-

pus [Pitrelli et al., 1995] for small size (75 words) and medium size (600 words) vocabularies.

We use the medium size vocabulary task with 600 unique words [Dupont et al., 1997].

The overview of the PhoneBook corpus in terms of number of utterances, speakers and words

present in train, cross-validation and test sets is given in Table A.5. Training set consists of

26,711 utterances (obtained by merging the small training set and cross-validation set as in

[Dupont et al., 1997]), and test set consists of 6598 speech utterances. The test vocabulary

consists of words and speakers which are unseen during training, i.e., training and test vo-

cabulary/speakers are completely different. PhoneBook pronunciation lexicon is transcribed

using 42 phones (including silence). The performance of Hybrid HMM/ANN system on this

setup was reported as 96.0% word accuracy [Pinto et al., 2009].

The grapheme-based lexicon was transcribed using 27 context-independent graphemes in-

cluding 26 alphabets and silence.

4. http://en.wikipedia.org/wiki/English_alphabet
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Table A.4 – Lookup table entries used to transcribe graphemes in the abbreviated words

Letter Grapheme pronunciation
A A or A E
B B E E
C C E E
D D E E
E E E
F E F
G G E E
H A I T C H or H A I T C H
I E Y E
J J A Y
K K A Y
L E L
M E M
N E N
O O
P P E E
Q C U E
R A R
S E S
T T E E
U Y O U
V V E E
W D O U B L E U or D O U B L E Y O U
X E X
Y W Y or W Y E
Z Z E D or Z E E

A.6 Scottish Gaelic

The Scottish Gaelic speech corpus was collected by CSTR, University of Edinburgh 5. The

database was first used in [Rasipuram et al., 2013a], in collaboration with Dr. Peter Bell of

CSTR, University of Edinburgh. Since, the corpus is relatively new we first briefly describe the

language characteristics, alphabet, orthography, G2P relationship of Scottish Gaelic.

A.6.1 Language Characteristics

Scottish Gaelic is one of three primary Goidelic languages. Classified within the Indo-European

language family, it is contained within the group of Celtic languages, and as such is only

distantly related to any of the well-resourced major European languages. Scottish Gaelic is

derived from and is closely related to Irish Gaelic. It is considered as an endangered and

minority language, spoken by only around 60,000 speakers, mainly from the remote islands of

Scotland.

5. http://forum.idea.ed.ac.uk/idea/gaelic-speech-recognition-and-scots-gaelic-sound -archive
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Table A.5 – Overview of the PhoneBook corpus in terms of number of utterances, speakers
and words present in the train, cross-validation and test sets.

Number of Train Cross-validation Test
Utterances 19421 7920 6598
Speakers 243 106 96

Words 1580 603 600

The Scottish Gaelic alphabet has 18 graphemes (A, B, C, D, E, F, G, H, I, L, M, N, O, P, R, S, T,

U) and long vowels are marked with grave accents (À, È, Ì, Ò, Ù). The number of phones in

Scottish Gaelic are approximately 51 (9 vowels, 10 dipthongs and 32 consonants) [Wolters,

1997]. The number of phones can vary depending on the dialect. The language lacks proper

speech and linguistic resources (phone set and pronunciation lexicon).

A.6.2 Orthography

The number of graphemes in Gaelic words are typically greater than the number of phones in

the word, for two primary reasons: Firstly, in Gaelic, consonants are either broad (velarized) or

slender (palatalized). Broad consonants are surrounded by broad vowels A, O or U on both

sides and slender consonants are surrounded by slender vowels I or E on both sides. This has

the consequence that many vowels are present in orthography only to denote the broad or

slender nature of consonant next to it. Secondly, consonants of Gaelic words may be changed

because of a process called lenition. In the orthography, grapheme [H] is added next to the

consonant to mark this change, which typically results in aspiration of the consonant.

Broadly, however, with the exception of some very common function words, the G2P rela-

tionship of Gaelic is regular, and many-to-one, making the task of pronunciation prediction

straightforward, at least in principle.

