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Abstract—Recent research has demonstrated the effectiveness
of vocal tract length normalization (VTLN) as a rapid adaptation
technique for statistical parametric speech synthesis. VTLN
produces speech with naturalness preferable to that of MLLR-
based adaptation techniques, being much closer in quality to
that generated by the original average voice model. However,
with only a single parameter, VILN captures very few speaker
specific characteristics when compared to linear transform based
adaptation techniques. This paper shows that the merits of VTLN
can be combined with those of linear transform based adaptation
in a hierarchical Bayesian framework, where VTLN is used as the
prior information. A novel technique for propagating the gender
and age information captured by the VTLN transform into
constrained structural maximum a posteriori linear regression
(CSMAPLR) adaptation is presented. This paper also compares
this proposed technique to other combination techniques. Ex-
periments are performed on both matched and mismatched
training and test conditions, including gender, age, and recording
environments. Text-to-speech (TTS) synthesis experiments show
that the resulting transformation produces improved speech
quality with better naturalness and intelligibility (similar to
VTLN transformation) when compared to the CSMAPLR trans-
formation, especially when the quantity of adaptation data is
very limited. With more parameters to capture speaker char-
acteristics, the proposed method performs better in speaker
similarity compared to VILN in mis-matched conditions. Hence,
the proposed combination combines the quality and intelligibility
of VTLN with the speaker similarity of CSMAPLR especially in
the mismatched train and test conditions. Experiments are also
performed using the automatic speech recognition (ASR) system
in a unified framework as that of synthesis. This is to prove that
the techniques developed for TTS can be plugged into ASR in
order to improve the performance.

Index Terms—Statistical parametric speech synthesis, hidden
Markov models, speaker adaptation, vocal tract length nor-
malization, constrained structural maximum a posteriori linear
regression

I. INTRODUCTION

The ability to transform voice identity in text-to-speech
synthesis (TTS) has been an important area of research with
applications in the medical, security and entertainment in-
dustries. One specific application that has seen considerable
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interest by the research community is that of personalized
speech-to-speech translation, which can help overcome the
language barrier, especially on a mobile device. It is crucial
to this kind of application that the speaker characteristics are
introduced into the output speech from the very first utterance
spoken by a speaker. Hence, speaker characteristics need to
be estimated from very little adaptation data.

Statistical parametric synthesis [1] using hidden Markov
models (HMM) has proven to be a particularly flexible
and robust framework for performing speaker transformation,
leveraging off a range of speaker adaptation techniques [2]
previously developed for automatic speech recognition (ASR).
Maximum likelihood linear transformation (MLLT) based
adaptation techniques entail linear transformation of the means
and variances of an HMM to match the characteristics of the
speech for a given speaker. These techniques require adapta-
tion data including tens of utterances for reasonable adaptation
performance. Rapid adaptation techniques like vocal tract
length normalization (VTLN) have also been successfully
applied to statistical parametric speech synthesis [3, 4, 5]. By
contrast, this technique requires very little adaptation data as
it estimates only a single parameter. This approach preserves
the naturalness of the average voice, albeit capturing very few
speaker characteristics. It follows that combining the linear
transform based adaptation techniques with VTLN could result
in improved naturalness of synthesized speech whilst also
being effective at capturing the speaker characteristics. This
provides a means to rapidly adapt synthesized speech with a
balanced trade-off between naturalness and speaker similarity.

VTLN is a widely used speaker normalization technique
in ASR [6, 7]. It is inspired from the observation that the
vocal tract length (VTL) varies across different speakers in
the range of around 18 cm in males to around 13 cm in
females [8]. The formant frequency positions are inversely
proportional to VTL, and hence can vary around 25% [9].
Although implementation details differ, VTLN is generally
characterized by a single parameter that warps the spectra
towards that of an average vocal tract in much the same way
that maximum likelihood linear regression (MLLR) transforms
can warp towards an average voice. The same technique can
also estimate the speaker characteristics of a target speaker,
and hence transform the average voice into the speech of the
target speaker. Initial investigations of VTLN for statistical
parametric speech synthesis were performed by Saheer et. al.
[10].

Breslin et al. [11] showed that VTLN can be combined
with constrained MLLR (CMLLR) for rapid adaptation in
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ASR. In that work, a count smoothing framework is used
to incorporate the prior information. In this paper, we focus
on structural maximum a posteriori (SMAP) based adaptation
techniques that use prior information for transform estimation
in a hierarchical way [12] — The SMAP technique uses a
family of elliptically symmetric distributions including the
matrix variate normal prior density as a prior distribution
[13] and uses a tree structure to propagate this prior to
different classes of transforms. Yamagishi et. al. [2] showed
that due to the presence of hierarchial prior, constrained SMAP
linear regression (CSMAPLR) is a more robust adaptation
framework when compared to CMLLR in statistical parametric
speech synthesis.

There are a number of potential ways of combining VTLN
with the CSMAPLR based linear transformation framework,
including as a cascade of linear transforms in a similar way
to ASR. In this paper we explore a more effective and
mathematically consistent way. More specifically, we treat the
VTLN transform as the Bayesian prior for CSMAPLR and
derive a hyper-parameter for the CSMAPLR adaptation at the
root node from a VILN transform. The structural framework
of the SMAP criterion helps propagate the prior information
affected by the VTLN transform into the various levels of the
regression tree seamlessly and effectively. Using the VILN
matrix as the initial prior information for the CSMAPLR
transform at the root node could result in better propagation
of gender and age characteristics and hence improved speaker
adaptation even when very little data is available.

