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Abstract
With the recent advances in the field of robotics, now it is the time to have robots with the

capability to interact with humans in natural ways similar to them. One of the essential as-

pects for a robot to be capable of performing such an interaction is perceiving humans along

with their states, behaviors and actions. In this direction, gaze has a key role as a nonverbal

behavior since it reveals important information about people’s interests and intentions. It

shows to whom or what the person’s attention is directed and to whom somebody is speaking.

It also helps in communicative tasks such as ground management and turn taking, and helps

the robot to know whether people are interested to continue the conversation and to estimate

their involvement. Given the importance of gaze, it is necessary to provide algorithms for its

recognition in human robot interaction settings.

Eye gaze estimation with commercial robots is often impossible to achieve given the un-

constrained conditions of people motion and the available video sensors. Therefore, most

systems currently rely on head pose as an approximation of gaze, or to recognize its discrete

version the Visual Focus of Attention (VFOA), defined as whom or what a person is looking

at. However, using head poses creates ambiguities since the same head pose can be used to

look at different VFOA targets. To address this challenge, we proposed a dynamic Bayesian

model for the VFOA recognition from head pose, where we make two main contributions. First,

taking inspiration from behavioral models describing the relationships between the body,

head and gaze orientations involved in gaze shifts, we proposed several novel gaze models

that dynamically and more accurately predict the expected head orientation used for looking

in a given gaze target direction. Obtaining the expected head pose for looking at different

directions is a neglected aspect of previous works but essential for recognition in conditions

where setting the parameters manually or from the training data is not applicable. Secondly,

we proposed to exploit contextual information from the robot conversational state (when he

speaks, people he addresses, and objects to which he refers) in the recognition framework

to set appropriate priors on candidate VFOA targets and reduce the inherent VFOA ambiguities.

As another contribution of this thesis, we investigated the recognition of the addressee of

people’s speech (defined as to whom they speak), in our human robot interaction setting,

which is another important communication cue. As it is well known that addressee can pri-

marily be derived from the speaker’s VFOA, we proposed a method for estimating addressee

using automatically extracted VFOA from head pose. Moreover, we investigated the role of
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conversational context in improving the recognition by using it either directly as a side cue

in the addressee classifier, or indirectly by improving the VFOA recognition. Finally, from a

computational perspective, we studied which VFOA features and normalizations are better for

addressee estimation. Particularly we addressed whether it matters for the VFOA recognition

module to only monitor when a person looks at potential addressee targets (the robot, people)

or if it is better to consider all objects of interest in the environment (paintings in our case) as

additional VFOA targets.

Experiments were conducted on three datasets, including our public Vernissage dataset where

the humanoid robot NAO plays the role of an art guide and quiz master. For VFOA recognition,

they demonstrate the benefit and complementarity of the two contributions we propose for

improving the recognition. Experiments on the second part of the recordings in Vernissage

data, where the humanoid Nao robot offers a quiz to two participants show that reducing

VFOA confusion (either through context, or by ignoring VFOA targets) improves addressee

recognition.

Key words: gaze, VFOA, visual focus of attention, head pose, addressee estimation, human

robot interaction, HRI, robot context, conversation context, Bayesian models.
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Résumé
Les récentes avancées dans le domaine de la robotique permettent d’envisager des robots

capables d’interagir avec les humains de façon naturelle. Un des aspects essentiels pour

atteindre cet objectif est la mise au point d’algorithmes de perception des personnes, ainsi

que leurs états, comportements et actions.

Le regard joue un rôle essentiel dans cette perspective, car il fournit des informations impor-

tantes quant à l’intérêt et l’attention des personnes. Il montre à qui s’adresse une personne

ou vers quoi son attention est orientée. Dans les situations de communication, il permet à

un robot de savoir si une personne est intéressée par la conversation ou d’estimer son de-

gré de participation. Etant donnée l’importance du regard, il est nécessaire d’élaborer des

algorithmes capables de le reconnaître dans le contexte des interactions avec un robot.

Le regard en tant qu’orientation des yeux est difficile voire impossible à estimer avec les robots

commerciaux actuels dans des conditions non contraintes et les capteurs vidéos disponibles.

C’est pourquoi le plupart des systèmes actuels s’appuient sur l’orientation de la tête, ou pose,

comme approximation du regard. Cependant, celle-ci peut être ambiguë, car une même

orientation peut permettre par exemple de regarder deux cibles différentes.

Nous proposons dans cette thèse d’utiliser un modèle bayésien dynamique pour la reconnais-

sance du centre d’attention visuel à partir de la pose de la tête, et faisons deux contributions

dans ce cadre. La première s’inspire des modèles de comportement décrivant les relations

entre le corps, la tête et le regard et propose plusieurs nouveaux modèles du regard qui pré-

disent de façon dynamique et plus précise l’orientation de la tête utilisée pour regarder une

cible donnée. Prédire cette orientation pour différentes cibles est un aspect peu traité des

méthodes existantes, bien qu’il soit essentiel à la reconnaissance dans des conditions où l’ajus-

tement des paramètres à partir de données d’entraînement est impossible. Comme seconde

contribution, nous proposons d’exploiter l’information contextuelle de l’état conversationnel

du robot (quand il parle, à qui il s’adresse, à quels objets il fait référence) comme a priori sur

les cibles candidates pour le regard, afin de diminuer les ambiguïtés.

Dans un autre partie de la thèse, nous nous sommes intéressés à la reconnaissance du destina-

taire d’un tour de parole, qui, dans le contexte d’une interaction homme-robot, est une autre

importante manifestation de communication. Etant donné l’importance du regard dans ce

processus, nous avons tout d’abord proposé une méthode permettant de reconnaître qui est

le destinataire de la parole en utilisant l’attention visuelle estimée à partir de la pose de la tête.

De plus, nous nous sommes intéressés au rôle du contexte de la conversation pour améliorer

cette reconnaissance, en l’utilisant soit directement dans la classification ou indirectement
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pour améliorer l’estimation de l’attention visuelle. Finalement, nous avons étudié quelles

représentations de l’attention visuelle et normalisations étaient les meilleures pour déterminer

le destinataire de la parole. Plus particulièrement, nous avons déterminé s’il était nécessaire

de modéliser seulement les cibles de regard potentielles de la conversation (robot, personnes)

ou s’il fallait considérer tous les objets environnants (tableaux de musée dans notre cas) lors

de la reconnaissance de l’attention visuelle.

Nous avons effectué des expériences sur trois bases de données, incluant le corpus de données

public Vernissage auquel nous avons contribué et dans lequel le robot humanoïde NAO joue

le rôle d’un guide de musée ou pose les questions d’un quiz. Ces expériences démontrent

la validité et le bénéfice de nos contributions pour améliorer l’estimation de l’attention vi-

suelle. Elles montrent aussi qu’il est possible d’améliorer la reconnaissance du destinataire en

réduisant de différentes façons la confusion de l’estimation du regard.

Mots-clés : interaction homme-robot, communication nonverbale, regard, pose, estimation

du destinataire, comportements, contexte, modèles bayésiens.
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1 Introduction

1.1 Motivation

Recent advances in the fields of robotics or embodied conversational agents (ECAs) open the

doors for having agents advanced enough to interact with users in natural human like manners.

The ultimate goal would be to have robots endowed with advanced social skills to interact

with humans in open world situations as we experience in our daily lives without presumed

constraints and enforced conditions. Such robots or ECAs could provide different kind of

functionalities or services, like delivering information, helping to maintain social bonds or

entertaining humans. Figure 1.1 shows a few examples from all the possible applications

for these robots. Robots are currently used as assistants for senior or dependent people by

monitoring their health and facilitating their contact to their caregivers or family members.

They also serve as Foreign language teachers, being remotely controlled by human teachers

who are possibly native speakers living in other countries. They could also be used as shopping

assistants, either by helping an individual person in finding and filling their shopping baskets

or by being in shopping centers, detecting people who are looking for direction or information

and guiding them.

Given the technological advances, robots are often connected to internet or home appliances

and thus have access to information that can be useful for humans. ECAs or humanoid

robots could then be the ultimate interface: their role could consist of understanding the

user’s request, retrieving information from the internet and presenting and delivering it in an

appropriate fashion to them. Therefore, having robots which can interact with humans in

natural manners and take the role of an engaging and interactive companion, makes humans

independent of a keyboard, computer or mouse to communicate with technology. Talking

naturally to our robots would be all we need to do, and the robot would respond and deliver

that information using our familiar human like media.

Robots with capabilities to interact with humans using natural human-specific means rely

on different components, devoted to the perception of the scene and surrounding people,

to the analysis of the information, decision making and finally to the synthesis of the be-
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a) b)

c) d)

Figure 1.1 – Different applications of embodied conversational agents. a) Shows robot Kom-
paii as an elderly assistant to monitor their health and contact their caregiver if needed -
from [technocrazed.com, 2013]. b) Shows a robot used for teaching English language to
students, being remotely controlled by a real teacher - from [koreaittimes.com, 2010]. c) A
robot named Robovie-II moves around a grocery store during an assisted shopping exper-
iment. This little robot greets shoppers at the entrance of a grocery store and then follows
them while holding a grocery basket. It can also remind people of items on a shopping list -
from [bits.blogs.nytimes.com, 2010]. d) Relying on data from surveillance sensors, Robovie
spots people who look disoriented, approaches them and asks, “Are you lost?” If so, the robot
provides simple directions - from [engineering.curiouscatblog.net, 2008].

haviors and actions in a way which looks appealing to the users. A sample architecture for

human-robot-interaction is illustrated in Figure 1.2 showing how different components are

integrated to provide an example of such systems. Still lots of advances are needed in different

areas including speech recognition and synthesis, multimodal sensing and fusion, dialog and

interaction modeling, and conversational scene analysis. It is very important to realize that

endowing such systems with social skill capabilities requires the design of reliable human

behavior perception and understanding algorithms. These algorithms should go beyond the

more studied tasks of people localization and determination of their speaking status and move

towards understanding their activities and intentions.

In daily life situations, an important capability for the robot is the ability to carry on a mean-

ingful dialog with two or more participants. It should keep track of the conversation flow and

in particular know when it is each participant’s turn to speak. This capability requires the
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Figure 1.2 – An example for human robot interaction architecture - from [Sidner2004]. The
left side of the image shows the dialog part of the system. This part gets input from the
microphones and performs speech recognition. Then by integrating engagement information
and environment state from the control module decides on the utterances robot should speak
in addition to the gesture and gaze behaviors which should be synthesized with them. The
right side is more focused on sensing, and data fusion together with decision making which is
performed in a robot control module. The control module gives feedback to the other modules
and decides on the robot movements.

understanding of several communication information: from essential ones like who is where

and who is speaking to more complex ones such as to whom or what a participant’s attention

is directed at, addressee detection (to whom somebody is speaking, and in particular, when

is the robot addressed) or finding when is a relevant time to speak. At a higher level, these

communication information also help the robot to know whether people are interested to

continue the conversation and how much everyone is involved. Accordingly the robot can

frame its dialog and conversational acts to hold a suitable and pleasant conversation.

For a broader view on the motivations and different tasks related to this problem, we refer the

reader to the HUMAVIPS project1 which is the parent project of this thesis. In HUMAVIPS,

we had the main goal of providing a robot which is capable of performing natural interaction

with a group of people. The project robot, Nao2, could use its input sensory data consisting of

audio and video channels to get an understanding of its surrounding, and show appropriate

behavior by mean of its speech, gestures and movements. In HUMAVIPS we tried to address

1http://humavips.inrialpes.fr
2http://www.aldebaran.com/en/humanoid-robot/nao-robot
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this goal by using the expertise of different European project partners in the areas of sound and

audio processing, computer vision, dialog and social interaction, multimodal data integration,

signal processing and pattern recognition.

Different groups of tasks were studied during the HUMAVIPS project and resulted in useful

algorithms implemented on Nao. In a first group, perception of humans and their nonverbal

behaviors was addressed by targeting a number of tasks. Nao should be able to detect and

track people and identify them even if it looses them for a short time, and should recognize

faces and determine their gender and age. Moreover, it should be able to estimate their head

pose, the addressee of their speech, and detect when they nod. The second group was related

to audio localization and audio-visual association. This was important in order to let Nao

know the direction the sound is coming from and the person or object which is the source

of it. Modeling group interaction was also studied in the project. Nao should know what

kind of group it is interacting with; like the size of the group or the age range of people. It

should have engagement strategies to decide when to wait for people to speak and when

to propose to give some explanations. Moreover, it should estimate how much people are

following its explanations and are interested. Having this information helps Nao to adapt its

speech and behavior depending on the context and situation. Furthermore, localization was

also addressed to help Nao know the location of the important objects and be able to localize

itself with respect to them. Finally, providing a cognitive robotics architecture was necessary

to integrate all the information from different modules (audio, localization, video, dialog and

his own actions) and maintain a coherent representation of the world. At every moment, given

this representation, Nao should be able to decide what to do.

As can be seen from the previous paragraphs, perceiving humans along with their state,

behavior, and action is essential for robot to interact naturally with humans. In the next

Section we will emphasize on the role of gaze as a nonverbal behavior which reveals important

information about people’s interests and intentions. Given the importance of gaze, it is

necessary to provide algorithms for its recognition and interpretation in terms of Visual Focus

of Attention (VFOA), defined as whom or what a person is looking at in HRI or ECA settings.

This is the main topic addressed in this thesis.

1.2 Objectives and Challenges

In this Section we will introduce the main objectives of this thesis which are the recognition

of visual focus of attention and addressee in HRI scenarios. In addition we will describe

challenges for addressing these problems in order to provide a better insight and emphasize

on the importance of studying them.

Gaze is amongst one of the most important behaviors exhibited during interactions. In

particular, it shows visual attention which is a close substitute for attention and is important

to track while carrying on a conversation. It is a good indicator of the addressee (to whom a

person is speaking) of an utterance, which is an important information to know for robots

4



1.2. Objectives and Challenges

or ECAs interacting with multiple people. Due to this important role, gaze has been used for

turn-taking management, and at a higher level to monitor people engagement and intention

or recognize user’s predefined states of interaction in HRI application. This nonverbal cue

has many other functions like establishing relationships, or exercising social control; and

Chapter2 will analyze them more thoroughly.

Due to this importance, the first objective of this thesis is to investigate algorithms for its

recognition and interpretation in terms of VFOA in HRI scenarios. Several conditions defined

in the HUMAVIPS project frame the approaches investigated in this thesis. First of all, in these

scenarios, people are not constrained on the way they interact with the robot: they can freely

move and take arbitrary distances and poses with respect to the robot. Second, a focus of

the project was on commercially available robots (Nao in the experiments). Therefore, only

consumer sensors are assumed to be available rather than high-end sensors. Furthermore,

the goal is to provide methods which are useful for open and dynamic environments.

Measuring and interpreting the gaze of people is a difficult task in general. Eye tracking devices

can be used but are usually expensive, considered as intrusive, and usually not applicable

for natural interactions. Nevertheless, benefiting from advances in computer vision tracking

systems, researchers have mainly considered the head pose as an approximation of the gaze,

a trend that should increase with the new Kinect camera and API that directly delivers this

information. Not having the eyes information makes it impossible to extract the exact gaze,

but still providing some approximations of gaze or its interpretation in terms of VFOA should

be possible.

However, while interpreting the head pose as looking at VFOA targets is supported by both

behavioral modeling and empirical evidence, it has its own challenges. First, the robot needs

to know where the people and VFOA targets are and what is their position with respect to each

other. To obtain this information, the robot should be equipped with good localization and

tracking modules. Dealing with moving people makes this problem specially more challenging.

Furthermore, associating head poses with VFOA targets remains ambiguous since in realistic

scenarios, the same pose can be used to look at different targets depending on the situation.

The second objective of the thesis is to investigate the recognition of the addressee of people

speech, which is another important communication cue. For instance, in one part of the main

scenario of the HUMAVIPS project the robot makes a quiz and when people are speaking, they

might be discussing the answer among themselves or responding to the robot. In this case

it is very important for the robot to recognize whether it is the addressee of their speech to

respond appropriately or not.