A.6.3 Resources for ASR

The corpus consists of six hours of talk radio from the BBC’s Radio nan Gàidheal, collected

by the University of Edinburgh in 2010. The broadcasts are from the morning news and

discussion programme, Aithris na Maidne recorded in clean studio conditions and sampled

at 48kHz (any telephone speech from callers to the programme was removed). Speech is

transcribed by fluent Gaelic speakers at utterance level. The speech data in the corpus can be

categorized into three broad genres: read news, reports from correspondents and interviews.

Due to the minority status of Gaelic within the UK, the corpus also has a high proportion of

English words (853). English words present in the corpus are manually labelled. The corpus

does not define a phone set, phone pronunciation lexicon or language model for ASR.
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The corpus consists of speech from 46 speakers. This includes 4818 utterances and 5083

unique words. The corpus did not have train, and test set division for the purpose of ASR.

Therefore, in [Rasipuram et al., 2013a] we divided the database in to train, development

and test sets in a speaker independent way. The training set consists of 22 speakers, 2389

utterances amounting to 3 hours of speech, the development set consists of 12 speakers,

1112 utterances amounting to 1 hour of speech and the test set consists of 12 speakers, 1317

utterances amounting to 1 hour of speech. The test data consists of 2246 unique words which

includes 772 words not seen during training.

A.6.4 Pronunciation Lexicon

In this work, the grapheme pronunciation lexicon was created for the words in the database.

During the development of grapheme lexicon:

• Vowel graphemes (A, E, I, O, U) and long vowel graphemes or grave accents (À, È, Ì, Ò, Ù)

were treated as separate graphemes.

• Lenited consonants (BH, CH, DH, FH, GH, MH, PH, SH and TH) were treated as separate

graphemes.

• Consonant graphemes can be broad or slender. However, if the broad/slender assignment

is ambiguous (i.e., they can be preceded by a broad vowel and followed by a slender vowel),

the consonants are left as they are.

• Word initial and final graphemes were treated as separate graphemes.

Table A.6 presents the list of graphemes in the lexicon. The graphemes J, K, Q, V, W, X, Y and Z,

though not present in Gaelic words are present in the grapheme set because of the English

words in the corpus. For example, the grapheme pronunciation of Gaelic word “CIAMAR”

is [s_C] [I] [A] [b_M] [A] [b_R]. Where ‘b_X ’ represents [X ] is a broad consonant and ‘s_X ’

represents [X ] is a slender consonant. However, for English word “AIR” pronunciation is [A]

[I] [Rl], i.e., there are no broad and slender consonants. This resulted in total 83 context-

independent graphemes. We refer to this lexicon as knowledge-based grapheme lexicon.

In [Rasipuram et al., 2013a], we used a grapheme lexicon where graphemes at the begin of

word, end of word and were treated as separate units. This grapheme lexicon included 248

context-independent graphemes.

In the thesis, we also use another grapheme lexicon that does not use any knowledge, such as

broad and slender consonants. We refer to it as orthography-based lexicon. This lexicon is tran-

scribed in traditional way from the orthography of words and includes 32 Gaelic graphemes

(25 alphabets, 5 accents and silence).
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Table A.6 – Graphemes in Gaelic lexicon. ‘b_X ’ represents [X ] is a broad consonant and ‘s_X ’
represents [X ] is a slender consonant

Type Graphemes
Vowels A, E, I, O, U

Long Vowels À, È, Ì, Ò, Ù
Broad b_B, b_BH, b_C, b_CH, b_D, b_DH,

consonants b_F, b_FH, b_G, b_GH, b_H, b_L,
b_M, b_MH, b_N, b_P, b_PH, b_R,

b_RR, b_S, b_SH, b_T, b_TH
Slender s_B, s_BH, s_C, s_CH, s_D, s_DH,

consonants s_F, s_FH, s_G, s_GH, s_H s_L,
s_M, s_MH, s_N, s_P, s_PH, s_R,

s_RR, s_S, s_SH, s_T, s_TH
Consonants B, BH, C, CH, D, DH,

F, FH, G, GH, H, J, K, L,
M, MH, N, P, Q, R, S, T,

TH, V, W, X, Y, Z
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