Both speech synthesis and recognition experiments are
performed in a unified framework representing the most
favourable scenario of a speech-to-speech translation system.
These experiments do not represent the state-of-the-art results
in ASR, rather prove the point that similar techniques can
be adopted and can prove advantageous to both HMM-based
speech synthesis and recognition. The experiments are per-
formed on matched and mismatched train and test conditions.
Matched conditions include speakers of the similar gender,
age, or speech recorded in similar environmental conditions
for training and testing. Three forms of mismatched conditions
evaluated in this paper include

1) the gender mismatch where gender dependent male or
female models are used to test speakers of other gender,

2) the age mismatch where average voice models trained
on adult speech were adapted into child voice, and

3) the recording environment mismatch where speech in
different noise conditions are tested on models trained
with clean speech.

Since it is known that VTLN performs better in the ex-
treme mismatch conditions, the combinations of VILN and
CSMAPLR are also expected to give improvements in these
scenarios.

The paper is organised as follows: Details on the VTLN
and CSMAPLR based linear transformations are presented
in section II. The proposed technique and several different
ways to combine VILN with CSMAPLR are presented in
section III, followed by the experiments in the matched train
and test conditions in section IV. The results for mismatched
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conditions are presented in section V. Finally, observations
and conclusions are given in section VI.

II. OVERVIEW
A. VILN and CMLLR

The main components involved in VILN are a warping
function, a warping factor and an optimization criterion. Typ-
ically, the warping function has only a single variable « as
the warping factor, which is representative of the ratio of the
VTL of a speaker to an average VTL.

In ASR, where a mel or bark spaced filter bank is used, the
warping function tends to be linear or piecewise-linear, and is
normally applied directly to the filter-bank. By contrast, fea-
ture extraction for TTS systems tends not to use a filter-bank
analysis as it renders signal reconstruction difficult. Rather,
the feature commonly used in TTS is the mel-generalized
cepstrum (MGCEP) [14], which makes use of a bilinear
transform to achieve a frequency warp'. Since MGCEP al-
ready includes a bilinear transform, a bilinear transform-based
VTLN proposed by Pitz and Ney [15] can be implemented as
a zero-overhead modification of the MGCEP representation.

The bilinear transform of a simple first-order all-pass filter
with unit gain leads to a warping of the frequency w into @
in the complex z-domain as follows:

-1
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where 27! = ¢77%, 71 = ¢79%, and « is the warping factor.
We define the m-th mel-cepstral coefficient, that is, frequency
warped cepstrum, ¢, in MGCEP as
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where A,k () is the m-th row k-th column element of the
warping matrix A, consisting of the warping factor « and the
Cauchy integral formula yields [15]:
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I'Spectral analysis in MGCEP also uses a generalized logarithmic function,
which has the effect of varying the analysis between an all-pole and a cepstral
model, according to a second parameter.
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We may represent the transformation in the vector form x, =
Az, where ¢, = (¢1,-++ ,¢py) " and & = (¢, ,cx) ! if
we truncate the original and warped mel-cepstral coefficients
at K-th and M-th dimensions. The transform may also be
directly applied to the “dynamic” features of the cepstra, where
the transformation matrix is block diagonal with repeating A,
matrix.

The maximum likelihood criterion can be adopted for the
optimisation of the warping factor o [9]:

O, = argmax P(x1 o, %2.q,, - -

Qs

LT, 0, | 97 A, ws) 9)

where x;,,  represents features at time ¢, warped with the
warping factor «, for speaker s; T is the total number of
frames; O represents average voice models, wy represents the
word sequence corresponding to features and & represents
the optimal warping factor for speaker s.

VTLN can also be implemented as an equivalent feature-
space MLLT using A,; such representation enables use of
the EM algorithm for finding optimal warping factors. The
main advantage of using the EM algorithm over, say, a grid
search is that the resulting warping factor estimation has finer
granularity of « values, and efficient implementation in time
and space. The EM algorithm can be embedded into HMM
training utilizing the same sufficient statistics as CMLLR [7],
which transforms the spectral features as follows

& = Az, + b= WE,. (10)

where €, = [z ,1]", and W = [A, b]. Note that, the matrix
A and bias vector b of the CMLLR transform are far less
constrained than those for VITLN. The VTLN transform is
known to represent the changes due to the differences in the
length of the vocal tract among individuals. The maximum
change for the vocal tract length results in a 25% change in
the spectral peaks ranging from a factor of -0.1 to +0.1. This
restricts the VTLN transformation also to take values within
this range. Hence, VILN is a constrained transformation
compared to CMLLR. Similar to CMLLR, VTLN represents
a transformation of the spectral parameters for a speaker, but,
based on his/her physical characteristics. More specifically, the
number of free parameters in VILN transformation is one,
while, in CMLLR is a complete transformation matrix.

B. CSMAPLR

CSMAPLR is a robust framework to estimate the CMLLR
transforms W based on the SMAP criterion [12]:

Lz | ©, W, w,) P(W)

—

W = argmax P(x, .. an
w

where W refers to the set of CMLLR transforms.