There are different challenges for detecting the addressee. The robot first needs to recognize

that someone is speaking, then identify or localize the speaker and be able to extract the

speech utterance. After having obtained that, the robot should then use audio and visual cues

to predict the addressee.
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The speaker’s gaze or VFOA has been shown to be a very informative cue of addresseehood

since people mostly look at the person they are addressing rather than the others. However,

even accurate gaze information is not sufficient for addressee estimation. As a result, re-

searchers have investigated other cues to provide context (e.g. lexical, prosodic cues) and

improve performance. These contextual cues could be derived from the other participants

activities or the interaction happening between the robot and the users. Therefore, it is in-

teresting to study how gaze information could be used for estimating the addressee while

integrated with other contextual cues, and which contextual cues could be useful for this goal.

1.3 Contributions

In this Section we provide an overview of the contributions made in this thesis, which are

related to the recognition of the VFOA from head pose and addressee estimation. Moreover,

we participated in recording a HRI dataset appropriate for investigating the above mentioned

problems.

A central issue when trying to decode the sequence of VFOA targets given the head pose

sequence is the following: what is the expected head pose of a person that looks at a given

VFOA target? In gazing behaviors, the difference between a gaze direction and the head

pose used to look in that direction, which is due to the missing eye information, can not be

considered as a random noise with zero mean. Rather, it is often biased, and the bias depends

on several factors related to the body, head and eye dynamics. In spite of the importance of

the mentioned problem, this issue has seldom been addressed in the past. Some methods

like [Foster et al., 2012] use training data to directly infer VFOA from head pose without

defining gaze as an intermediate step. Learned parameters, however, are then specific to the

geometric configuration between the sensor (robot), person, and VFOA targets, and thus such

an approach is not suitable for robot dealing with moving people.

To address this problem one of our main contributions was to study and validate different gaze

to head pose behavior models by taking inspiration of the results on human gazing behavior

and head-eye dynamics involved in saccadic gaze shifts which study gaze models relating the

head pose, gaze direction, and body orientation. Similar ideas had been used in the past to

provide simplified algorithms in static scenarios where people are seated and limited in terms

of their body movements. However, these models had not been successfully applied for more

complicated and dynamic scenarios with freely moving people as we would face in situated

human robot interaction. A main contribution in this thesis was to explore this direction and

find effective methods which are appropriate for dynamic conditions.

A second contribution of our work has been to use the interaction and dialog context as

given by the robot to solve the head pose interpretation ambiguity. Indeed it has been shown

that one way to resolve ambiguities in nonverbal behavior understanding was to use other

social cues, leveraging on the fact that some behaviors provide context to others. In human-

human interaction, examples for VFOA recognition include speaker information or higher
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conversational states, that can be complemented with group activity. While in the above cases

the social cues used as context have to be inferred from the data and might be noisy, in the

robotic or ECA cases, the agent is fully aware of its own conversational acts, allowing them

to be conveniently exploited to better interpret the nonverbal cues performed by interacting

people. The robot’s conversational acts could even be viewed as important causes which

affect where people look. However, to our knowledge, while estimating the VFOA is considered

by several systems, the use of the robot dialog context to improve the recognition of a user

attention (VFOA) has not been explored in the past. Therefore, we investigated leveraging

different types of conversational context from the robot to improve the VFOA recognition.

This solution removes some of the ambiguities introduced by using head poses as the only

input for the recognition.

As the third contribution, addressee estimation, one of the applications of gaze or VFOA in

higher level tasks in human behavior understanding, was also studied in this thesis. We were

interested in studying how well addressee could be estimated in this kind of scenario using

estimated VFOA information. Several research questions arise there, like how should we feed

the VFOA information into the addressee estimation algorithms, and whether contextual

cues could be used in addition to the most commonly used gaze cue from the participant to

improve recognition. VFOA estimations obtained from the approached developed in the thesis

were used as inputs for the higher level task of addressee estimation. We experimented with

two main different conditions. In the first one, VFOA was estimated assuming that the robot

is aware of all of the targets and considers them in its computations. In the second case, in

contrast to the first one, the robot was assumed to consider only the targets which are probable

addressees (i.e. the other participants and the robot). Moreover, we experimented the effect of

adding contextual information to the gaze cues and studied different combinations.

Finally, as another contribution, we participated in the designing of the scenario and recording

of the Vernissage dataset. In order to study the perceptual tasks which are important in human

robot interaction as described in section 1.1, computer scientists require a corpus of relevant

data. This data should allow to understand the behavior of people interacting with a humanoid

robot, to create appropriate models of the interaction and algorithms decoding the current

situation, and also benchmark the performance of these algorithms. This is important for

designing algorithms which enable the audio-visual perception of the scene and control the

generation of appropriate behaviors for the robot. The Vernissage dataset provided us with

realistic and natural human robot interaction data which was not publicly available before.

This dataset was recorded in collaboration with our HUMAVIPS partner from the Bielefeld

University and using their infrastructure. We were mostly involved in the design of the scenario

and behaviors, the implementation of the wizard of oz, and annotations of the data, while

Bielefeld University provided important infrastructure for the recordings and managed all of

the technical parts. This dataset is publicly available as the Vernissage Corpus, and contains

challenging behaviors where the robot is an active partner in the interactions. Eventually

we used this dataset as the main data for different tasks of VFOA recognition and addressee

estimation since it includes rich contextual data to experiment with.
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The above mentioned contributions have also resulted in several publications as listed below:

• Combining dynamic head pose-gaze mapping with the robot conversational state for

attention recognition in human-robot interactions, S. Sheikhi, J-M. Odobez, Submitted

to the Special Issue on Human Computer Interaction, Pattern Recognition Letter, 2014.

• Context Aware Addressee Estimation for Human Robot Interaction, S. Sheikhi, D.B.

Jayagopy, V. Khalidov and J-M. Odobez, in: the 6th Workshop on Eye Gaze in Intelligent

Human Machine Interaction, ICMI, 2013.

• Leveraging the Robot Dialog State for Visual Focus of Attention Recognition, S. Sheikhi,

V. Khalidov, D. Klotz, B. Wrede and J-M. Odobez, in: Int Conf. on Multimodal Interaction

(ICMI), 2013.

• The Vernissage Corpus: A Conversational Human-Robot-Intercation Dataset, D.B. Jayagopy,

S. Sheikhi, D. Klotz, J. Wienke, J-M. Odobez, S. Wrede, V. Khalidov, L. Nguyen, B. Wrede, D.

Gatica-Perez, in Proceedings of the 8th ACM/IEEE international conference on Human-

Robot interaction, 2013.

• Investigating the Midline Effect for Visual Focus of Attention Recognition, Samira Sheikhi

and Jean-Marc Odobez, in: Int Conf. on Multimodal Interaction (ICMI), 2012.

• The Vernissage Corpus: A Multimodal Human-Robot-Interaction Dataset, D.B. Jayagopi,

S. Sheikhi, D. Klotz, J. Wienke, J-M. Odobez, S. Wrede, V. Khalidov, L. S. Nguyen, B. Wrede

and D. Gatica-Perez, Idiap-RR-33-2012.

• Recognizing the Visual Focus of Attention for Human Robot Interaction, S. Sheikhi, V.

Khalidov and J-M. Odobez, in: IEEE International Conference on Intelligent Robots and

Systems (IROS) - Human Behavior Understanding Workshop (IROS-HBU), 2012.

1.4 Thesis plan

The thesis is outlined as follows. In Chapter 2 we provide background information and a

review on the related work. In Chapter 3 we describe the datasets used in the thesis. Chapter 4

provides the gaze models and VFOA recognition algorithms. In Chapter 5, experiments on

the VFOA recognition task are explained and results are provided. The addressee estimation

method is presented in Chapter 6 and Chapter 7 gives a conclusion on the thesis.
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2 Background and Related Works

This thesis is focused on the design of principled methods for the estimation of gaze or of

its discrete variation the visual focus of attention (VFOA) in the context of social interaction

between a robot and a group of people. This includes the influence of higher level interaction

cues from the VFOA. Therefore, in this section, we will focus on related works pertinent in

these areas.

To start with, we will first review in Section 2.1 the related background on the social and

communicative roles of gaze in human interactions. In order to perceive humans gaze it could

be very helpful to understand the mechanism underlying gaze behaviors. In Section 2.2 we

will remind the different types of gaze motions performed by humans, with an emphasize on

gaze shifts that represent the main activity for changing focus. Humans perform those shifts

by incorporating eye, head and their body motion, and in Section 2.2 we will thus go through

the existing models which describe the coordinations between these different parts during the

gaze shifts.

The social and communicative roles discussed in Section 2.1 could also exist when considering

human like natural interactions between people and computers, embodied agents or robots.

Thus in Section 2.3, we introduce and discuss the gaze usages in these areas with regards to

both the perception of human gazing behavior and the synthesizing of similar behavior on

embodied agents and robots.

The estimation of gaze and recognition of the VFOA constitutes the main part of this thesis.

Thus in Section 2.4 we will review the main classes of methods commonly used to address

these problems. This will be followed in Section 2.5 with an overview of the literature on

the exploitation of context in human behavior understanding and more specifically VFOA

recognition.

Finally in Section 2.6 we will give a summary on the literature for addressee estimation problem

as one of the tasks which could be studied after the perception of visual focus of attention.

9



Chapter 2. Background and Related Works

2.1 Communicative and social roles of human gaze behavior

Gaze is used widely is our daily tasks and activities. It plays basic roles in exploring scenes,

reacting to sudden changes, manipulation objects in coordination with other body parts and

of course, in interactions. Gaze direction is an important nonverbal cue to express visual

attention [Langton et al., 2000] and as such has many functionalities in conversation and more

generally in human human interaction. It fulfills functions such as establishing relationship

(through mutual gaze), regulating the course of interaction, expressing intimacy [Argyle and

Dean, 1965], and exercising social control [Langton et al., 2000].

In dyadic interactions, Kendon [Kendon, 1967] suggested that we can distinguish between at

least four functions of gaze:

• to provide visual feedback,

• to regulate the flow of conversation,

• to communicate emotions and relationships,

• to improve concentration by restriction of visual input.

In these interactions, speakers tend to look away at the beginning of an utterance and turn

their attention towards the conversational partner at the end [Kendon, 1967]. Moreover, Argyle

and Cook [Argyle and Cook, 1976] showed that while listening, people look nearly twice as

much (75%) than while speaking (41%).

Considering multiparty interactions, [Vertegaal et al., 2001] studied 4 people conversations.

Here again listeners gaze more than speakers. A speaker gazed 3.3 times more at an addressed

individual who is the target of their speech (39.7%), than at others (11.9%). Reversely, listeners

gazed approximately 7.3 times more at the individual who was speaking (62.4%), than at others

(8.5%). Thus people use the other’s gaze to determine when they were addressed or expected

to speak, which is important specially at transition points. Moreover, a speaker’s gaze often

correlates with the gaze of his addressees, especially at a sentence end where the gaze can be

interpreted as a request of back-channel or an invitation to grab the floor [Jovanović and op

den Akker, 2004].

Beyond these statistics and of high importance in multiparty interactions, gaze direction

serves as an important cue in floor management or turn taking [Duncan, 1972, Goodwin,

1980, Schegloff, 1968]. As defined in [Bohus and Horvitz, 2011], at any time instance, each

participant in an interaction can take one of four following floor management actions: a

hold action for maintaining the floor (or the speaking turn); a release action for giving the

floor to the other participants; a take action to try to acquire the floor; and finally, a null

action which indicates that a participant is not making any floor claims. The floor shifts from

one participant to another can then be considered as the result of the joint and cooperative

floor management actions taken by the participants. Speakers and listeners use their gaze

for this regards. For instance, speakers might look away from their addressees to indicate

that they are in the process of constructing their speech and do not want to give away their
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2.1. Communicative and social roles of human gaze behavior

turn, and look at their addressees to signal the end of a remark and pass the floor to another

participant [Schegloff, 1968]. In this context, the participant at whom a speaker looks at the

end of a remark would be more likely to take the role of the next speaker [Kendon, 1967].

Shifting of roles might be delayed when remarks do not end with the speaker gazing at another

participant [Kendon, 1967, Vertegaal and van der Veer, 2000]. On the other hand for a listener,

monitoring his own gaze in concordance with the speaker’s gaze is a way to find appropriate

time windows for taking the floor [Duncan, 1972, Novick et al., 1996].

We are also very sensitive to the gaze of others when it is directed towards objects of interest

within or even outside our field of view [Pourtois et al., 2004]. Since people look at the objects

related to what they listen to [Cooper, 1974], gaze can also be used to monitor whether people

follow the conversation or evaluate their level of interest. Therefore, in group conversations

where artifacts exist and play role in tasks and activities of people, they can affect people’s

gazing behaviors. In the meetings for instance [Ba and Odobez, 2008], slides on the screen

and papers on the table are shown to effective on the participants gaze. In a museum, art

works affect the visitors gaze and thus, monitoring their gaze pattern can be used to reveal

their interest about different paintings. Gaze behaviors could be understood as a mixture of

all these effects, which renders its analysis and interpretation quite difficult.

Gaze is also shown to be greatly involved in higher level cognition processes that underly

human interactions, like engagement and grounding. According to Sidner and colleagues

[Sidner et al., 2004] engagement “is the process by which two (or more) participants establish,

maintain and end their perceived connection during interactions they jointly undertake”.

In this view, while the listener employs gaze to indicate that s/he is paying attention to the

speaker, the speaker monitors the listener’s gaze to find out whether s/he is still interested

in continuing the conversation [Rehm and Andre, 2005]. These functions of gaze are thus

playing an important role in displaying engagement in a dialogue. In fact, lacking or failing

(on purpose or not) to properly display these expected communication behaviors can be

interpreted by others as a disengagement within the interaction. As another process which

goes on during interaction, we refer to grounding which is the process of updating mutual

knowledge, mutual assumptions and mutual beliefs during the interaction. To minimize

the chance of errors during this process due to misunderstandings humans extend their

verbal utterances with gaze and pointing gestures and social robots will have to rely on that

modalities as well [Häring et al., 2012].

Beyond being useful at monitoring interactions at different levels, gaze behaviors can also

be related to more fundamental social construct, and to the personality traits. Examples

are the relevance of gaze patterns to identify dominance and social status [Jayagopi et al.,

2008]. Dominant and high status people often receive more visual attention and look at others

more often [Cook and mith, 1975]. Automatic estimation of these two constructs could be

performed using gaze in addition to other nonverbal cues [Jayagopi et al., 2008, Hung et al.,

2008]. Furthermore, detecting unconventional gaze behavior in social interactions could be

useful for the diagnosis of disorders like Autism. Indeed autistic children display distinct
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Chapter 2. Background and Related Works

Figure 2.1 – Coordinates for an upcoming gaze shift. The physical parameters needed for the
upcoming gaze shift are spanned by the target position T , the initial head position H 0 and
the initial eye position E 0(with respect to the head). The initial gaze position is G0 = H 0 +E 0.
For an accurate gaze shift, the movement of the gaze vector must be equal to the gaze error
T −G0 = T −H 0−E 0- from [Hanes and McCollum, 2006] – I should change them to H 0 and E 0.

behaviors from a very young age. They look at others less often and make less and shorter eye

contacts. In addition they have problems in using joint attention: for example they may look

at a pointing hand instead of the pointed-at object. Accordingly, this cue is considered for

developing an automated diagnosis system for Autism which relies on analyzing interactions

between children and caregivers [Rehg, 2013].

2.2 Eye-head coordination during rapid eye/head gaze shifts

Human’s eye movement consists of different patterns that can be classified into three main

categories of fixations, saccades, and smooth pursuits. A fixation occurs when the gaze rests

for some minimum amount of time on a small area. Saccades are fast rotations of the eye

(and potentially the head) that occur between fixations to two distinct areas, with the aim of

bringing the objects of interest into the visual field. Smooth pursuit movements describe the

eye when following a moving visual target. In this Section we concentrate on saccades (also

called gaze shifts) because they are of more interest and relevance to our work.