P(xy,...,x7 | ©, W, wy) is a likelihood function for W

and P(W) is a prior distribution of the transform W. Matrix

variate normal distributions are used as the prior distribution

P(W):
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where © € RLXL ¥ ¢ READX(L+D) gnd H e REX(L+1)
are the hyperparameters of the prior distribution.

In the CSMAPLR estimation, the hyperparameter ¥ is fixed
to the identity matrix and €2 to a scaled identity matrix, 2 =
7Ip. T is a positive scalar that controls the scale factor for
the prior propagation and Iy is L x L.

In the SMAP criterion, the tree structures of the distribu-
tions called “regression class tree” effectively control these
hyperparameters. First, at the root node of the regression
class tree, a transform W is estimated using all available
adaptation data and the ML criterion. A new transform at
a child node 2 represented as W is then MAP estimated
using the corresponding adaptation data and the transform
W as a hyperparameter H of the prior distribution, that
is, H = W, = [A1,by]. Likewise, a new transform Wy
at a grandchild node 3 is further MAP estimated using the
corresponding adaptation data and the transform W, as a
hyperparameter (i.e. H = Wy = [As, bs]). This process is
continued recursively from the root node to all the leaf nodes
of the tree structure.

The re-estimation formula based on the Baum-Welch algo-
rithm for the transformation matrix is given by [16]:

Wy = (kp, + k)G (13)

where w; represents the [-th row of the transform W, p, =
[0, ¢;], and ¢; is the I-th cofactor row vector of the transform
W. The value k satisfies the quadratic equation:

M T
PGPl PG R = D) =0 (14)
m=1 t=1
where M is the total number of mixtures and ~,, ; is the state
occupancy probability of m-th mixture at time ¢. The k; and
G parameters are given by.

M 1 T
_ T
ki = mZ:1 ?nl'uml ;'Vm,tﬁt +7h; (15)
= kv +7h (16)
Moo T
G = Z 2 va,tétéf +7Iy (17)
m=1 T t=1
=Gw + 71 (18)

where h; is the I-th row of the matrix H. p,, and o7,
are the [-th element of the mean vector of the m-th mixture
and the diagonal element of covariance matrix of the m-th
mixture, respectively. From these equations, we can see that
hyperparameters h; and I smooth the ML statistics kyy, and
GML~

C. Combining VTLN with CMLLR

There have been many attempts to combine VITLN with
other linear transformations. One of the first was by Pye and
Woodland [17] to combine VTLN with MLLR transforms for
speaker adaptive training. VTLN was shown to give additive
performance. It was mentioned by Uebel and Woodland [18]
that estimating both transforms would be no better than just
using CMLLR unless the effect of initialization is of key
importance. The combination of VTLN and CMLLR can give
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additional improvements only in special situations where the
initialization of the transformation is important. When multiple
iterations of CMLLR transform estimation is performed, the
combination does not give any additional improvements. The
same reason was postulated for having additional performance
improvements after multiple iterations of CMLLR. It was also
shown by Panchapagesan and Alwan [19] that estimating a
bias vector and unconstrained variance transformation on top
of the linear transform based frequency warping can further
improve the recognition accuracy. This phenomenon is mainly
observed with very limited adaptation data (of the order of one
adaptation sentence) compared to the MLLR transforms which
outperform with more adaptation data.

Breslin et al. [11] showed that VTLN can be combined with
CMLLR for rapid adaptation in ASR. In that work, a count
smoothing framework is used to incorporate the prior informa-
tion. The count smoothing framework was initially presented
by Flego and Gales [20], where the predictive and adaptive
noise compensating transforms were combined using this
scheme. The predictive approaches make use of a mismatch
function that represents the impact of the background noise on
the clean speech. The number of parameters associated with
this mismatch function is usually small. This is in contrast
to adaptive approaches to speaker and noise compensation
where, normally, a large number of linear transforms of the
model parameters are estimated. Flego and Gales [20] mention
that CMLLR does not have a conjugate prior, instead count
smoothing can be used to combine it with the predictive
transforms. The pseudo counts associated with the predictive
transform are combined with the actual observed counts and
the transforms are estimated.

Breslin et al. [11] used this count smoothing framework to
combine rapid adaptation techniques such as VTLN and pre-
dictive CMLLR (pCMLLR) with CMLLR transforms. Statis-
tics k; and G for estimating the final transform are based
on the interpolation between ML statistics of adaptation data
and prior statistics obtained from VTLN or pCMLLR and are
given by

k..
ki =ku + T—="— (19)
l ML Zm Py
Gpri
G)=Gw + 777 (20)

The prior statistics kp; and G are normalized so that
they effectively contribute 7 frames to the final statistics. vy,
represents the state occupancy probabilities for the output
distributions. As more data becomes available, the CMLLR
statistics Gy and kyy. will dominate, but for small amounts
of data the prior statistics are more important.

III. COMBINING VTLN wiITH CSMAPLR

This section explains the proposed method for combining
VTLN with CSMAPLR and also presents a few alternative
approaches for the combination.

A. Proposed method: VILN prior for CSMAPLR

CSMAPLR uses a global transform based on the ML crite-
rion at the root node and hence there is no prior distribution
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Fig. 1. CSMAPLR (VTLN prior): a global VILN transform is used as a
hyperparameter for the MAP estimation of the CMLLR transform at the root
node of the regression class tree. The MAP-estimated CMLLR transform
is then propagated to the child nodes as a hyperparameter for the MAP
estimation at the child nodes in similar way to CSMAPLR.

at the root node. However, if the amount of adaptation data is
very limited, even the estimation of the global transform may
suffer from the lack of data. For such cases, the MAP criterion
can be used at the root node as well.

A possible choice for the hyperparameter at the root node is
the use of an identity matrix, that is, H = [I,, 0] and this can
smooth the ML statistics at the root node. However, a better
choice for the hyperparameter at the root node would be the
use of a VTLN transform as suggested by Breslin et al. [11].

CSMAPLR uses the matrix variate normal distributions of
Eq (12) as an approximated prior distribution. Although this
is not a conjugate prior, this convenient prior allows us to
directly use the VTLN transform as a hyperparameter at the
root node, by setting the hyperparameter H representing the
mean of the prior distribution as

H,=A,,0] (21)

where A, is the VTLN transformation matrix described by «
and O is a zero bias vector?. Figure 1 illustrates the proposed
idea.

The VTLN transform may be used for the dynamic features
of the cepstra; in this case the hyperparameter matrix H is a
block diagonal matrix with repeating A, matrix.

A, O 0 o0
H,=|10 A, 0 0
0 0o A, O

(22)

2Instead of the zero bias vector, we may estimate the bias term bg in
addition to the the VTLN matrix and may set the hyperparameter H as H, =
[Aq, bo]. However adding the bias term to the hyperparameter H at the root
node of the regression class tree did not show any noticeable improvements
and hence we have decided to use the zero bias vector in the experiments
described later.
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TABLE I . . .

COMPARISON AND DEFINITION OF TERMINOLOGIES USED FOR THE where the adult average voice was transformed into child

METHODS. voice.

Criterion | Prior type at root node | Terminology In the proposed CSMAPLR (VTLN prior) adaptation, the

ML Uniform CMLLR global VTLN transform is used explicitly only at the root

SMAP Uniform CSMAPLR node of the regression class tree and it is propagated into

SMAP Identity CSMAPLR (Identity prior) child node based on the SMAP criterion. Instead of the

SMAP VTLN CSMAPLR (VTLN prior) SMAP propagation, it is also possible to explicitly use VTLN

Compared to Eqs (16) and (19), the first-order statistics k; are
smoothed using the VTLN transform at the root node of the
regression class tree as follows:

ki =kw +7hy, (23)

where h,,; is the [-th row of the H .

VTLN can capture the gender or age characteristics of a
speaker. Hence, we expect that these characteristics captured
by VTLN transform H , are better propagated to the nodes of
the tree structure than the uniform distribution or the identity
prior, and hence that it improves the speaker characteristics of
adapted models even if the amount of adaptation data is very
small. This proposed method is called “CSMAPLR (VTLN
prior)”. If the identity matrix is used as the initial prior for
CSMAPLR at the root node instead of the VTLN transform,
it is called “CSMAPLR (identity prior).” Please refer to Table
I for the definition of terminologies of these methods.

There are pros and cons compared to the method proposed
by Breslin et al. [11]. — In the proposed CSMAPLR (VTLN
prior) approach, the VTLN transform is used only for smooth-
ing of the first-order statistics k; whereas the second-order
statistics Gy are also smoothed in the approach by Breslin et al.
[11], as shown in Eq (20). On the other hand, the proposed
CSMAPLR (VTLN prior) approach uses the VTLN transform
directly for smoothing of the statistics and hence there is
no need to compute and store the prior statistics kp;. There
should not be any performance difference for the proposed
method when compared to the approach by Breslin et al. [11].
The advantage of the proposed method is that this requires
less time and space complexity because VTLN transforms are
directly used as priors. Moreover, method by Breslin et al. [11]
uses a heuristic approach and this work presents a structured
mathematical framework and derivation for combining the
model and feature transformation. Since we do not expect any
significant performance difference, and also knowing the fact
that the proposed method has better time and space complexity,
there is no comparison presented in this work between the two
methods.

B. Other methods for combining VILN with CSMAPLR

Here we describe other two methods for combining VTLN
with CSMAPLR, which may be compared with the proposed
CSMAPLR (VTLN prior).

It is possible to apply the VTLN transforms onto the average
voice model first and then to apply CSMAPLR transforms
further on the top of that. This is called “cascade” transform.
It was shown by Karhila et al. [21] that VTLN and CSMAPLR
cascade transformations can improve child synthetic speech

transforms at each of the regression classes for the MAP
estimation of the CMLLR transform. For simplicity this paper
does not show the results of this approach. However, readers
interested in this approach may refer [22].

IV. EVALUATIONS IN MATCHED CONDITIONS

This section shows experimental results of HMM-based
TTS and ASR systems using the proposed technique in
matched conditions.

A. HMM-based TTS

The HMM speech synthesis system (HTS) [1] was used
for generating acoustic parameters for speech synthesis. HTS
models spectrum, log Fp, band-limited aperiodic components
and duration in the unified framework of hidden semi-Markov
models (HSMMs). The STRAIGHT vocoder [23] was used
to synthesize speech waveforms from the acoustic parame-
ters generated from the HSMMs. The HMM topology used
was five-state and left-to-right with no skip states. Speech
features were 59th-order mel-cepstra, log Fy, 25-dimensional
band aperiodicity, and their delta and delta-delta coefficients,
extracted from 48kHz recordings with a frame shift of Sms.
The speaker-dependent model was built using a UK English
speech corpus including 5 hours of clean speech data uttered
by a RP? male professional narrator (source speaker). The
first evaluation experiments were performed by adapting the
speaker-dependent model to a different UK English male semi-
professional speaker (target speaker) who has the same RP
accent as the source speaker.