Under natural conditions, humans perform gaze shifts by incorporating eye, head, torso and

even foot movements. Therefore an accurate gaze shift can potentially be achieved through

many alternative combinations of these motions. Considering stationary foot and torso, head

and eyes would contribute to the gaze shift as illustrated in Figure 2.1. For instance a person

who aims to look at a target 30◦ to the right can make an eye saccade of 30◦ or can rotate her

head 20◦ and her eyes 10◦ in the head.

One of the main questions here is to understand how the brain translates a desired movement

of the gaze direction into particular movements of relevant body segments [Hanes and Mc-
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2.2. Eye-head coordination during rapid eye/head gaze shifts

Collum, 2006]. In [Freedman and Sparks, 1997] this problem was studied by analyzing gaze

shifts made by trained rhesus monkeys with completely unrestrained heads. They found that

coordinated eye-head movements are characterized by a set of lawful relationships, and that

the initial position of the eyes in the orbits and the direction of the gaze shift are two factors

that influence these relationships.

In [Wang and Jin, 2001], the authors tried to reformulate the existing relationships and provide

predictions for the displacement of the eye and head components of the gaze shift based

on the previous experimental data [Freedman and Sparks, 1997]. They suggested that the

movements of the eyes and head during the unrestrained-head gaze shift follow a tight linear

relationship linking head contribution and gaze amplitude. In the following we first describe

the prediction model suggested in [Wang and Jin, 2001] and then introduce another model

suggesting the importance of the initial head pose on the predicted contributions for head

and eye gaze.

2.2.1 Horizontal gaze shift given gaze displacement and previous eye orientation

For simplicity, horizontal gaze shifts are considered in the following. The gaze shift is the sum

of the eye-in-head movement and head-in-space movement and to consider the effect of the

initial position of the eye in the orbit, it is considered to be formed as follows:

G = E(E 0)+H(E 0) (2.1)

where G is the gaze displacement, E 0 is the initial position of the eye, and E and H are the

eye displacement and head movement contributions. Then the purpose of these models is to

predict the eye displacement E(E 0) and the head movement contribution H(E 0) if the gaze

displacement G and the initial position E 0 of the eyes in the orbits are known. The models

are inspired from the experimental data of [Freedman and Sparks, 1997] that are illustrated in

Figure 2.2(a).

Eyes centered in the orbit: When the eyes are initially centered in their orbit, the relationship

between the eye amplitude and the gaze amplitude is characterized by two linear functions,

shown as in Figure 2.2(b). The empirical rules observed in [Freedman and Sparks, 1997]

can be used to specify the parameters of these piecewise linear functions. Specifically it is

considered that for G < 25◦, the eye moves without head contribution. Then, for G > 25◦, the

head begins to contribute to the gaze shift. Assuming that the subject has a maximal visual

target offset of 80◦, the head contribution increases linearly for increasing gaze amplitude for

movements between 25◦ and 80◦. When the gaze amplitude G reaches its maximum 80◦, the

eye movement amplitude saturates at amplitude 35◦.

Eyes not centered in the orbit: When the eyes are not initially centered in orbit and are at 10◦

to 30◦ contralateral to the direction of the gaze shift, the relationship in the experimental data

of [Freedman and Sparks, 1997] showed that the relationship between the eye amplitude and
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Chapter 2. Background and Related Works

a)

b)

Figure 2.2 – (a) Eye (left plot) and head (right plot) contributions to the amplitude of the gaze
shifts when the eyes are initially centered in the orbit [Freedman and Sparks, 1997]. (b) Linear
functions proposed by [Wang and Jin, 2001] describing the underlying relationships illustrated
in (a).

gaze amplitude could be characterized with similar functions as above.

2.2.2 Horizontal gaze shift considering previous head pose and midline

The previous approach only incorporated the gaze displacement G = T −G0 and initial eye

position (E 0) with respect to the head for estimating the head and eye contributions.

However, in [Hanes and McCollum, 2006], which is meta-study analysing the previous pub-

lished data and modules and that proposed an axiomatic approach to represent the properties

of gaze shift models, a bigger variable set is considered as necessary for determining the

head and eye contributions. More precisely, the target position T , the initial head position

H 0(with respect to the stationary shoulders), and the initial eye position E 0(with respect to

the eyes) should be considered simultaneously. These elements are illustrated in Figure 2.1.

Subsequently the initial gaze position G0 = H 0 +E 0 is also assumed to be known.

An important feature of this study was to more explicitely consider and account for the effect

of the torso or shoulder orientation, The authors introduced a specific term, the midline, to

refer to the vector normal to the torso. They claimed that the relative position of the head

with respect to the midline should be considered when determining the contribution of the

different parts to gaze shift, and denoted this influence as the midline effect.

In the following three subsections we will first consider the case where both head and eyes are

initially centered at the midline and provide the general characteristics of the gaze shift model
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2.2. Eye-head coordination during rapid eye/head gaze shifts

for this condition. Then we will describe the effect of midline on gaze shift behavior when we

do not have the previous centered condition. Finally considering the first two points, we will

provide an axiomatic model for the general gaze shifts.

Gaze shifts from the midline

They defined the basic case to be when both head and gaze are initially centered at the midline

(i.e. H 0 = E 0 = 0). Fc (T ) denotes the centered function specifying the amplitude of the head

movement that occurs for a gaze shift to a visual target at position T in this basic case.

From the analysis of several sources of data, they extracted several interesting properties

regarding this centered function Fc (T ). Among them, this function (representing the head

movement) is weakly increasing and for targets close enough to the initial gaze position, eye-

only saccades are used to shift the gaze. The head movement is always towards the target but

never overshoots. Moreover, as an implication of the properties of Fc (T ), they also mention

that the eye movement is weakly increasing as a function of target position and there is a limit

on allowable eccentricity of the eyes in the head. Note that the model of Section 2.2.1 verify

these properties.

The midline effect

The midline effect addresses the case of non-centered initial head positions in gaze shifts and

predicts the overall gaze shift behavior in these cases. For instance, for a gaze shift for which

the target direction is at the midline, the head is initially in any orientation, and the eyes are

initially centered in the head, the head will be moved to the midline. As an important case,

if T and H 0 are on the same side of the midline, the eyes are initially centered in the head,

and |H 0| > |T | (i.e. the target appears between the head direction and the midline), then the

amplitude of the head movement is T −H 0 meaning that the final head position is in the same

direction than the target (as illustrated in Figure 2.3).

The consideration of this effect has always been overlooked in the literature probably in large

part due to the fact that most data on gaze shifts are for the shifts from the midline.

Axiomatic gaze model

The authors of [Hanes and McCollum, 2006] proposed an axiomatic model to summarize the

different gaze behaviors. Since the initial eye position has only a small effect, we only provide

the details for a function proposed relying on the variables T and H 0 for the cases where the

eyes are initially centered and neglect their possible variations. The following are the axioms

specifying this model:

Axiom 1 : To each gaze shift target position corresponds an interval of potential head positions.

For a gaze shift in which the eyes are initially centered, the final position of the head is the
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Chapter 2. Background and Related Works

Figure 2.3 – The interval of head positions [F c(T ),T ] corresponding to a gaze shift to the target
at position T . When the gaze is moved to T from initial position H1, the head is moved to
Fc (T ). When the gaze shift is centripetal from H2 to T , the head is moved to T . For initial
head positions between Fc (T ) and T , an eye-only saccade to T is made.- from [Hanes and
McCollum, 2006]

point of this interval that is nearest to its initial position.

The endpoints of the abovementioned interval for targets T can be deduced from the following

two axioms:

Axiom 2 : The direction of the head movement is not opposite to the initial head motor error

T −H 0 (although there may be no head movement); when the eyes are initially centered in the

head, the magnitude of the head movement is not greater than that of the head motor error.

Axiom 3 : When the eyes are initially centered in the head, the final head position is not

eccentric to the target position.

Considering the case H 0 = 0, where the head is moved to the position Fc (T ), we would

conclude that the endpoint of the interval nearest the midline must be Fc (T ). On the other

hand, combining axioms 2 and 3 shows that when the head is initially directed eccentrically to

the target, its final position must be in line with the target. Thus T itself is the endpoint of the

interval further from the midline.

As a conclusion, for rapid eye/head gaze shifts in which the eyes are initially centered in the

head, the endpoint of the associated head movement, (if any) is the point in the interval

[F c(T ),T ] that is nearest to the initial head position H 0 as illustrated in Figure 2.3.

2.2.3 Discussion on gaze shift models

The models in sections 2.2.1 and 2.2.2 could both be used for predicting the head and eye

contributions in a gaze shift. While the model described in section 2.2.1 neglects the effect of

the midline on the gaze dynamics, it could still be used in conditions where we assume that

gaze shifts begin with the head being close to the midline.
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2.3. Gaze in HCI, ECA and HRI

a) b)

c)

Figure 2.4 – Gaze used in HCI and ECA domains. (a) City trip planning application in [Qvarfordt
and Zhai, 2005], tracks the user’s gaze fr ground management, (b) Gaze is used in [Nakano et al.,
2003] for establishing common ground and updating the dialog in the context of direction
giving, (c) the multimodal interactive kiosk in [Bohus and Horvitz, 2009a] performs interaction
with multiple users.

Moreover, we can take this model in Section 2.2.2 to define the function Fc (T ) introduced in

section 2.2.2 and therefore use it as the starting endpoint of the interval in the axiomatic gaze

shift model proposed in section 2.2.2. These models will be explained in Chapter 4 as the basis

for providing gaze to head pose mappings.

2.3 Gaze in HCI, ECA and HRI

The same communicative functions that we assume for gaze in human-human-interaction as

introduced in Section 2.1, can (and should) also hold true in interaction between humans and

computers, embodied agents or robots. However, in order to have agents which can leverage

these functionalities in the same way, they should also be equipped with two different kinds of

capabilities as humans are. The first one is percieving and understanding the users’ gaze, and

the second one is synthesizing human like gaze behavior. In the following, we briefly discuss

how these two directions are addressed in the related works.
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Chapter 2. Background and Related Works

a) b) s

Figure 2.5 – Gaze used in HRI. (a) The robot James acts as a bartender and the visual attention
to recognize different states of interaction [Foster et al., 2012], (b) The robot Alpha interacts
with people as a museum guide and gives different importance to people according to their
gaze [Bennewitz et al., 2007].

2.3.1 Perceiving human gaze for interaction with computers and embodied agents

As expected visual attention is extensively used in designing HCI and ECA systems for all pur-

poses including estimating user’s attention, facilitating engagement and ground management.

For instance, in [Qvarfordt and Zhai, 2005] it is used in city trip planning application relying on

a computer. The user gaze moves relate to the spatial contents on the maps, and the system

uses this information for managing the dialog. In a similar direction giving task, [Nakano et al.,

2003] proposed an ECA which relies on verbal and nonverbal signals including eye gaze to

establish common ground and update the dialog. The agent uses eye gaze and other cues for

the context of direction-giving task. In other works, head is used as an estimation of visual

attention. For instance, in [Huang et al., 2011] this information is used to make a virtual agent

aware of the addressee of the utterances.

In one of the very advanced systems [Bohus and Horvitz, 2009a], head pose is used extensively

in a multimodal interactive kiosk capable of handling intention recognition and turn-taking

(see Figure 2.4). In addition, it can perform multi-party engagement for the times new users

arrive while it is interacting with others, to check if they need something and either respond or

aks them to wait. Moreover, in [Bohus and Horvitz, 2009b] gaze is used to predict an intention

of engagement from people who come in proximity of the dialog system and allows the system

to anticipate and start the interaction.

The user’s visual attention is also used for facilitating interaction in the HRI domain. For

instance, it is used for monitoring the engagement with a robot in [Michalowski, 2006]. In

[Bennewitz et al., 2007] it is used as one of the cues to assign importance to different people

and decide how the robot acting as a museum guide would share its attention on them. In a

more recent work [Foster et al., 2012, Gaschler et al., 2012] the robot James acts as a bartender

and uses visual focus of attention as one of the cues to recognize different states of interaction

such as "attention to bartender" and "attention to another guest" which are expected in such

an interaction. Knowing these states helps the robot to plan the appropriate actions.
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2.4. Gaze and visual focus of attention estimation

2.3.2 Gaze synthesis for embodied conversational agents:

In order to create effective conversational human-computer or human-agent interfaces, it is

desirable to have systems which not only can sense a user’s gaze and infer appropriate conver-

sational cues but also display them. Embodied conversational agents, either in robotic form

or implemented as virtual avatars, have the ability to demonstrate conversational gestures

through eye gaze and body gesture [Morency and Darrell, 2008]. Natural gaze behavior is

critical to the realism and believability of an animated character. An ECA should employ social

gaze for interpersonal interaction and also possess human attention attributes so that its eyes

and facial expression convey appropriate distraction and attending behaviors. As discussed in

Section 2.1 there are many eye-related communicative functions which should be considered

such as eye contact, mutual gaze, gaze aversion, line of regard, and fixation [Gu and Badler,

2006].

In this direction, [Traum and Rickel, 2002] presented an agent which accepts speech input from

human, and produce both speech and gestural output. For real-time verbal communication

[Colburn et al., 2000] utilizes behavior models of eye gaze patterns based on the psychological

literature. They model when the avatar should be looking at the speaker, at the non-speaker or

look away. Their simple computational model for eye gaze has been shown to be effective at

simulating what people do in conversations and their experiments [Colburn et al., 2000] have

indicated that having a natural eye gaze model on an avatar elicits changes in the viewers’ eye

gaze patterns. In their study, looking at different targets is done by only turning the head.

In [Gu and Badler, 2006] different functions for controlling eye motion are defined by saccade,

fixation, smooth pursuit, squint and blink. Parameters to describe these movements include

gaze direction, magnitude, velocity, duration, the degree of eye open, blink, and so on and

attention models mainly consider all or a subset of these parameters to define suitable effect

on the eye. [Gu and Badler, 2006] develops a computational model to predict visual attention

behavior for an embodied conversational agent in a dynamic environment and observes its

behavior and consequences under varying environmental distractions, conversation workload,

and participant engagement.

2.4 Gaze and visual focus of attention estimation

Estimation of the gaze of people or its interpretation is a difficult task. Available eye tracking

devices can be used in HCI applications [Qvarfordt and Zhai, 2005], but are usually expensive,

considered as intrusive, and usually not applicable for natural interactions. Two streams of

work exist for tracking eye gaze. Active sensing based methodologies based on infrared light are

used very often to measure the eye gaze. Computer vision techniques based on natural light

on the other hand use perceived information from gaze, head and body posture for measuring

the gaze. The accuracy of these methods is highly dependent on having high definition images

of the eyes. Since this is not always available, people have studied the discrete substitute of

the gaze which is the visual focus of attention (VFOA).
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Figure 2.6 – Structure of human eye. Important parts of the eye like pupil, iris, cornea and
limbus are shown -from [Nakazawa and Nitschke, 2012]

In the following subsections we give a brief overview on the approaches used for estimating

gaze as well as VFOA.

2.4.1 Gaze Estimation

The recent survey by Hansen [Hansen and Ji, 2010] provides a comprehensible overview of

computer vision methods for estimating the gaze defined as the direction or the point of

regard. Below we summarize the main approaches and issues that need to be addressed.

Gaze tracking based on reflected infrared light (active infrared lighting)

The reflected light eye gaze estimation techniques rely on the amount and direction of the

infrared light reflected by specific parts of the eye such as the limbus displayed in Figure 2.6,

the pupil, the corneal. When it comes to remote and non-intrusive eye tracking, the most

commonly used technique is the pupil-center corneal-reflection (PCCR) technique [Morimoto

and Mimica, 2005, Guestrin and Eizenman, 2006] used in many systems (Tobii1, SMI2 and

EyeGaze3). The basic concept is to use a light source to illuminate the eye causing highly

visible reflections, and a camera to capture an image of the eye showing these reflections. The

image captured by the camera is then used to detect the reflections of the light source on

the cornea (glint) and in the pupil center as illustrated in Figure 2.7(a). It is then possible to

calculate a vector formed by the angle between the cornea and pupil reflections – the direction

of this vector, combined with other geometrical features of the reflections, will then be used

to calculate the gaze direction. Furthermore, the reflections from the different components

of the eyes create the Purkinje images, shown in Figure 2.7(b), that can be used to estimate

1http://www.tobii.com
2http://www.eyegaze.com
3http://www.eyegaze.com
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a) b)

Figure 2.7 – (a) pupil-center corneal-reflection (PCCR) technique, which uses the location
of pupil center and glint (reflection of the light source on the cornea) to calculate the gaze
direction. (b) the reflections from the different components of the eye create 1st, 2nd, 3rd, and
the 4th Purkinje images- from [Morimoto and Mimica, 2005]

the eye gaze in other techniques [Pelz et al., 2000, Ohno and Mukawa, 2004, Babcock and Pelz,

2004].