Objective evaluation based on the mel-cepstral distance
(MCD) was carried out. The MCD is the Euclidean distance
between the synthesized cepstra and those derived from the
natural speech, and can be viewed as an approximation to the
log spectral distortion measure according to Parserval’s theo-
rem. One hundred sentences were synthesized for measuring
the average MCD.

In addition, the subjective listening tests were performed by
17 subjects using the Blizzard challenge 2010 test sentences
for naturalness, speaker similarity and intelligibility with dif-
ferent amounts of adaptation data. The techniques compared
in this experiment were VILN, CSMAPLR and CSMAPLR
(VTLN prior) systems.

The subjective tests were based on mean opinion scores
(MOS) for the naturalness, ABX scores for the speaker simi-
larity, word error rate (WER) for the intelligibility. The syn-
thesized utterances were rated on a 5-point scale for the MOS
test, 5 being “completely natural” and 1 being “completely

3 According to the Oxford English dictionary Received Pronunciation (RP)
refers to a standard accent of English as spoken in the South of England

Copyright (c) 2014 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record isavailable at http://dx.doi.org/10.1109/JST SP.2013.2295554

—————— CSMAPLR

8 —— CSMAPLR (VTLN prior)

5
1

10 100
# of adaptation sentences

Fig. 2. Mel-cepstral distances between reference speech and synthetic speech
adapted using VTLN, CSMAPLR, and CSMAPLR (VTLN prior) in the
matched condition.

unnatural”. The source and the target speakers were given as
the two reference speakers in the ABX test and the subjects
were asked to compare speaker similarity of synthetic speech
with these references. For the intelligibility test, semantically
unpredictable sentences were used and the subjects were asked
to type what they have heard. In these listening tests, only
the spectral parameters were adapted and other excitation and
duration parameters were not adapted so that the subjects can
pay attention to the spectral differences.

1) Objective Evaluation: The values of the MCD for dif-
ferent amounts of adaptation data are plotted in the Figure
2. The objective results show that 1) the VILN technique
works best in comparison to others when one adaptation
sentence is used (around 7dB), whereas its performance does
not improve if more than one sentence is used; and that 2)
the CSMAPLR improves the MCD to around 5dB when the
number of adaptation sentences is more than five. However,
the performance of the CSMAPLR technique rapidly becomes
worse when the number of adaptation sentences is less than
five, reaching around 9.5dB MCD with only one adaptation
utterance. Finally, the objective results clearly show that the
proposed CSMAPLR (VTLN prior) technique alleviates this
issue of the CSMAPLR technique and improves the per-
formance when the number of adaptation sentences is less
than five. We can see that even if the number of adaptation
sentences is just two, the performance of the CSMAPLR
(VTLN prior) technique outperforms the VTLN technique; its
distortion is around 6dB.

2) Subjective Evaluation: In the subjective listening tests,
synthetic speech utterances generated from the models adapted
using 1, 10 and 100 sentences were compared by the subjects.
The results of the listening tests are shown in Figure 3,
which is, from left to right, the mean opinion scores for the
naturalness, the ABX scores for the similarity to the target
speaker, and WER for the intelligibility.

a) Mean opinion score (Naturalness): From the mean
opinion scores (MOS) on naturalness, we first see that
CSMAPLR has the worst MOS value 1.1 when the number of
adaptation sentences is one. The MOS value of the CSMAPLR
approach become better as the number of adaptation sentences
increases. We then see that the MOS of the VTLN approach
are high (3.4), however, VTLN does not improve naturalness
significantly even if more data is used. Finally we can see
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that VTLN prior is useful for CSMAPLR. Using the VTLN
transform as an initial prior for CSMAPLR, the MOS value
increases from 1.1 to 1.9 when the number of adaptation
sentences is one. When the number of adaptation sentences
is ten, the VTLN prior increases the MOS value from 3.0 to
3.2. There was no difference when 100 sentences were used.

b) ABX score (Similarity): From the ABX scores, which
are percentages of synthetic speech utterances that were judged
by the subjects as closer to the target speaker compared to
the source speaker, we can first see that when the number of
adaptation sentence is one, synthetic speech using CSMAPLR
was judged to be similar to neither source nor target speakers.
When the number of adaptation sentences is ten or hundred,
synthetic speech using CSMAPLR was judged to be similar
to target speakers. This is consistent with the results of natu-
ralness evaluation above. We then see that when the number
of adaptation sentences is one, synthetic speech using VITLN
was judged to be similar to the target speaker. However, the
ABX scores of the VTLN approach do not increase even if
more data is used. Finally we see that the CSMAPLR (VTLN
prior) has a better ABX score than the CSMAPLR without the
VTLN prior when the number of adaptation sentence is one.
However the VILN prior did not improve the ABX scores
when the number of adaptation sentences is ten or hundred.
This is probably because these experiments are in matched
conditions and the source and target speakers are similar to
one another to some extend. This will not be the case in a
mis-matched condition where the source and target speakers
are very different like a child speech evaluated on a male
speaker model. Such a scenario can illustrate the limitation
of VTLN in capturing speaker characteristics with a single
transformation parameter. These experiments are presented in
section V-A with age transform based mis-matched train and
test conditions.

c¢) WER (Intelligibility): From the intelligibility eval-
uation, we first observe that CSMAPLR has significantly
degraded intelligibility with one adaptation sentence and that
the proposed CSMAPLR (VTLN prior) technique alleviates
this issue. The proposed method is able to preserve the
intelligibility of a VTLN adapted system.

B. HMM-based ASR

Following the work by Dines et al. [24, 25], this section
presents ASR experiments to show that the proposed tech-
niques can be used for both TTS and ASR equally well. It
should be noted that the results may not be the state-of-the-art
for this corpus since our strategy is to use similar models for
ASR and TTS in accordance with the unification theme in a
speech-to-speech translation system.

The hidden Markov models were built with 13 dimen-
sional cepstral features with A and A? for the (US English)
WSJO database. The spectral features were extracted using
STRAIGHT. Speech recognition and synthesis systems use the
same average voice training procedure, which involves speaker
adaptive training (SAT) and context clustering using decision
trees. The experimental set-up is the same as that of Dines
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et al. [24]*.

The WERs using different amounts of adaptation data
ranging from 2 to 40 adaptation sentences are shown in
Figure 4. In the figure, cascade transforms of VTLN and
CSMAPLR are shown in addition to CSMAPLR with and
without the VTLN prior. It can be observed that the VITLN
prior provides marked improvements to the ASR performance
of CSMAPLR, especially when the adaptation data is limited,
but, it still performs slightly better even for 20 to 30 adaptation
sentences. We did not observe significant gains with the
cascade transform of VTLN and CSMAPLR transforms from
this experiment.

V. EVALUATIONS IN MISMATCHED CONDITIONS

This section shows additional experimental results of HMM-
based TTS and ASR systems using the proposed technique
in special conditions where target speakers are not matched
with training speaker in terms of age, gender and recording
environments. In a mismatched condition, the CSMAPLR
transform tends to capture the mismatch as well and not just
speaker specific characteristics. It can be postulated that using
VTLN along with CSMAPLR will restrict the CSMAPLR
transforms to capture only the speaker specific characteristics

4The baseline system is the system ’d’ in Table IX of [24], which has 13%
word error rate (WER). The baseline system reported in [24] uses the value
of 7, the weight of the prior as one. Increasing this value to 1000 improves
the WER of CSMAPLR up to 12%.

and will yield better performance especially when the amount
of adaptation data is limited.

A. Age Transforms

The vocal tract length is proportional to the actual size of
the individual and hence, is shortest in a child. The details of
the vocal tract length being proportional to the actual body size
and the differences in vocal tract length in growing children
of different age-groups was investigated by Hancil and Hirst
[26] and also by Fitcha and Giedd [8].

This poses a case of extreme frequency warping when an
adult, particularly, male model is adapted to a child voice. The
VTLN prior representing the vocal tract length should give
performance improvements for such a situation. The influence
of VTLN was evaluated using both subjective and objective
evaluations for speech synthesis. The speech sampled at 48kHz
were collected in-house from two different children at the
anechoic recording studio of the Centre for Speech Technology
Research (CSTR), Edinburgh. The children were asked to
read fairy tales. Only the data from one child was manually
annotated to have a full set of reference data for objective
evaluations. Other child had only four annotated sentences for
adaptation. This child was used in the subjective evaluations to
clarify the effects seen with the earlier subjective evaluations
in section IV-A2 where the test and train speakers sound very
similar. In this case, the adult model is transformed to child
speech and results for speaker similarity should clarify the
limitations of VTLN in capturing speaker characteristics.

For the objective evaluations, speech utterances taken from
the corpus were used to adapt gender dependent average voice
models, which were trained using speech data uttered by about
17 adult male or 19 adult female speakers, respectively. Exper-
iments were carried out with different amounts of adaptation
data in order to adapt the male and female average voice
models to the child voice. In a similar way to the previous
experiment, we have generated a hundred synthetic speech
utterances and have measured the MCD of them in an objective
measure.
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Figure 5 shows the MCD between child synthetic speech
and reference natural speech. As expected, the MCD of
child voice adapted from the male average voice model has
significantly larger distortion than that adapted from the female
average voice model because of the difference of vocal tract
length. Then we can see that the proposed VTLN prior has
very good influence when the amount of adaptation data is
as little as one sentence. MCD has reduced to about 7.5
dB from 8 dB for the case of the female average voice
model. As the amount of adaptation data increases, the dif-
ference between CSMAPLR with and without the VTLN
prior becomes smaller. It can be observed that there is a
slight incidental degradation of performance with 10 sentence
adaptation on Male Average Voice model. The difference is
less than 0.1dB and not perceivable. Also, these are mean
MCD values across the test utterances, the variance of MCD
scores is higher for CSMAPLR (1.8824 for CSMAPLR and
1.8247 for CSMAPLR (VTLN Prior)) in this case which
further rules out any significant difference.