These eye trackers can be remote and nonintrusive, but still their dependence on specific light

sources makes limitations on their usage and on the users movements. Therefore natural light

vision techniques are used for less constrained settings.

Natural light computer-vision geometric methods

Natural light based methods that are applicable to more general conditions have also been

studied, many of which also make use of geometric models like the ones used in infrared

methods.

These methods rely on explicit models of the geometry of the human eye and related parame-

ters, i.e. eyeball location and radius, iris radius, etc. They require to extract geometric features

from the eyes, which can be an ellipse fitted to the pupil [Li et al., 2005], or more complex

shapes [Yuille et al., 1992]. However, the lower contrast (as compared to IR illuminated cases)

makes these extractions more difficult. The main advantages of the geometric explicit mod-

eling are that the required quantity of training samples can be reduced in comparison to

appearance based methods (see below) and gaze inference is not based on interpolation. On

the other hand, the requirement for geometric features calls in general for high contrast or

high resolution image data, captured either from a head mounted camera or from cameras

with limited field of views that restrict user mobility.

Natural light computer-vision appearance-based methods

To avoid local features fitting and tracking, there has been an increased interest on appearance

based methods [Funes Mora and Odobez, 2012, Lu et al., 2011b, Lu et al., 2011a, Sugano et al.,

2008] that learn a direct mapping from the eye image to gaze parameters. Such approaches
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potentially allow gaze estimation under low-resolution imaging by relying on machine learning

techniques [Baluja and Pomerleau, 1994, Williams et al., 2006] or on user and session specific

appearance models [Funes Mora and Odobez, 2012, Lu et al., 2011b]. Altogether, however,

appearance based methods suffer from generalization problems. Either they require large

amounts of training data [Baluja and Pomerleau, 1994,Williams et al., 2006,Sugano et al., 2008]

to handle variabilities due to eye shape, pose, illumination conditions, or they are trained from

session dependent samples [Lu et al., 2011b, Lu et al., 2011a, Funes Mora and Odobez, 2012] to

be used for interpolation. In both cases, the absence of an explicit geometric model makes

them rather inappropriate for adaptation to users or ambient conditions, or extrapolation in

the 3D space, which is problematic when training from a few points on a screen and estimating

gaze for different head poses.

2.4.2 Estimating the visual focus of attention

In situations where head pose and eye gaze can be achieved accurately, recognizing the

VFOA of people sould be straightforward assuming of course that we are able to monitor the

environment and to know where are the visual targets together with their directions with

respect to people’s heads. However, we know that active sensing based methodologies based

on infrared light are quite invasive and restrictive [Babcock and Pelz, 2004]. Computer vision

gaze estimation techniques on the other hand are highly dependent on having high definition

images of the eyes and therefore using them usually restricts the mobility of the subject

because cameras with narrow field-of-views should be used. Due to the abovementioned

reason, reliable eye gaze information is often not available for HRI applications like our

scenario.

As an alternative to the eye gaze, researchers have considered head pose information as main

gaze cues [Gaschler et al., 2012, Gorga and Otsuka, 2010, Yücel and Salah, 2009, Stiefelhagen,

2002, Ba and Odobez, 2006, Otsuka et al., 2005]. This idea is supported by the fact that turns of

the head are very informative cues in recognizing where the subjects are looking at [Langton

et al., 2000]. The models described previously in Section 2.2.2 specifically emphasize on the

importance of the head pose for looking at the visual targets and provide models for showing

how it contributes to gaze shifts. Moreover, experimental work with adults, children and

non-human primates has suggested that the orientation of the head makes a large contri-

bution to the understanding of another’s direction of attention [Langton et al., 2000] (even

wothout seeing the eyes). Stiefelhagen studied this hypothesis in [Stiefelhagen, 2002], when he

conducted an experiment in which he recorded the head and eye orientations of participants

in a meeting using special tracking equipment. The results demonstrate that head orientation

was a sufficient indicator of the subjects’ VFOA in 89% of the time.

However, head poses are ambiguous cues for recognizing VFOA: in realistic scenarios, depend-

ing on the dynamics of the head different poses might be used by one person for looking at

the same target and the same pose can be used to look at different targets. Thus, a central
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question is, what head pose is used for looking at a target placed at a given direction. The

difference between a gaze direction and the head pose used to look in that direction depends

on several factors related to the body, head and eye dynamics. Therefore, the first part to

improve for removing the ambiguities is the prediction of the gaze direction from the head

pose, and allow for a better association of a head pose with looking at a given target given the

ongoing head and gaze dynamics.

Several works explored Dynamic Bayesian Networks (DBN) for decoding VFOA states from

the head pose sequence [Stiefelhagen, 2002], [Ba and Odobez, 2009], and [Otsuka et al., 2005]

and relied on Gaussians to model the distribution of head pose for looking at a given target.

Again an critical issue with this approach is how to set the expected head pose of an observer

that looks at a given target? In other words, how to define a mapping from the gaze target

direction to the corresponding head pose. These expected head poses for different targets are

the means of the Gaussians and important parameters of the model.

In order to set these parameters and make the association between head pose and visual

targets, some works rely on manual setting, potentially followed by adaptation [Otsuka et al.,

2005]. This requires a static configuration of the targets with respect to the person’s position

and is not accessible to all applications. Data driven approaches [Gaschler et al., 2012] use

training data to directly infer VFOA from head pose without defining gaze as an intermediate

step. Learned parameters, however, are then again specific to the geometric configuration

between the sensor (robot), the person, and VFOA targets. While this might be suitable in fixed

settings [Gaschler et al., 2012], it is not adapted for a mobile robot dealing with moving people.

One of the few works addressing the headpose-to-gaze correspondence problem is [Ba and

Odobez, 2009]. Exploiting results on human gazing behavior and head-eye dynamics involved

in saccadic gaze shifts [Langton et al., 2000, Hanes and McCollum, 2006], [Hanes and McCol-

lum, 2006, Freedman and Sparks, 1997, Hayhoe and Ballard, 2005], they introduced a simple

linear gaze model based on what we described as the first gaze shift model in section 2.2.2

to the head pose, gaze direction, and head reference (coined gaze midline in section 2.2.2)

for gaze shifts. Despite its simplicity, the method worked when applied to meetings with

static configurations. However, it is not very efficient in dynamic scenarios and suffers from a

major drawback: the reference direction, which corresponds to the direction perpendicular to

the shoulder, was assumed to be fixed and set according to the setup. This assumption does

not hold true in realistic situations with dynamic settings. For instance in HRI with multiple

people where the robot is not always the main focus, or more generally in scenarios involving

people free to move and re-orient themselves.

One study has tried to address the problem of the previous approach with dynamic setups [Voit

and Stiefelhagen, 2008]. However, they do not consider changing the static reference which is

the main reason the model does not apply properly to dynamic situations. Alternatively they

propose to use a discrete set of different head-to-gaze ratios and choose the most likely ratio

over time based on the existing gaze dynamics.
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2.5 Context in behavior understanding and VFOA recognition

Considering the fact that gaze and head pose are imprecise, when the number of targets

increases, the chance of erroneous decisions increases as well. One solution to remove some

of these errors is to know which are the ’active’ targets at a given instant. In order to obtain

this kind of information about the targets, other contextual cues can be very useful.

Context is extensively used for different tasks in related domains. In computer vision for

instance, context has been used to improve the recognition of individual objects given the

current overall scene category [Torralba et al., 2003]. For speech recognition, in [Sarma and

Palmer, 2004] context learnt from the lexical co-occurences of the words in a large corpus of

the outputs of an ASR system is used for improving the output of automatic speech recognition

systems.

One possibility to further improve the VFOA recognition is to use other social and behavioral

cues, leveraging on the fact that the recognition of nonverbal cues should not be done in isola-

tion, but jointly, as some behaviors provide context to the others. This could be useful both for

compensating the problems introduced by the model’s limitations and behavioral variations

and also to improve the recognition in presence of noisy measurements. In human-human

interaction, examples of these additional cues include speaker information [Stiefelhagen et al.,

2002, Ba and Odobez, 2008] or higher conversational states [Gorga and Otsuka, 2010, Otsuka

et al., 2005], that can be complemented with group activity [Ba and Odobez, 2008]. Simi-

lar behavior co-occurrences have also been used for instance in a head gesture recognition

task [Morency, 2009].

While in the above cases the social cues used as context have to be inferred from the data

and might be noisy, in the robotic or ECA cases, the agent is fully aware of its own conver-

sational acts, allowing them to be conveniently exploited to better interpret the nonverbal

cues performed by interacting people. For instance, in [Lemon et al., 2002], the grammar of

the speech recognizer changes depending on the agent’s previous action or utterance which

makes improvement on the speech recognition output. As another example, in [Morency et al.,

2005], different types of features (lexical, timing, gesture displayed) performed by an ECA are

exploited within a supervised learning framework to predict head nods and head shakes in

combination with a vision-based head gesture recognizer.

Several facts about human behavior during their interactions with other humans or agents

strongly support the use of the agent’s conversational acts as context for VFOA recognition.

For instance, the fact that people look nearly twice as much while listening than when they

speak [Argyle and Cook, 1976] supports leveraging the speaking status of robot. This is

specially important since comparisons conducted between human-human and human-robot

interactions in [Rehm and Andre, 2005], revealed that people spend more time looking at an

agent that is addressing them than if it is a human speaker. The second example is the fact that

people look at objects relevant to what they listen to [Cooper, 1974], which makes it reasonable

to use the context obtained from the robot’s conversation to extract the relevant objects.
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2.6 Addressee Estimation

Addressee estimation which is to recognize to whom a spoken utterance is intended can be

performed by using verbal and nonverbal cues simultaneously. This problem has not received

much attention in the HRI literature (except [Katzenmaier et al., 2004]) as compared to Human

Computer Interaction (HCI) / Virtual Avatar [van Turnhout et al., 2005, Bohus and Horvitz,

2010,Huang et al., 2011,Siracusa et al., 2003] or Human-human interaction literature [Takemae

and Ozawa, 2006,Jovanović et al., 2006]. In all cases it has been shown that from the nonverbal

cues, eye gaze serves an important role in guiding the conversation, and also is an important

cue for determining the addressee.

In human-human interaction context, [Jovanović et al., 2006] authors have studied the ad-

dressee identification in face-to-face meetings. They used gaze, conversational context and

utterance features and added an additional feature above these which specifies the meeting

context as being monologue, discussion, presentation or white-board. Their result showed that

speaker’s gaze is the most predictive cue and performs better in combination with other cues.

In contrast to the statistical classifier used in [Jovanović et al., 2006], another study [op den

and Traum, 2009] provided a rule based addressee detection method for face-to-face meetings.

They used speakers gaze, dialogue history, usage of addressee terms and the type of the dia-

logue act as features. A rule based method is more transparent than the statistical classifiers

synthesizing empirical findings of addressing behavior in conversations. They have analyzed

their methods on the same multi-modal AMI meeting corpus which has been previously used

for developing statistical addressee classifiers in [Jovanović, 2007]. Their reliability analysis has

shown that in specific situations this rule-based method outperforms the statistical methods.

For instance, when the speaker uses “you”, or when the speaker performs an initiating act,

supported by visual attention directed to the addressed partner, the method outperforms the

statistical methods.

In [van Turnhout et al., 2005] the problem of determining addressee of an utterance in the

context of multimodal mixed human-human and human-computer interaction is studied.

They indicated that in this context eye gaze behavior cannot directly be used as a cue for

determining addressee. The reason is that a computer or robot with has a central role in

the task that participants are performing, highly attracts their visual attention and changes

the normal gaze behaviors. Katzenmaier et al. [Katzenmaier et al., 2004] used a Bayesian

scheme to combine speech features and head pose to solve the task for human-human-robot

interactions. They could identify the correct addressee in 93% of time. Commands towards

the robot could be detected with a recall of 0.8 and a precision of 0.6, resulting in an f-measure

of 0.7. Alternatively In [Huang et al., 2011] prosodic features of the user’s speech are used in

addition to the head pose (as a proxy for gaze).

Considering this kind of setting, users tend to speak differently to systems which is potentially

useful for detecting when the robot is addressed. Moreover, what robot is doing or has just

done can structure the conversation or evoke specific reactions from participants. The fact that
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we have access to the robot’s state motivates using these kind of cues for human-human-robot

interaction scenarios.

2.7 Conclusion

In this Chapter we provided some background emphasizing the importance of gaze in human

interaction and in the same way in interactions with robots, other conversational agents, or

computers. Moreover, since humans use a combination of body, head and eyes dynamics to

gaze at visual targets surrounding them, we summarized some studies aiming to model differ-

ent contributions envolved in gaze mechanism. These results open the doors for leveraging

head poses for estimating the persons gaze direction.

Moreover, we reviewed the main classes of methods commonly used to address the estimation

of gaze and recognition of VFOA. We specially summarized what has been done for the

situation where percieving the eye gaze is not possible from the high defintion natural images

or infrared sensors, which is suitable for our scenario. The shortcomes of the previous works

for dealing with dynamic scenarios in HRI domain motivates our contributions in designing

the VFOA recognition algorithms. Given the ambiguities present in recognizing VFOA from

head poses, we provided an overview of the literature where context is used in human behavior

understanding and more specifically VFOA recognition. Considering the previous works and

the possibility and benefits of using the robot context, we would consider different kinds of

robot conversational context for improving the VFOA recognition.

Finally for addressee estimation, previous works suggest gaze as the most informative cue.

However, since in human-agent interactions scene elements referred to in the conversation

can attract the users gaze and changes their behavior, using additional cues as context for ad-

dressee estimation can potentially be useful. In this thesis we would study how well addressee

could be estimated using VFOA information and whether or not adding other cues, possibly

from the robot’s state, could improve the estimation.
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3.1 Introduction

In this chapter we will present different datasets used in this thesis for the experiments since

at the beginning we did not have a suitable dataset for VFOA recognition compatible with the

goals of the HUMAVIPS project, we started performing experiments and testing our VFOA

recognition algorithms on the IDIAP Head Pose dataset1. This dataset consists of recordings

featuring 4 people meeting around a table and can therefore be used for human human

interaction studies. Afterwards we recorded a small dataset NaoD, in order to work with

similar video specifications (image size, quality, frame rate) than those we would expect to

have with Nao in the project. This involved a simple scenario where people are seating in front

of the robot and discussing some information about it. However, while the robot can be the

focus of attention, it is mainly used as a passive sensor.

Considering our requirements for natural human robot interaction in unconstrained con-

ditions, these datasets were not fully appropriate. Specially one condition was to include

people that could move more freely in terms of their position with respect to the robot. This

condition was not met in the seated scenarios of the two previous datasets. More generally,

we needed a dataset recorded with the robot’s sensors for studying communication cues like

VFOA and addressee and provides us with natural and rich behavior. In order to reach this goal

we designed a scenario where the robot performs as a quiz master. It engages with a group of

people, addresses individual persons and asks them questions one at a time, and waits for the

answer after they discuss it among themselves, which results in a mixture of human-human

and human-robot interaction.

People can enter the robot’s field of view, either they try to engage or the robot engages them,

and they start the interaction with the robot while being quite dynamic. They can talk to each

other or to the robot, and this makes it possible to study the addressee estimation task.