The speaker dependent male model (same as in Sec-
tion IV-A) is used as the base model for adapting to the child
speech. The subjective evaluations for naturalness, speaker
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similarity and intelligibility were performed on three different
systems: VILN, CSMAPLR and CSMAPLR (VTLN prior).
All systems are evaluated for adaptation with one and four
sentences. 14 listeners participated in these evaluations and
the results are plotted in Figure 6. The results for naturalness
and speaker similarity are plotted as MOS ranging from
1 (Completely Unnatural / Sounds like a totally different
person) to 5 (Completely Natural / Sounds like exactly same
person). The word error rates for the text typed in by the
listeners after perceiving the target speech is plotted as the
result for speech intelligibility. It can be observed from the
results that VTLN gives the best naturalness and intelligibility
scores especially for a single sentence adaptation. In this case,
CSMAPLR transformation is not intelligible at all. This gives
further proof to the hypothesis that VILN is useful as a
rapid adaptation performance in child speech synthesis. The
proposed method, CSMAPLR(VTLN prior), has better speaker
similarity compared to VTLN with four adaptation sentences
as opposed to the observations in earlier subjective evaluations
in the matched conditions. The speaker similarity given by four
sentence VTLN adaptation is due to the naturalness of the syn-
thesised speech. As observed in our previous studies, listeners
were judging naturalness instead of speaker similarity. This
can be validated by listening to the samples in the demonstra-
tion page: www.idiap.ch/~lsaheer/VTLNSMAP/demo.html.

B. Cross-Gender Transforms

Another mismatched scenario where VTLN may perform
better is the wider variation of the vocal tract length of
speakers used for training and adaptation. This is more critical
when we try to adapt gender-dependent average voice models
to other genders. There may be only subtle changes in the
vocal tract length within the same gender, especially, the
differences less than the value of 0.2 for the warping factor
may not be perceivable. Across genders where the difference
in vocal tract length is significant, this factor alone may be
able to represent the target speaker to some extent even if
there are more speaker specific pitch and other characteristics
ignored.

For this purpose, we have used the CSTR VCTK corpus’.
This corpus was recorded at the Centre for Speech Technology
Research (CSTR), University of Edinburgh, UK in a special-
ized anechoic recording room and has speech data uttered by
109 native speakers of English with various accents. From this
corpus, we have chosen 31 male and 29 female native speakers
of UK English as target speakers and have adapted the UK
English gender-dependent average voice models to them to see
the impact of the VTLN prior from many speakers, especially
in cross-gender cases. The gender-dependent average voice
models were the same as those used for the age transforms
previously mentioned.

A randomly chosen single adaptation sentence was used to
generate the transforms for each method. In a similar way
to previous experiments, 100 sentences were synthesized with
each of these techniques for each of test speakers and the MCD
was measured from the synthetic speech utterances as the

Shttp://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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TABLE II
CROSS-GENDER SPEAKER ADAPTATION EXPERIMENTS FOR SPEECH SYNTHESIS. THE AVERAGE MCD WAS CALCULATED USING ABOUT 30 SPEAKERS
FOR EACH GENDER USING A SINGLE SENTENCE AS ADAPTATION DATA FOR EACH SPEAKER.

Method Male AVM to males | Male AVM to females | Female AVM to males | Female AVM to females
CMLLR 6.6 8.8 7.1 6.6
CSMAPLR 6.4 (-0.2dB) 8.6 (-0.2dB) 6.7 (-0.4dB) 6.4 (-0.2dB)
CSMAPLR (Identity prior) 6.4 (-0.2dB) 8.4 (-0.4dB) 6.8 (-0.3dB) 6.4 (-0.2dB)
CSMAPLR (VTLN prior) 6.4 (-0.2dB) 8.3 (-0.5dB) 6.6 (-0.5dB) 6.3 (-0.3dB)
Cascade 6.7 (+0.1dB) 9.2 (+0.4dB) 7.5 (+0.4dB) 6.7 (+0.1dB)
objective measure. For the full comparison, we have computed . o ‘ ‘ ‘
the MCD of 1) CMLLR, 2) CSMAPLR, 3) CSMAPLR with  |. -~ CSMAPLR ] oo CSMAPLR _
. . . . ——— CSMAPLR (VTLN prior) | CSMAPLR (VTLN prior)
the identity prior at the root node, 4) CSMAPLR with the 20 2
VTLN prior at the root node, and 5) the cascade transforms § 560
of VILN and CSMAPLR. e &
The objective results are shown in Table II. The table shows =, z o
the performance of the male and female test speakers with
each of the gender dependent average voice models (AVM). 145 15 50 30 % o 10 20 30 0
The results show that the VTLN prior for CSMAPLR gives the 7 of Adapration Sentences ¥ othdspaton Semences
. (a) Car Noise (b) Babble Noise
lowest MCD value and overall best performance in all cases.
Interestingly, the identity prior for CSMAPLR also performs B ——————— —— EU CSMAPLR
well in all cases. This emphasizes the fact that the initial — CSMAPLR (VTLN prion) | —— CSMAPLR (VTLN prior)
prior is an important factor for the CSMAPLR transforms and %64 28
further, an appropriate choice of the prior such as the VILN ESZ 'Fg
prior can further improve performance. VTLN accounts for Lé; Ese
gender characteristics and is important in the case of cross- =60 =
gender transformations. A VILN prior in this case can provide | N\ e O
more information and results in more significant reductions * £ Adaptation Senteroas 4 0 £ Adaptaten Sentenaes 40
of the MCD scores compared to the same gender case. For (c) Restaurant Noise (d) Street Noise
example the VTLN prior resulted in 0.5dB reduction compared
to CMLLR and 0.3dB reduction compared to CSMAPLR for 8 R csmartR | L - CSMAPLR
the male AVM to female adaptation case, which are larger COMAPLRIVILN Pron | 74 T CSMARLR(VILNprion
reductions than those for the male AVM to male adaptation.  g* £
This is also true for the female AVM to male adaptation . Bes
compared to the female AVM to female adaptation. §42 §GO
C. Noise-robust ASR and TTS 49