On the other hand, one objective and requirement of the HUMAVIPS project, was to design

1https://www.idiap.ch/dataset/headpose
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a robot (Nao) able to interact and manage a group. The scenario chosen to this end was to

consider Nao as an art guide explaining artworks for groups of people in a museum. Eventually

we included the benefits of both scenarios by mixing them into a unified dataset and recorded

the Vernissage corpus where the robot starts by giving explanations about the artworks as in

the original art guide scenario and ends by giving a quiz to the participants. We contributed in

designing the scenario, and the script for Nao, implementing the wizard of Oz for controlling

the robot, and participated in recording the dataset which was done at Bielefeld University us-

ing their effort and expertise and infrastructures in recording multimodal data with robots.The

details of this corpus are previously published in a technical report [Jayagopi et al., 2012] and a

conference paper [Jayagopi et al., 2013] in collaboration with Dinesh Babu Jayagopi and other

colleaques from Idiap Research Institute and Bielefeld University.

In this Chapter we will provide a description for these 3 datasets. First we will describe our

main project dataset, Vernissage Corpus which is used for most of the experiments in this

thesis in Section 3.2. Then we will present the second dataset used for our VFOA experiments,

NaoD data, in Section 3.3. In Section 3.4 we will describe the Meeting dataset, the initial dataset

we used for VFOA recognition and we make a conclusion on this Chapter in Section 3.5.

3.2 The Venissage dataset

One of the fundamental challenges in HRI is providing humanoid robots with the audio-

visual perception capabilities to interact with multiple human partners [Fong et al., 2003].

Towards this goal, realistic interaction scenarios need to be studied, in which the humanoid

robot actually performs nonverbal behaviors which as a result will induce natural nonverbal

behavior of the humans, e.g. looking towards a picture when the robot indicates this or looking

at the human partner when discussing a painting. In this view to be a realistic interaction

partner, the humanoid robot needs to perform appropriate actions, for example nodding, or

gaze changes to point to paintings, or look at specific participants performed in the current

case by head rotations. Although these actions are desirable from an interaction perspective

such behavior severely degrades the sensing quality, as the sensor is moved and motor noise is

added. In addition, as sensing, computing, and communication capabilities on the robot are

limited and constrain each other, such scenarios become much more difficult when it comes

to study and address the perceptual tasks.

A first step towards this goal is thus to obtain suitable datasets for these scenarios which allow

the study of those perceptual tasks in interaction with a robot. In this regard in collabora-

tion with Bielefeld University we aimed to provide a dataset "Vernissage Corpus"2 [Jayagopi

et al., 2013, Jayagopi et al., 2012] recorded by the robot Nao shown in Figure 3.1. According

to our knowledge, none of the existing HRI datasets which have focused on audio-visual

perception tasks [Mohammad et al., 2008, Arnaud et al., 2008, Alameda-Pineda et al., 2013]

in a conversational scenario have all the advantages of our dataset: an interesting scenario,

2Vernissage is the French word for the opening of an art exhibition
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Figure 3.1 – The humanoid robot NAO and its primary sensors used for the recordings. VICON
markers (silver balls) for motion capturing are visible.

more than one interaction partner, a commercially available robot (with consumer sensors

rather than high-end sensors), extensive annotations, and public availability. The dataset

we have produced comes with rich annotations and ground-truth from the external sensors

and robot internal states. This allows researchers in multimodal perception community to

investigate interaction behavior cues at a low level (such as ‘who is speaking’, ‘who is looking

at whom’, ‘nodding’) as well as at a higher level (such as ‘who is being addressed’, turn-taking

or conversational behavior).

3.2.1 Scenario and recordings

In order to capture a dataset that can be used for HRI analysis as well as to test various

audio-visual perception techniques, we decided to choose the Vernissage scenario, where

the robot serves as a conversational partner in a reasonably realistic application setting: as

an art guide and a quiz master. As an art guide it would be involved in managing the group

as a whole and less in individual communication with people, whereas as a quiz master it

would be more engaged in multiparty interactions which needs communication exchanges

between the individuals. This scenario offers sufficient flexibility as well as control over the

human-robot interaction. The first part of the scenario was inspired by a recent work that

has studied and documented human interaction experiences with NAO as an art guide in a

German art museum [Pitsch et al., 2011]. In this scenario, as the robot is stationary (except

for head rotations and nods and hand gestures), the complexity involved in adapting and

extending existing perception methods is reasonable, but still challenging.

We recorded 13 sessions (10 main sessions with naive participants and 3 test sessions with

project collaborators) of the humanoid robot, NAO, interacting with two persons. A wizard-of-

oz was used to manage the dialog as well as the robot‘s gaze and nodding. The behavior of the

human partners was unconstrained. Each interaction lasted around 11 minutes. Figure 3.2

gives an overview of the corpus.
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Figure 3.2 – Overview of the Vernissage corpus: scenario, various modalities, annotations, and
possible audio-visual perception tasks.

In the Vernissage corpus, the scenario unfolds as follows:

• The visitors arrived in pairs and were greeted by the robot when they entered within a

normal interacting distance. After this greeting, the robot offered some explanations

about the paintings present in the Vernissage.

• When the visitors agreed to this3, the robot started explaining three different groups

of paintings using speech and matching gestures. These explanations included pauses

intended to elicit comments by the visitors and also gave them the chance to tell the

robot if they wanted to hear another explanation at specific points.

• When the explanations were finished, the robot asked the visitors if they were interested

in participating in a quiz. After they agreed to this, NAO introduced itself and asked

each participant to give their name and to introduce themselves.

• The robot then explained the general quiz rules which included that the visitors should

discuss among themselves before giving the answers. The robot then proceeded to

ask several questions about the paintings and more general topics and also judged the

answers given by the participants.

3Although the robot was asking the participants whether they want to continue, as they were expected to finish
the interaction all of them proceeded with the full scenario.
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• After the quiz was finished, the robot asked each visitor to decide on a favorite painting

and afterwards told the participants to discuss and choose one common favorite and

also to propose a new fitting name for that painting.

The participants spoke in English and they were mostly non-native speakers recruited in a

university environment. Figure 3.3 shows the images of 20 participants in 10 main sequences

of the dataset taken from the Nao’s video sensor.

Wizard-of-Oz. To govern the behavior of the robot in a repeatable fashion, we used a “Wizard-

of-Oz” (WOz) approach [Dahlbäck et al., 1993]. This means that the robot was not acting

autonomously, but instead was controlled by human operators. For our recordings, we mostly

used two operators (or “wizards”), which worked in a separate room hidden from the partici-

pant’s view. One operator controlled the utterances and associated gestures of the robot by

choosing them from a predefined set of buttons. Limiting the set of possible robot utterances

like this was meant to reduce the gap towards an autonomous system with a real dialog engine.

The second operator controlled the viewing direction of the robot by choosing points in the

live streamed camera image, causing the robot to turn its head in that direction. In addition

to these specialized interfaces, both operators also had access to the sound coming from

the microphones the participants wore and the live image of an external camera providing

an overview of the interaction. To facilitate later analysis, the button clicks from the wizard

interface were also logged as part of the corpus.

Set-up and sensors. NAO video data is mono at VGA resolution and audio data comes from

four microphones. In order to have ground-truth information for all the audio-visual pro-

cessing tasks, 3 close-field external cameras, Vicon4 motion capturing system and close-talk

microphones on the human interaction partners were also deployed.

The final dataset comprises of a synchronized multimodal corpus, with multiple auditory,

visual, and robotic system information channels. Details on data acquisition and synchroniza-

tion is provided in [Jayagopi et al., 2012].

Data acquisition was inspired by the SInA method [Lohse et al., 2009] which focuses on

synchronizing internal logging data with external manually annotated data in order to analyze

specific issues of HRI.

3.2.2 Annotation and measurements

Two types of annotations or ground truth (GT) are made available with the dataset. First, the

GT data derived from the recorded measurements, which comprises:

• the participant’s 3D head location and poses (in Vicon reference system). In order to

be compatible (comparable) with the output of visual processing systems, we used a

4http://www.VICON.com
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Figure 3.3 – Image samples from 20 annotated people from the Vernissage corpus. As it can
be seen, people locate themselves freely inside the room and they are free to rotate towards
different pictures. VICON markers are visible on participants heads.
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Figure 3.4 – Visualization of annotations: head-pose (pan above and tilt in right of the head
bounding box), VFOA (in yellow), addressee in blue (displayed when speaking), and nodding
in green. When speaking, bounding box color is partially blue.

simple software to transform the 3D head pose Vicon data into head pose measurements

defined in the local coordinate system of the time-dependent Nao camera view.

• the directions of looking at different targets with respect to the participants. In order to

obtain the directions of targets with respect to the participants, their 3D head locations

as well as the robot and the target locations were used from the Vicon data. This

information made it possible to calculate the direction of any of the targets with respect

to the participants’ heads. These directions were then transformed into Nao’s head local

coordinate system. In our work, we considered the direction of Nao to be (0,0,0) and

measured the other angles according to this reference.

• NAO system data, including its dialog and gesture information.

The second group of ground truth corresponds to the manual annotations which include

several important cues to study the HRI process and analyze the verbal and nonverbal behavior

patterns. These include 2D head location, speech/non speech, head nodding, Visual Focus of

Attention (VFOA), utterances, and addressees as illustrated in Figure 3.4. In the following, we

describe our annotation process for the cues which are used in this thesis.

• Head Location. We annotated the 2D image location of people in the recording. Exploit-

ing the VICON 3D location data was not possible since it did not localize the 2D head

bounding box in the image captured by NAO as NAO’s camera is constantly changing its

orientation and position. We thus resorted to simple manual annotation of the visibility,

ID, and position (bounding box) of each person. Annotation was done at 1 frame per

second. Interpolation was automatically generated, and manually revised (i.e. interme-
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Person 1 

Nao 

Pain,ng 1 

Pain,ng 3 

Pain,ng 2 

Figure 3.5 – Rough illustration of the configuration of VFOA targets in the scene. In the
annotations we also have labels OT, DK and NV in addition to these to these main targets.

diate frames were annotated), whenever these interpolations deviated too much from

the true head location, to have sufficient accuracy at important transition points.

For this thesis, since tracking results will be used in the experiments, it is necessary to

have the head pose ground truth to validate the tracker quality.

• Visual Focus of Attention (VFOA). Given the scenario, 5 main VFOA targets have been

identified and considered as labels. They are: NAO, OP (the other participant), and the

three paintings Pai1, Pai2, and Pai3. In addition, we defined a label OT (others) to denote

a person looking at any other place in the room, and a label DK (don’t know) when there

is too much ambiguity between several VFOA targets and making a decision for the

annotation is not possible, and NV (not visible) when the person is not in the robot’s field

of view. Figure 3.5 illustrates the approximate configuration of different targets in the

scenario. Annotation was performed by several annotators. Each annotator performed

the labeling using an interface displaying the images of the video acquired from NAO

(i.e. taking the robot perspective). Annotation was done with a precision of 150 ms on

the average. VFOA statistics for this dataset and the following two datasets are provided

in Chapter 5.

Reliability. We carried out secondary annotation on 2 minutes of data for 15 randomly

chosen people among the total 26 participants. Table 3.1 contains the confusion matrix

for our two annotation sets with the five main labels of interest. As seen from the table,

the confusion between NAO and Painting 2 was high as the painting was right above

NAO as seen in Figure 3.2 Apart from this, annotations are very reliable.

• Utterance. An utterance is the basic speech unit and following the literature on ad-

dressee detection, we defined it as ‘a speech turn followed by silence more than 0.5

seconds’ (e.g. [Takemae and Ozawa, 2006]). We decided to also include a ‘Laughter’ label

to differentiate actual speech turns and laughter, so our three labels were. were Speech,
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3.2. The Venissage dataset

Label NAO OP Pai1 Pai2 Pai3

NAO 21221 22 15 1502 46
OP 6 3812 132 2 33

Pai1 36 1 4617 110 48
Pai2 894 5 29 5177 47
Pai3 22 415 0 44 2576

Table 3.1 – Confusion matrix of VFOA annotations. Primary versus secondary for VFOA
annotation. The table shows, in number of frames, the aggreement and disaggrements of the
primary and secondary annotations.

Label NAO OPerson Group NoLabel

NAO 238 3 0 0
OPerson 11 242 0 0

Group 12 3 40 0
NoLabel 0 0 0 67

Table 3.2 – Confusion matrix - Primary vs Secondary for addressee annotation

Silence, Laughter. As the task of manual segmentation and then assigning a label is

quite cumbersome, we used a semi-automatic approach. We started with an automatic

method (speech activity detection by cross-talk suppression) to obtain the speech/si-

lence segmentation. Then an annotator revisited and adjusted the segmentation and

labels. This process was carried out using the ELAN graphical interface. Each recording

has an average 60 utterances. The average duration of an utterance being 1.3 seconds.

• Addressee. Addressee is the person or group of people to whom ‘a speech utterance

is intended to’. Given the scenario, we are interested in labeling the addressee of the

utterances from the two human participants. We assigned the following labels: {NAO,

PRight, PLeft, Group, NO LABEL}. PRight and PLeft are the persons to the right and

left of NAO. Group label corresponds to the situation where one participant addresses

jointly NAO and the other participant. We assign NO LABEL if the current utterance has

no addressee or if it is a speech act like ‘Laughter’. The labeling of each utterance was

done by one annotator having full access to the audio-visual recording. The GROUP

label mainly occurred during the self-introduction phase. 13 interactions were used to

compute the statistics.

Reliability. A secondary coder performed the annotation for 4 out of 13 interactions (i.e.

30% overlap). The results show that Cohen’s Kappa, the interannotator agreement, was

0.93, meaning they are infact quite reliable.
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Chapter 3. Datasets

Figure 3.6 – NaoD dataset sample images from the first and second phases of the recording. P1
and P3 are seating on the left and right sides in the left image. P2 is seating on the left side in
the right image.

3.3 NaoD Dataset

The second dataset (NaoD) is a small dataset recorded with Nao sensors before the Vernissage

corpus. Here, in contrast to the previous dataset, Nao is not actively interacting with people

and is used as a passive sensor. However, given the scenario which is explained below, the

robot is one of the main visual targets. This makes the data close to what we get in HRI

scenarios with respect to the attentional behaviour of people.

3.3.1 Scenario

The scenario considered for this recording is the following: there are two participants seating

on a couch in front of the robot as shown in Figure 3.6. One of them introduces Nao to the

second one and talks about the robot’s features and capabilities. The second participant tries

to remember these information and asks questions if neccessary. He is supposed to give the

same introduction to a third participant who joins later (Figure 3.6 on the right). At the second

phase of the recording, the third participant replaces the first one and gets the information

from the second participant. Participants show things on the robot and point to it during the

introduction.

3.3.2 Recording

We made one recording of the described scenario resulting in 18 minutes of data in total. The

three participants P1, P2, P3 involved in this recording are shown in Figure 3.6. Nao video data

is mono at VGA resolution. In this dataset there is no audio information since at that time of

the recording, joint audio-video acquisition was technically not possible.
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a) b)

Figure 3.7 – (a) Meeting data setup, showing the two participant who are seating in front of the
organizers, together with their possible VFOA targets. (b) Meeting data sample image.

3.3.3 Annotations

For this dataset we only annotated the visual focus of attention states. Each of the participants

have 3 visual targets: the other participant, Nao and a booklet which they refer to during

the recording. Like with the previous dataset, labelling was performed using an interface

displaying the images of the video acquired from NAO (i.e. taking the robot perspective).

3.4 Meeting Dataset

The third dataset we used is the meeting room recordings of the IDIAP Head Pose Database

(IHPD) which was used for VFOA analysis in the previous thesis [Ba, 2007]. We use it in this

work to evaluate our VFOA recognition methods on other datasets in addition to our data

recorded by Nao.

3.4.1 Scenario and recordings

In this dataset we have the recordings of 8 meeting sessions with a total duration of 145 minutes.

All of the meetings are recorded under the same condition and with similar configuration as

shown in Figure 3.7, with 4 people (Person left Pl and Person right Pr seen on the image, and

two organizers O1 and O2 seating in front of them) discussing statements displayed on slides.

We perform our study on the two persons on the seats in front of the camera.

During the recordings the participants were first asked to write their name on a sheet of paper

on the table and discuss statements displayed on the projection screen. The scenario gives full

freedom to the participants about their head motion, pose and gestures. People were acting

naturally as in real meeting situations. The meeting lengths vary between 7.6 to 14 minutes,

thus studying the visual focus of attention in these recording is interesting. The recordings are

long enough to exhibit a wide range of gazing behaviors.
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3.4.2 Annotation and measurements

For this dataset ground truth head poses are available and captured from flock of bird (FOB)

sensors.

Annotations for the visual focus of attention(VFOA) of the participants are also available with

the dataset. Each of the participants has 5 possible gaze targets: 3 other persons, the slide

screen and the table.

3.5 Conclusion

In this chapter we presented three datasets used for the experiments in this thesis. The meet-

ing dataset was available from the previous studies on human-human behavior analysis in

the meeting context. The NaoD dataset was recorded in the early stage of our research to

provide data with the same specifications we would expect to get from robot Nao sensors.

However, considering that Nao is only an interesting object and not engaged in interation with

the participants, this dataset does not contain similar behavior that people would show while

engaged in a multiparty interaction where the robot has a key role in the conversation. Conse-

quently to obtain a more suitable dataset the Vernissage data was recorded in collaboration

with our project partners in Bielefeld University thanks to their recording infrastructure.

The senario used in the Vernissage corpus has two different parts. In the first part, the robot

starts by giving some explainations about the paintings surrounding it to the participants, and

in the second part, it gives a quiz and individually addresses one person at a time, asks him/

her a question and expects him to answer. Given the scenario, participants’ unconstrained

behavior, and the sensors, there are lots of challenges for addressing the perceptual tasks.

For VFOA analysis, challenges are due to the Nao sensors, and different body poses and gaze

behaviors of people.
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4 VFOA recognition models

4.1 Introduction

In this chapter, we will address the recognition of VFOA in HRI or Embodied Conversational

Agent (ECA) settings. Measuring and interpreting the gaze of people is a difficult task as

mentioned in Chapter 2. Especially in HRI applications, eye tracking devices are not a suitable

options and high definition images are not accessible because people are not necessarily

close to the robots. Therefore in the absence of eye gaze information we will mainly rely on

the head pose input. Considering the advances in computer vision tracking systems, other

researchers have largely considered head pose as an approximation of the gaze [Nakano et al.,

2003, Foster et al., 2012]. However, interpreting the head pose as looking at VFOA targets

remains ambiguous since in realistic scenarios, the same pose can be used to look at different

targets depending on the situation. In this chapter, we will propose our novel Input-Output

HMM (IO-HMM) combining two complementary approaches to improve VFOA recognition

as described below.

As for the first approach, we explored the head pose-gaze correspondence. As mentioned

in chapter 2, one of the few works addressing this problem without being dependent on

the specific given configuration, is by [Ba and Odobez, 2009]. Exploiting results on human

head-eye dynamics involved in saccadic gaze shifts [Langton et al., 2000,Freedman and Sparks,

1997, Wang and Jin, 2001], as described in the first model in Section 2.2.1, they introduced

a gaze model relating the head pose, gaze direction, and body orientation. In this thesis we

followed this approach and proceeded by addressing its two main drawbacks for targeting

dynamic settings. The first drawback is that the body orientation was assumed to be fixed

and set according to the setup. This approach is not feasible in more dynamic settings where

people are free to move and re-orient themselves, as illustrated in Figure 4.4. The second

drawback, pointed out in several psycho-visual works, is that the mapping not only depends

on the the gaze direction and body orientation, but also on the head or gaze direction before

the shift, resulting in different head poses for looking at different targets even for the same head

reference direction. We propose models relying on a time-varying and implicit estimation of
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the body orientation to implement dynamic gaze-to-head mapping and gaze shift models

inspired by [Hanes and McCollum, 2006] to address the above mentioned problems. As shown

in our HRI scenario, these models considerably improve quantitatively the accuracy of the

predicted head pose used to look at VFOA targets, and VFOA recognition as a consequence.

These models have been previously published in a workshop [Sheikhi et al., 2012] and a

conference paper [Sheikhi and Odobez, 2012] in collaboration with a post doctoral researcher,

Vasil Khalidov.

As for the second approach, we considered using other conversational cues considering the

fact that some behaviors provide context to the others. Since social cues have to be inferred

from the data and might be noisy, the robot context could be considered as a better option

for contextual information. Given that in the robotic or ECA cases, the agent is fully aware

of its own conversational acts, allows them to be conveniently exploited as context to better

interpret the non-verbal cues performed by interacting people. We propose to benefit from the

HRI context by exploiting two types of robot dialog acts that can influence VFOA expectations:

communicative acts (people look more at speakers, including the robot) and verbal acts

(references to scene objects). This second approach has been published in [Sheikhi et al.,

2013b], with contribution from V. Khalidov and our partners at Bielefeld university (D. Klotz

and B. Wrede) w.r.t. to the automatic extraction of dialog acts. The combination of both the

dynamic gaze model and contextual approach is submitted as a journal paper [Sheikhi and

Odobez, 2014].

The chapter is organized as follows. Section 4.2 provides an overview of the approach, while

the Sections that follow describe the baseline algorithm (Section 4.3), the novel gaze dynamical

mapping (Section 4.4), and the contextual model (Section 4.5). Section 4.6 concludes the

chapter.

4.2 Approach Overview

Our objective is to monitor the visual attention of people in a given environment relying on

head pose since eye gaze is not directly accessible in our intended scenario. To address this

problem, we assume to have a specific set of visual targets F which are of interest in our given

context. We would like to recognize which of these targets a given person is looking at.

As a reminder, the main robotic setup which we have considered is based on the Vernissage

scenario and database shown in Figure 4.1 (a), and that we have described in Chapter 3, where

a robot acts as an art exhibition guide, providing explanations about artworks placed around it,

and in a second phase, giving a quiz. Recognizing what or whom people are looking at in this

context gives useful information about their attention to the robot and whether they follow

the explanation or not which could be used to decide how to proceed in the conversation.

Figure 4.1 (b) shows an illustration of the Vernissage setting with the robot, participants and
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a) b)

  Painting 1 
 Painting 2 

Painting 3 

 Person 2   Person 1 

   Nao 

Figure 4.1 – a) Our Vernissage scenario: the robot is explaining artworks as an exhibition guide.
b) Vernissage data considered for evaluation: in the recordings the robot explains 3 groups of
paintings to participants, and then gives them a quiz. Our task is to monitor people attention,
i.e. recognize whether they look at Nao, the other person, the paintings, or elsewhere.

paintings. In this case we define F as:

F = {N ao, par tner, pai1, pai2, pai3,other } (4.1)

where N ao refers to the robot, pai j refers to painting number j and other stands for VFOA

that is not attributed to any other label.

The recognition approach is illustrated in Figure 4.2. Broadly speaking, the middle part (box)

shows the main recognition process, which consists of an HMM allowing the decoding of

the sequence of head poses in terms of VFOA states Ft ∈ F. The head pose Ht ∈R2 at a given

time can be represented by three angles pan, tilt and roll. The pan rotation is a left-right

rotation, the tilt rotation is an up-down rotation, and the roll rotation is a head-on-shoulder

roll as illustrated in Figure 4.3 (a). In this work we only use the pan and tilt angles, thus

Ht = (H pan
t , H t i l t

t ) ∈ R2. Then this process is affected in two ways. First, by the gaze-head

mapping model shown at the bottom part, whose goal is to dynamically predict at each instant

t the expected head pose µh
t = (µh,pan

t ,µh,t i l t
t ) used to look at each VFOA target, as addressed

in Sections 4.3 and 4.4. It is designed to reflect the findings from studies on human gazing

behavior related to the coordination of the body, head and eyes in gaze shift. Secondly, as

shown at the top part of Fig. 4.2, by leveraging contextual information aiming to remove

the ambiguities introduced by relying on noisy head poses measurements rather than gaze.

Given our robotics setup, contextual cues are extracted from the robot’s conversational acts as

discussed in Section 4.5.

4.3 Baseline: HMM with Geometrical Mapping

We build our VFOA recognition model based on a Hidden Markov model (HMM) which is

illustrated in the middle part of Figure 4.2, without exploiting the context at this stage. In
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C C +

+

+

+

Robot Context

VFOA

Head Pose

Gaussian Means:

dynamic gaze to head-to-gaze mapping

Figure 4.2 – VFOA recognition from head pose. The robot conversation context Ct appears
as an input observation and provides expectations about which VFOA should be observed.
At the bottom, a gaze-head mapping module dynamically monitors the expected head pose
associated with each VFOA target.

this model, the distribution of head poses associated to a given VFOA target is represented

by a Gaussian distribution, whereas transitions between VFOA targets are represented by a

transition matrix A. More specifically, let Ht and Ft indicate the head pose and focus values

at time t , and µh
t ( f ) ∈ R2 and ΣH ( f ) ∈ R4 denote the mean and covariance of the Gaussian

associated with target f . The HMM equations can be written as:

P (Ht |Ft = f ,µh
t ) =N (Ht |µh

t ( f ),ΣH ( f )) (4.2)

P (Ft = f |Ft−1 = f̂ ) = A f f̂ (4.3)

Parameter setting is a major issue in this approach. Following previous works, the covariance

of Gaussians can be set to reflect the target sizes and the head pose estimation variability. In

absence of other information, the temporal prior p(Ft |Ft−1) modeled by the transition matrix

A can be used to perform temporal smoothing by setting large probabilities to stay in the same

state and equal low probability to transit to other states:

A f f̂ =
a, if f = f̂ ,

(1−a)/(n −1), otherwise.
(4.4)

where a is a constant denoting the probability of staying in the same state, and n is the number

of targets. This satisfies our expectation of preserving the VFOA continuity in the sequence.

However, although they play the most important role in the model, setting the Gaussians
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a) b)

Ref gaze  
target 

H G 

µgaze
µhead

Figure 4.3 – a) Head pose specified by pan, tilt and roll angles. b) Geometrical Gaze Model (for
the pan angle). The person is assumed to be looking at the reference direction, or midline
(body orientation). Then, looking at a gaze target is accomplished by rotating both the eyes
and head, with the head part being a fixed fraction of the full gaze rotation. In the picture
µgaze corresponds to µt in equation 4.5.

means µh
t is not possible in an easy way. As discussed in the introduction using training data

is not an option since annotation needs to be gathered for each configuration of the observer,

targets and settings. This is especially problematic if people are free to move.

A solution to overcome the above difficulty is to use gaze models derived from the findings

about human’s gazing behavior as explained in Section 2.2. According to the model explained

in 2.2.1, gazing at a target is accomplished by rotating both the eyes (’eye-in-head’ rotation)

and the head as illustrated in Figure 4.3 (b). More precisely, we assume that the fraction of head

rotation as compared to the total gaze rotation is a constant, independent of the amplitude of

the gaze rotation and of the current context. Then, as a first approximation, µhb
t ( f ), the mean

of the Gaussian1 to look at target f can be set as a fixed linear combination of the gaze and

head reference directions:

µhb
t ( f )−R0 =α?(µt ( f )−R0)

⇒µhb
t ( f ) =α?µt ( f )+ (12 −α)?R0 (4.5)

where ? denotes the component wise product, 12 = (1,1), α= (αpan ,αt i l t ), R0 ∈ R2 denotes

the reference direction assumed to be constant (independent of time), and µt ∈ (R2)K denote

the gaze angles specifying the directions of the given K targets which are assumed to be known.

Note that these gaze angles µt , which are the pan and tilt angles of the unit vector going from

the person’s head to each of the K targets can vary over time as a consequence of the person

movement, or of the targets movements. The head-to-gaze ratio for the pan, αpan , is usually

set between 0.5 and 0.7, and between 0.3 and 0.5 for the tilt. Equation 4.5 can be used to set the

head pose mean for looking at the target f in our HMM model. Our baseline thus consists of

the above HMM model with the reference R0 set to a constant value in order to set the means.

Note that this model has been used in the context of meeting data in [Ba and Odobez, 2009].

1µhx indicates the way the mean µh is set using algorithm x.
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Nao 

J S 

Ref 
Hpose 

Nao 

J S 

Ref 
Hpose 

Figure 4.4 – Different reference directions (shoulder orientations) lead to different poses for
looking at the same target. In both images, person J looks at person S. These images illustrate
that the geometric model is holding true: the head orientation is approximately half-way
between the reference direction and the gaze direction. Note that for the image on the left,
using looking at Nao as reference direction R in Equation 4.5 would most probably lead to a
wrong interpretation of the head pose as looking at Nao rather than at the person S.

4.4 Gaze to head dynamical mapping

The introduced baseline geometrical model has been shown to be useful in static scenarios.

In meetings, since people are mostly seated and do not move their bodies extensively setting

the reference on the middle of the targets has been a good solution [Ba and Odobez, 2009].

When the participants upper body and shoulders exhibit more dynamics, the baseline model

becomes inaccurate since having a static body reference becomes an unrealistic assumption.

Furthermore, the geometrical head-gaze mapping model was originally designed for discrete

gaze shifts when the person moves his head from the midline and intentionally for looking at

a given direction [Langton et al., 2000]. Therefore, it might not be sufficient for mapping the

head poses to the gaze directions when the user is continuously moving his head for looking

at different targets. In this context, using the evolution of head poses or gaze directions in the

past could be useful for obtaining dynamic and more precise predictions of the head poses

used to look at a given target at the current instant. In the following subsections we explore

and introduce three models that can potentially address the mentioned shortcomings of the

baseline geometric model.

4.4.1 Model G1: Dynamical Head Reference

Setting the Gaussians means using the geometrical model requires the knowledge of R0 and

of the target directions. Equation 4.5 shows the importance of the reference: using a wrong

value for R0 shifts the mean values µh
t ( f ) for all targets f simultaneously, which can have

dramatic effects for head pose interpretations. The importance of knowing the head reference

(shoulder orientation) for interpreting and associating a head pose with the corresponding

VFOA target is also illustrated in Figure 4.4. Thus, unless the reference direction is constrained
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by the setting (e.g. when people are seated), using a constant reference can be problematic.

More general and natural interactions will result in more variations and shifts in the reference

as people are free to move. This motivates the need for setting the reference dynamically.

Our goal is to derive a gaze model that accounts for a dynamically estimated reference. To

address this point in absence of shoulder orientation information, we rely on the following

intuition. A person tends to orient himself towards the set of gaze targets he/she spends time

looking at. Such a body position makes it more comfortable and less energy consuming to

rotate his head towards different gaze targets. As a corollary, this means that his average head

pose over time is a good indicator of his reference direction, and can be used as an estimation

for it. Therefore we propose to set the reference value at frame t denoted by Rt as the head

pose average computed over the temporal window of duration W R preceding the instant t :

Rt = 1

W R

t∑
i=t−W R

Hi (4.6)

Figure 4.5 shows the evolution of the pan angle of this reference on a segment taken from the

Vernissage dataset. The three plots (a), (b) and (c) show the reference pan angle for different

window sizes (20, 30 or 40 seconds). Images shown on top correspond to sample frames

taken from the same sequence. It can be seen that using this implicit reference is a suitable

approximation: in the first three images, the person’s body is oriented to the right, which

corresponds to a negative body orientation well reflected in the blue curves; while in the last

three images, the body is oriented to the right (positive pan angle). Note as well that the body

is more frontal in the first and two last images, a fact that can also be observed in our body

reference approximation (see the blue curve values at frames 10500, 1450 and 15500 compared

to 11500, 12500 and 13500 ). Choosing different window sizes W R produces different reference

sequences as shown in the three rows. With bigger window sizes, the reference evolves more

smoothly and is less affected by relatively long side head pose of the person (that should not be

taken as the body orientation). However, bigger window result in latency in cases of important

body shifts (compare the blue curves on frame segment 13000 to 13400 in the third and first

plots). The choice of a suitable window size thus becomes important.