The final special scenario where VTLN is hypothesised to
be important is the use of adaptation data that has varying
background noise. Since both CMLLR and CSMAPLR do
not have strong constraints in the affine transforms, this may
overfit the models to the background noise of the adaptation
data. It may be a good strategy to impose the VTLN prior in
order to avoid such overfitting and thus, handle the varying
background noise of the test data better. Both noise-robust
ASR and TTS experiments are presented in this section to
validate this hypothesis.

1) Noise-Robust ASR: The Aurora4 database represents a
noisy speech data version of the WSJO database. The ASR
models built using the WSJ database were used to recognize
noisy speech data taken from the Aurora database. Similar to
the ASR experiments presented in Section IV, the models were
trained in accordance with the unification theme for ASR and
TTS — The 13 dimensional MGCEP coefficients were used to
generate the HMMs. Again, the experimental setup was same
as that in [24].

There are six different noise types in the Aurora4 database:
car noise, babble noise, street noise, airport noise, restaurant

10 20 30 40
# of Adaptation Sentences

(f) Train Noise

0 0 30 0 0
# of Adaptation Sentences

(e) Airport Noise

Fig. 7. WERs calculated on the Aurora4 database including 6 types of noises.
The ASR models were trained on the WSJ database.

noise, and train noise. Evaluations were performed using
different amounts of adaptation data ranging from 2 to 40
adaptation sentences in each of the noise conditions and we
have compared the CSMAPLR with and without the VTLN
prior.

The results are plotted in Figure 7. It can be seen from the
results that the VTLN prior for CSMAPLR gives considerable
improvements in the presence of all types of noises, especially
when the amount of adaptation data is less than ten sentences.
As more adaptation data comes in, the prior does not have
much effect.

As mentioned earlier, it is worth noting that the overall
performance presented here cannot be compared with the
state-of-the-art results. This is due to the fact models are
aligned to the unification of TTS and ASR and not exactly
the perfect setup for an ASR system. Furthermore, no noise
reduction/compensation techniques (like the methods in [27])
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TABLE III
NOISE-ROBUST SPEAKER ADAPTATION EXPERIMENTS FOR SPEECH SYNTHESIS USING SINGLE SENTENCE AS ADAPTATION DATA FOR EACH SPEAKER.
THE AVERAGE MCD WAS CALCULATED USING 45 SPEAKERS WHO WERE RECORDED AT A PUBLIC SPACE IN THE PRESENCE OF BABBLE NOISE.

Method

CMLLR

CSMAPLR

CSMAPLR (Identity prior)
CSMAPLR (VTLN prior)
Cascade

were applied for improving the performance in noisy condi-
tions. In this paper we only aim for proving that the techniques
developed for TTS can be plugged into ASR in order to
improve the performance.

2) Noise-robust TTS: As a part of the EC FP7 EMIME
project, speech synthesis data for noise-robust TTS systems
was collected at a conference venue (Interspeech 2009). Partic-
ipants were asked to read aloud some texts in the background
of the conference hall. This resulted in speech synthesis data
uttered by 39 male and 6 female speakers in the presence
of strong and varying babble noise. Using the noisy speech
data, we have adapted the gender-dependent average voice
models trained on clean speech data that were also used in
the age transform and cross-gender experiments in previous
sections. In a similar way to the cross-gender experiments, we
have adapted the average voice models using a single sentence
as adaptation data, have synthesized the 100 synthetic speech
utterances for each of the five methods (and for each of test
speakers), and have computed the MCD from the utterances
as the objective measure.

The objective results are shown in Table III. The re-
sults are consistent with the observations made earlier with
cross-gender experiments and show that the identity prior
for CSMAPLR performs well and that the VILN prior for
CSMAPLR gives the lowest MCD value overall.

VI. CONCLUSIONS

This paper has presented a novel approach to combine the
merits of VILN and CSMAPLR, resulting in an improved
adaptation technique for both HMM-based ASR and TTS. The
proposed method is an efficient algorithm to smooth the first-
order statistics required for the CSMAPLR using the VTLN
transform directly. We conclude that the proposed VTLN
prior for CSMAPLR can significantly improve the adaptation
performance when the adaptation data is very limited. In
HMM-based TTS, the proposed method improved naturalness
and intelligibility of HMM-based synthetic speech compared
to that using the CSMAPLR without the VTLN prior. In
HMM-based ASR the proposed method performs better than
the cascade transforms of VTLN and CSMAPLR. Performance
improvements were also confirmed for mismatched conditions,
especially when very little adaptation data was available. It
was showed that the VTLN prior had led to the improve-
ments of CSMAPLR adaptation when the test data has the
mismatched conditions in terms of age, gender, and recording
environments.

Male AVM | Female AVM

7.0 7.2

7.0 (0.0dB) | 7.1 (-0.1dB)

6.7 (-0.3dB) | 6.9 (-0.3dB)

6.7 (-0.3dB) | 6.8 (-0.4dB)

11.3 (+4.3dB) | 7.5 (+0.2dB)
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