This reference value can then be substituted for the static reference in the baseline model of

Equation 4.5, leading to the definition:

µ
hg 1
t ( f ) =α?µt ( f )+ (12 −α)?Rt (4.7)

We will denote this gaze model by G1. The improvement in recognition accuracy provided

by this model over the baseline can be observed in Figure 4.5 by following the green curves

which show the expected head pose for looking at Nao using the above model (and αpan = 0.6).

Consider the VFOA ground truth bar shown on the top part, and segments [12800, 13000],

[14400, 14800] or [15300, 15600] and compare the two models. Using the baseline with the

static reference set as the robot’s direction (0,0), the expected pan angle for looking at Nao
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a)

b)

c)

Figure 4.5 – Dynamical reference (pan angle) estimated from the head pose averages. The first
row shows sample images corresponding to frame numbers 10500, 11500, 12500, 13500, 14500
and 15500 of the sequence. On each of the three plots (a), (b), and (c) the following elements
are displayed: the head pose pan angle of the person as given by the Vicon data (black curve);
the reference direction (blue curve) computed from Eq. 4.6 as the average head pose over
a window of 20 (plot a), 30 (plot b) and 40 seconds (plot c); and the expected pan angle for
looking at Nao (green curve) predicted according to Eq. 4.7. The green and red bar on top of
each of the plots shows VFOA the ground truth (Nao or other). The estimated reference varies
along with the head pose and body variations. Different window sizes change the smoothness
and delay factors of the reference.
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Hpr
2

Hpr
1

µ

µh1
Ref

Figure 4.6 – Gaze Model with Midline Effect [Hanes and McCollum, 2006]. The target direction
for the shift is denoted by µ. When the gaze is moved to µ from the initial head pose H pr

1 ,
the head is rotated to µh1 according to the geometrical model. The head position at the end
of the shift is thus independent of the initial head position. However, when the gaze shift is
centripetal from H pr

2 to µ, the head is moved to µ. For initial head positions between µh1 and
µ (red zone), an eye-only saccade to µ is made (the head position remains the same).

would be 0 which is not very close to the head pose pan values on these segments and makes

it difficult for the baseline model to recognize the VFOA correctly as looking at Nao. However,

it is evident that using model G1 better expected pan angle (the green curve) is estimated for

looking at Nao (instead of 0), as they are closer to the observed head pose values and thus will

help in correctly recognizing Nao as the visual target.

4.4.2 Model G2: Midline Effect

The previous model was derived based on the assumption of a gaze shift from the reference to

the gaze direction as explained in Section 2.2.2. Thus, the gaze model defined by Equation 4.5

is not valid for gaze shifts with different initial gaze directions.

Indeed, the study on gaze shift [Hanes and McCollum, 2006] behaviors summarized in Sec-

tion 2.2.2 shows that how much of a gaze shift is accomplished by the head or by the eye

depends significantly on the position of the head at the start of the gaze (which in general is

not aligned with the reference), and whether the shift goes through the reference or not2. From

the analysis of the gaze behavior literature, these authors derived the gaze model illustrated in

Figure 4.6 that we investigated in this thesis.

Note that two main conditions happen considering the relation of the previous head pose

and the reference. In the first one, gaze shifts towards the side, then the final head pose is

independent of the initial head pose value since what is important is the final head pose, not

how much the eye or head rotated to reach there. This is important, as it validates the model

2In [Hanes and McCollum, 2006], the reference is called midline. Note that as the model was only studied for
the pan variable, in the G2 model (and G3 as well), the tilt gaussian means were set using the G1 model.
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G1 as a way to define the expected head pose to look at a target. In the second case, where

gaze is coming back from the side and towards the reference, the initial head pose becomes

important. In this condition, head does not go farther than the target direction to be aligned

with the expected head pose predicted by model G1.

To implement this midline effect we need to know what was the value of the head pose before

the gaze shift occurs. To this end, we introduced the variable H pr,pan
t defining the head pose

pan angle prior to a shift and used as estimate of this variable the average of the head poses

(pan angles) computed over a window of size W p separated by a gap ∆p from the current

instant:

H pr,pan
t = 1

W p

t−∆p∑
i=t−W p−∆p

H pan
i (4.8)

The G2 gaze model was then implemented by setting the head pose mean µ
hg 2,pan
t ( f ) of the

head pose pan angle2 of target f using the following rules. For µpan( f ) > 0:

µ
hg 2,pan
t ( f ) =

µ
hg 1,pan
t ( f ), if H pr

t <µ
hg 1,pan
t ( f ) ,

mi n
(
µ

pan
t ( f ),µhg 1,pan

t ( f )+αH (H pr,pan
t −µhg 1,pan

t ( f ))
)

otherwise.

(4.9)

and for µpan( f ) ≤ 0:

µ
hg 2,pan
t ( f ) =

µ
hg 1,pan
t ( f ), if H pr

t >µ
hg 1,pan
t ( f ) ,

max
(
µ

pan
t ( f ),µhg 1,pan

t ( f )+αH (H pr,pan
t −µhg 1,pan

t ( f ))
)

otherwise.

(4.10)

Figure 4.7a) shows the resulting probabilistic graphical model G2. The factor αH indicates how

much we take into account the previous head pose in the estimate. When αH = 0, we always

have µhg 2,pan
t =µ

hg 1,pan
t , which means that the head pose means are set using the standard

geometric model (but using a dynamically set reference). When αH = 1, the implemented

model is exactly the axiomatic model described in Chapter 2.2.2. Note that in this case when

µhg 1,pan( f ) < H pr,pan < µpan( f ), or similarly µhg 1,pan( f ) > H pr,pan > µpan( f ), the expected

head pose is given by the previous head pose. Since the estimation for the previous head pose

is not necessarily very accurate, setting the head pose mean in this way could be overconfident.

Therefore, having 0 ≤αH ≤ 1 might be more appropriate.

4.4.3 Model G3: implementing gaze shifts

When implementing the midline effect, the previous model has one drawback: at each time

step, a gaze shift is assumed. In other words, even if the person is focusing on target f , the

previous head pose H pr,pan
t , estimated through recursion over a short temporal window,
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4.4. Gaze to head dynamical mapping

a)
1

prpr

b)

Figure 4.7 – Probabilistic graphical models. (a) Model G2. The head reference direction Rt and
the mean head pose of the Gaussians µh

t are time dependent variables, and the recent head
pose H pr

t can be exploited. (b) Model G3. The mean head pose for looking at a target (µh
t )

depends on the gaze target at the previous time step (Ft−1). Shaded nodes indicate that the
corresponding random variables are set directly from observation, whereas unshaded nodes
denote hidden variables that need to be inferred.

evolves and as a consequence it may introduce an evolution of what the head pose for looking

at target f should be, especially when H pr,pan
t is close to the expected head pose.

As alternative to the model G2, we define the gaze situation prior to the visual attention shift

by the actual gaze direction defined by the (discrete) VFOA at the previous instant. We then

propose to define the mean of the head pan angle2 to look at target f at time t , given the

previous focus Ft−1 = f̂ , by:

µ
hg 3,pan
t ( f ) =α1µ

pan
t ( f )+α2µ

pan
t ( f̂ )+ (1−α1 −α2)Rpan

t (4.11)

Thus, in absence of gaze shift (Ft−1 = Ft = f ), the head pose mean is simply set using the

geometrical model with αpan =α1 +α2 and therefore the problematic pose evolution during

fixation described above does not exist. In case of a gaze shift (Ft−1 6= f ) the head pose pan

angle is not only affected by the reference and new gaze direction µ
pan
t ( f ) as in G1, but also by

the direction towards the VFOA target at previous instant (the head will be closer to direction

of the previous VFOA target than what would be predicted by the model G1).

Figure 4.7b) shows the new graphical model G3. Note that here the effect of the previous head

pose is not considered by exploiting the midline effect as in G2. The link between the hidden

states Ft−1 and µh
t renders the inference more complex than in a standard HMM. In practice,

we conducted the inference sequentially, using the estimated focus at time t −1 to estimate

the optimal focus at time t .

4.4.4 Model inference

Considering the IOHMM structure of our models, at each given instant t given the model

parameters and the sequence of observations, we would like to find the distribution over the
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last hidden variable at the end of the sequence, i.e. to compute p(Ft |H1:t ). This problem can

be handled efficiently using the forward algorithm to perform the calculations recursively as

follows:

p(Ft , H1:t ) = ∑
Ft−1

p(Ft ,Ft−1, H1:t ) (4.12)

Using the chain rule:

p(Ft , H1:t ) = ∑
Ft−1

p(Ht |Ft ,Ft−1, H1:t−1)p(Ft |Ft−1, H1:t−1)p(Ft−1, H1:t−1) (4.13)

Ht is conditionally independent of everything but Ft , and Ft is conditionally independent of

everything but Ft−1, thus this simplifies to

p(Ft , H1:t ) = p(Ht |Ft )
∑

Ft−1

p(Ft |Ft−1)p(Ft−1, H1:t−1) (4.14)

Since p(Ht |Ft ) and p(Ft |Ft−1) are given by the model’s emission distributions and transition

probabilities, one can recursively and quickly calculate p(Ft , H1:t ) from p(Ft−1, H1:t−1). Ulti-

mately, since p(Ft |H1:t ) = p(Ft , H1:t )/P (H1:t ), and P (H1:t ) is independent of the state values,

we can obtain our target posterior distribution, and use as recognized VFOA the target F

maximizing this posterior.

Note that for G1 and G2 graphical models, at each time instant t the values of Rt , H pr and µh

(either µhg 1 or µhg 2) can be calculated through the equations. Thus, we also used the standard

HMM filtering to infer the VFOA for these models.

As shown in Figure 4.7, in model G3 there is a link between the hidden states Ft−1 andµh
t which

renders the inference more complex than in a standard HMM. In practice, however, we used

the following optimization scheme. We determined at time t −1 the state F̂t−1 maximizing

the posterior p(Ft−1|H1:t−1), and used this state value to compute the expected means. Given

these means, the posterior p(Ft |H1:t ) was computed recursively using the method described

above.

4.5 Context Modeling

In Section 4.4, we proposed three models for dynamic mapping of gaze to head pose which

helps in decoding the VFOA states from the head pose sequence. As illustrated in Figure 4.2,

the second way for improving the VFOA recognition is by using contextual information to

remove the ambiguities introduced by relying only head pose information for estimating the

gaze.

In this Section, we aim to leverage context cues to improve VFOA recognition from head pose.

Contextual information could potentially help in removing some of the ambiguities due to
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Do you want me to give you some 
information about these paintings Alex? 

Good, I will do that. The first painting, that 
we will look at is there on the right side. 

 person 1 

Would you also like me to 
explain this painting Chris? 

 person 2  group 

 paints pai 1 pai 1 

 segment: 

 speaking: 

addressee: 

 topic: 

 seg 1  seg 2 seg 3 

Figure 4.8 – Illustration of the context assignments. Each segment corresponds to one of the
robot’s speech turns and the pause after it (during this robot speaking pause, participants may
answer a robot’s question or talk together, etc.) and thus composed of two subsegments with
different speaking status (s = 1 and s = 0). Depending on the robot’s speech, addressee and
topic states are assigned to each of these segments.

the limitations of our head pose based VFOA recognition models and to compensate for noisy

estimations of the head poses. The main idea is that when interacting with a robot, its actions

influence what people do in certain situations. Therefore, this information, which the robot is

aware of, can be used to predict and better interpret people behavior.

In the following subsections, prior to describing more precisely the recognition model, we will

first introduce the features that we have exploited as context for VFOA recognition in 4.5.1 and

discuss how these cues could be extracted from the robot’s system in 4.5.2. In 4.5.3 we will

describe our conversational aware VFOA recognition method and in 4.5.4 explain how context

tables are trained for this method.

4.5.1 Robot Conversation Context

Given our task, the question is which of the robot actions affect people VFOA, and how? In in-

teractions, these mainly relate to the communication functions of gaze and their relationships

with speaking turns [Kendon, 1967]. However, it is also known that objects that play a central

role in the conversation may attract the attention whereby overruling the communication

patterns observed in natural conversation [Van Turnhout et al., 2005]. In our art guide scenario

this corresponds to physical locations in the room and particularly paintings. We thus defined

the robot interaction context, illustrated in Figure 4.8, as described below.

Speaking context.

Listeners are known to gaze more at speakers than at non-speakers to show attention towards
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Figure 4.9 – Participants VFOA statistics given the robot’s different addressee states. (left)
shows the VFOA statistics for the participant who is individually addressed by the robot,
(middle) shows the statistics for the non-addressed participant, and (right) shows the statistics
when both participants are addressed. The x axis denotes the time since the end of the robot
utterance. The statistics for x = 0 are collected during the robot’s utterance. Different curves
correspond to different visual targets.

them. Thus we defined a speaking context state variable st ∈ SC = {0,1} as whether Nao speaks

or not at time t .

It could be important to consider how long Nao has been speaking or if it is possibly close to

finish its speech turn. However, modeling all of these factors is a complicated task. In order to

keep the model simple and avoid overfitting, at this step we only considered a binary variable

for the speaking context which has the same effect regardless of the distance to the beginning

and end of the speaking segments.

Addressee context.

It is known that speakers monitor their addressees’ attention by gazing at them, and expect

gaze in return [Kendon, 1967]. Considering this effect, we thus defined the addressee context

a ∈ AC = {per s1, per s2, g r oup} of a speech segment as the situation when the robot addresses

the first person, the second person, or both.

As with the speaking status, one may wonder whether the addressee context may impact

the VFOA of people differently depending on the timing (during the utterance, after the

utterance). To study this effect the VFOA statistics depending on the addressee status are

shown in Figure 4.9, either during the robot speech (displayed for x = 0) or x seconds after the

end of the speech.

Comparing the three plots in Figure 4.9 for the individually addressed person (left plot), the

non-addressed person (middle plot) when the robot addresses a single person, and the case

where both participants are addressed, we can see some general differences. In spite of

the noise, we can notice that addressed people tend to stay more in visual contact with the

robot, while non-addressed people disengage quicker to look at the other person or elsewhere.
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Moreover, when both people are addressed they tend to stay in visual contact with the robot

even longer and less with each other. These differences motivates using this type of context as

a cue to improve VFOA recognition.

Considering the temporal variation of VFOA probabilities (after the utterance), we can notice

that specifically for the non-addressed person there are some differences during different

stages as in Figure 4.9(middle). During the robot’s utterance and right after the utterance, such

a person seems in visual contact with the robot, then looks more at the partner and at the end

engages again with the robot while in general the addressed person might answer to the robot

or releases his turn.

However, in spite of these observations, to avoid overfitting and keep the models simple, we

implemented a constant model for x > 0 and found it to be also reasonable. We thus defined

the addressee context state at at t as the addressee context derived from the current (if st = 1)

or preceding (if st = 0) robot utterance.

Topic context.

Given our Vernissage scenario and dataset, the topic context is considered to show whether

the robot informs or refers to a specific painting, to two or all paintings, or none of them. The

topic context set is then defined as OC = {pai1, pai2, pai3, pai nti ng s,none} corresponding

to the mentioned states. The topic context state ot ∈OC at time t is thus defined as the topic

context of the robot utterance that precedes t .

We could expect that the exact moment when the robot explicitly points to a picture or men-

tions its name affects the participants behavior only right after this specific moment, and that

timing plays some role on this effect. However, extracting the exact timing information of ref-

erences to the objects from the robot system and modeling their effect in a very accurate level

would bring many complications into the approach. Moreover, in some cases (i.e. explanation

part in the Vernissage scenario), people may look at the paintings during the whole utterance

and explanations, whereas it might be more punctual in other cases (i.e. when robots refers to

a painting to remind it during the quiz). Distinguishing between these cases might also be

difficult for an automatic system. In order to avoid these complications, we consider that the

topic context will have the same effect on VFOA all over the segment and do not assume any

temporal variations.

Overall conversational context Ct . As a summary, at each instant t , the different context

states st , at and ot are automatically assigned according to the spoken utterances and tem-

poral segments, as illustrated in Figure 4.8. The final context state Ct is then defined as the

Cartesian product of all contexts, ie Ct = (st , at ,ot ), with Ct ∈ OC = SC × AC ×OC and will

influence the VFOA recognition as explained in the next Section.
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4.5.2 Conversation Context Derivation from the Robot System

In this work, we assumed that the robot is aware of all conversational context types defined in

Section 4.5.1. In this part we explain how this information was derived in our scenario and

how it could be accessed in other platforms.

In our scenario, the context is automatically derived from the robot system data. The robot

system data includes wizard commands and internal events for speech and gesture production.

This data is both available for online use and is also recorded along with our Vernissage corpus.

Speaking status is automatically derived from the internal events. Wizard commands sent

to the dialog system implicitly contain the information needed to derive the addressee and

topic states. Therefore, the dialog system is aware of who is addressed (either a person, or

a group) along with the way to address them, which in our set-up was accomplished for a

given individual by naming him and turning the head towards him, or by directing the head in

between participants when both persons were addressed. In the same way, the dialog system

is aware of the current topic the robot has spoken about and also the way to show it to the

participants, accomplished by mentioning the name of the painting or its painter, turning the

head towards it or using hand gestures to point at it.

Alternatively, instead of being dependent on a wizard, in a more realistic case the robot

would rely on an autonomous dialog system. In this case the dialog manager would decide

which speech and dialog acts the robot should make during its interactions. Considering the

information from users behavior and requests they make during the interaction, the dialog

manager would decide what the robot should say (contains the information about the topic)

and who it should address. Therefore, in the same kind of scenario with multiple users and

objects of interest which could be the topic of the conversation, The VFOA recognition module

would be able to receive similar information from the dialog manager.

4.5.3 Conversation Aware VFOA Recognition

To address VFOA recognition using head pose and context information, we use the IOHMM

graphical model of Fig. 4.2. In this model, the VFOA is inferred by maximizing the posterior

probability of the sequence of VFOA states F1:t given all observed variables: head pose Ht ∈R2

and context Ct . The posterior for the graphical model of Fig. 4.2 is expressed as:

p(F1:t |H1:t ,C1:t ,µh
1:t ,R1:t ) ∝ ∏

t=1:t
p(Ht |Ft ,µh

t )p(Ft |Ft−1,Ct )

with

p(Ht |Ft = f ,µh
t ) =N (Ht |µh

t ( f ),ΣH ( f )), (4.15)

p(Ft |Ft−1,Ct ) ∝ p(Ft |Ft−1)p(Ft |Ct ) (4.16)
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where the different terms are explained below.

Data likelihood.

The term in Equation 4.15 represents the likelihood of an observed head pose for a given focus,

and is modeled as in Section 4.3, with a Gaussian distribution per focus. Note however that

here we will rely on dynamic means µh
t set according to the different models in Section 4.4,

and which play a crucial role for VFOA recognition.

Contextual prior.

Equation 4.16 denotes the prior on the focus, which we assumed can be decomposed in two

parts. The first one is the temporal prior p(Ft |Ft−1) modeled by a transition matrix A set

as in Section 4.3 to allow temporal smoothing. The second one, which denotes the prior

on the VFOA according to the Robot context is modelled using a multinomial distribution

parametrized by the vector Bc = (Bci )i∈F .More precisely, we have:

p(Ft = f |Ct = c) = Bc f

This term affects the VFOA recognition by altering the expectations about what people might

be looking at depending on the context. It is parameterized by the probability tables B = {Bc }

as explained below.

4.5.4 Learning the context tables

There are several ways to set the tables, depending on goals and assumptions. Here, we use a

learning approach, with smoothing to handle the lack of data for some contexts, and further

modeling assumptions to avoid data overfitting and better capture the model generalization

capabilities.

More precisely, given a training dataset, we gather the VFOA data D = {Dc ,c ∈ OC } where

Dc = { ft |ct = c} contains VFOA data observed under each given context c. Then the goal will

be to learn the vector of parameters Bc of the multinomial for each context c . For learning the

parameters we use a Maximum A Posteriori approach to maximize

p(Bc·|Dc ) ∝ p(Dc |Bc·)Di r (Bc·|α) (4.17)

where Di r (Bc·|α) denotes a conjugate Dirichlet prior on the parameter Bc . According to this

model, the optimal parameters are given by:

Bc f =
n f +α f

Σ f ′(n f ′+α f ′)
(4.18)

where n f denotes the number of occurrences of the focus f in Dc , andα f denotes the Dirichlet
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Table 4.1 – Sample context VFOA count table(using only the topic context)

Context Nao partner pai1 pai2 pai3 others

pai1 7847 692 10851 3704 101 771
pai2 4860 247 253 12629 72 519
pai3 8404 798 57 985 10414 618

paints 13704 6113 4447 12411 3312 2489
none 103186 31045 1938 15233 4264 22086

prior parameters for each focus f . These priors were set as:

α f = 0.1N f /(K ×NC ) (4.19)

where N f ,K and NC denote the number of observation in the whole training set, the number of

VFOA targets, and the number of contexts, respectively. In other words, the prior corresponded

to the addition of virtual observations equally spread amongst table entries and amounting to

10% of the total number of real observations.

Priors learned using the above scheme might overfit the specific setup. In particular, the

painting positions or the duration of references and explanations about each of them lead to

the gathering of different statistics for each painting. Therefore, to be more general, we applied

parameter tying, enforcing that all table entries involving paintings which play the same role

should be the same. In order to do that, after counting the observations (video frames) with

each specific context state c ∈OC and VFOA target F ∈ {N ao, par tner, pai1, pai2, pai3,other }

in the training data to obtain the table of the raw counts, we make further simplifications as

follows:

• For the context types c where the topic cue is not pai1, pai2 or pai3, we take a same

number of occurrences for looking at the paintings by taking the average of their occur-

rences.

• When the topic cue of c is pai1, pai2 or pai3, hence the robot is referring to a specific

paintings, we differentiate between the painting which is being referred and the two

other paintings. Averaging is done separately for the referred painting and the two other

ones. Therefore, we will obtain different occurrence numbers for looking at the referred

painting versus the others.

Finally the probabilities are obtained by normalizing the rows of this table. As an example,

when we consider a context set only consisting of the topic contexts (C = TC ) Table 4.1

illustrates the raw observation occurrences, and the final context probability priors obtained

after parameter tying, normalization and smoothing are shown in Table 4.2.
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Table 4.2 – Sample context probability priors (using only the topic context) showing parameter
tyings.

Topic Context Nao partner pai1 pai2 pai3 others

pai1 0.33 0.03 0.53 0.04 0.04 0.03
pai2 0.33 0.03 0.04 0.53 0.04 0.03
pai3 0.33 0.03 0.04 0.04 0.53 0.03

paints 0.32 0.14 0.16 0.16 0.16 0.06
none 0.58 0.17 0.04 0.04 0.04 0.12

4.6 Conclusion

In this chapter we proposed two different but complimentary approaches towards recognizing

the visual focus of attention based on head pose input for human robot interaction application.

The first approach focuses on the fact that in unconstrained conditions, dynamic gaze-to-

head mappings with more accurate gaze shift models are needed. Therefore, we proposed

several models for improving the head to gaze pose correspondence. In the first model, we

incorporated an implicit estimate of the body reference into the model which varies over time.

In the second one, we implemented the midline effect which considers the importance of

the previous head pose, when the gaze shift occurs from the side towards the head reference.

Finally in our third model, we consider the effect of the previous gaze only when a gaze shift

happens by incorporating the previous gaze target.

In our second approach, we aimed at leveraging contextual information which is specially ob-

tainable from the robot’s conversational states. To this end we introduced different contextual

cues from the robot’s conversation which we expect to have effect on the user’s behavior and a

methodology on how to exploit them in the VFOA recognition process.

Our experimental studies in the following will demonstrate the utility of these approaches for

improving VFOA recognition as well as their complimentary benefits.

57





5 VFOA recognition experiments

5.1 Introduction

In Chapter 4, we presented different models for VFOA recognition approach which uses head

pose-gaze mapping and leverages robot contextual context for inferring the VFOA labels from

the head pose sequence. In this chapter, we will evaluate and validate different components

and contributions, in particular different head pose-gaze mappings and the effect of the robot’s

conversational context. The content of this chapter was partially presented in workshop and

conference papers [Sheikhi et al., 2012, Sheikhi and Odobez, 2012] and is currently submitted

as a journal paper [Sheikhi and Odobez, 2014].

Before looking at the results, we first summarize how head pose tracking estimates were

obtained in Section 5.2. Then in Section 5.3 we will remind the parameters involved in

different models, provide their default values and explain the general strategy to learn them.

In addition we will explain our evaluation protocol.

In Sections 5.4 and 5.5 we will remind the datasets and provide the experiment results. Since

Meeting and NaoD data have no robot context, we will present their results separately in

Section 5.4 and present those for the Vernissage dataset in Section 5.5. In Section 5.6 we will

provide discussion and conclusion on the experiments.

5.2 Head pose tracking methodology

In this section we describe the head pose tracking method used for extracting the head poses

for our experiments. We used on the head pose tracking algorithm explained in [Ba and

Odobez, 2005] for extracting the head pose estimates for NaoD dataset. Then we relied on an

extension of this approach [Khalidov and Odobez, 2013] which was developed for Humavips.

Here we provide a summary on this monocular visual head pose tracking method.

The method has considered the difficulties existing in HRI applications such as having moving

persons, moving robot and unconstraint environment such as different distances of people
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and different lighting conditions. Therefore, a tracker should have different properties to

be suitable for these applications. First of all it should be robust against lighting variations,

appearance changes, human motion, robot motion and occlusion. Second, the initialization

and destruction of the trackers should be accurate and timely, and finally it should guarantee

real-time performance and be able to work with video stream sampled irregularily. In order

to provide these properties, tracking by detection approach is adopted. Face detectors for

different face orientations (frontal and profile) are employed and the method makes use of

trained prior models of color and texture features for various head poses to track in variable

lighting conditions and with appearance changes. Moreover, tracker management techniques

are employed following [Duffner and Odobez, 2013] to help for creating and removing tracks

and handle occlusions.

Problem Formulation: Assumt that the observation (image) at time t is denoted by ot and the

individual tracker state representing the head pose configuration is denoted by st . Following

the Bayesian formulation of the tracking problem, the objective is to estimate the distribution

p(st |o1:t ) where o1:t denotes the sequence of observations up to time t . This distribution

could be written as:

p(st |o1:t ) ∝ p(ot |st )
∫

st−1

p(st |st−1)p(st−1|o1:t−1)d st−1 (5.1)

Tracker state s is defined as s = {u, v,h,e,αpan ,αt i l t } where (u, v) is head location on the 2D

image plane, h and e are scale and eccentricity parameters that determine the 2D bounding

box where measurements are made and αpan and αt i l t are pan and tilt head rotation angles

denoting the pose angles.

Since the above equation cannot be solved analytically, approximations should be used. More

precisely, in this method a particle filter approach is used in which a set of weighted particles is

exploited to approximate the optimal filtering density. In more detail, a sequential importance

sampling strategy is adopted to sample the new particles according to an importance function

q(st |st−1,ot ) and update the weights using standard formulation. One specifity of the tracker

is to define the proposal q as a mixture of the state dynamic model p(st |st−1) and image-based

proposal distribution. In this way both dynamics and observed data are used in order to

approximate the optimal proposal distribution. These two component are explained below:

• Dynamic model: Given the importance of dynamics used to explore the state space and

on the other hand difficulties for predicting people’s motion, it is defined as a mixture of

two elements. The first one is a random search around the previous state which accounts

for the situations where the person is not moving, a likely case when in our HRI context.

Whereas the second one is an order one state-based velocity model which accounts for

constant speed motion of the person obtained from previous state estimates.

• Image-based proposal distributions: The previous dynamic models are only based on

state evolution (constant position or velocity) and random search. However, there are
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Figure 5.1 – Texture and color features.

also abrupt speed changes which are difficult to predict based only on past information,

and these are the situations that often lead to failure. Therefore, in these cases it is better

to directly exploit the information contained in the images, which are of two different

natures: instantaneous observations reflecting the presence of the object (as produced

by a face detector) and sequential observations reflecting observed image-based motion

between frames. Thus, in this proposal, particle states are sampled either around face

detections close to the state and obtained from a frontal and profile detection, or around

states predicted using a robust motion estimator.

Likelihood distributions: a classification based approach is adopted to head pose estimation

based on feature templates where the likelihood is defined as

p(o f |s) ∝ exp{−λd(o f ,o f (αpan ,αt i l t ))} (5.2)

with o f denoting a set of features ( f = texture or skin) and o f (αpan ,αt i l t ) denoting the tem-

plate built from the POINTING head pose database containing images of 15 persons taken

at different discretized pan and tilt angles [Gourier et al., 2004]. The following two kinds of

features are used to characterize the tracker state and are illustrated in Figure 5.1.

• Texture likelihood: Texture features are computed using multiscale descriptors based

on histograms of oriented diagrams (HOG) [Ricci and Odobez, 2009].

• Skin likelihood: Features based on skin color are also used to characterize image

patches. Color models trained on frontal face images are used to clasify skin and

non-skin pixels and then extract a skin binary mask.

Single and multiple person track management: Finally to achieve proper tracker manage-
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Table 5.1 – Summary of the main parameters for different dynamical models introduced in
Chapter 4. The optimal parameters were estimated mostly through cross-validation on the
training set. .

Models Parameters
ΣH Gaussian variance - set given the size of the targets and the expected noise.
A HMM transision matrix - self-loop value a is set by cross-validation.

unfoc probability threshold for determinging the unfocused state (other) - set by hand.
αpan gaze direction factor for µh pan angle - set by cross-validation
αt i l t gaze direction factor for µh tilt angle - set by hand
W R window size for the dynamic reference - set by cross-validation
W p window size for the previous head pose for G2 - set by cross-validation
∆p gap for the previous head pose for G2 - set by cross validation
αH previous head pose factor for µh in G2 - set by cross-validation
α1 current gaze direction factor for µh pan angle in G3 - set by cross-validation
α2 previous gaze direction factor for µh pan angle in G3 - set by cross-validation

ment and handle multiple trackers, the long term tracking framework of [Duffner and Odobez,

2013] is employed. The main ideas are a) to run the face detector and wait for several detection

firings (unless it is in a region where previous tracks have been observed) to initialize tracks

and make the initialization more robust to false detections, b) to run a filter on the tracker

statistics (position, speed, likelihood, variance estimation) to quickly identify tracking failures

and remove tracks, c) to manage the cases where persons occlude each other to avoid the

situation where two different trackers end up tracking the same person.

5.3 General parameter setting and evaluation protocol

5.3.1 Model parameters

Different parameters are involved in the VFOA models described in Chapter 4. A summary of

all parameters involved in the gaze to head dynamic mapping models described in section 4.4

is displayed in Table 5.1. Most of the parameters are set through cross-validation for the

Meeting and Vernissage datasets. For the NaoD dataset, since it only consisted of three people,

we used parameters obtained from the Meeting dataset. More details on setting the parameters

will be provided separately for each of the datasets.

The parameter αt i l t is set to 0.5 by hand for all models and datasets and the value for the

parameter ’unfoc’, i.e. the threshold for deciding the other state is set to 1
180×180 . With this

threshold when the Gaussian’s standard deviation for looking at a target is set to (10,10) (we

use roughly this standard deviation for most of the visual targets in the experiments with the

Meeting and NaoD datasets), a point in the 1 standard deviation distance from the Gaussian
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center would have a higher probability for belonging to the Gaussian than being unfocused

whereas a point at the distance of 1.5 standard deviation would belong to the unfocused area

and obtain the ’other’ label.

For the context modelling, the context tables described in section 4.5.4 are also set through

cross-validation.

5.3.2 Performance measure

Different measures used for comparing the algorithms and evaluate their performances. In

particular we used Frame based Recognition Rate as our main evalusation measure. However,

we also used other measurements to gain better insight to compare different models. Our

measurements are defined as:

• Frame based Recognition Rate (FRR): the percentage of frames during which the VFOA

has been correctly recognized. This is the main performance measure used in these

experiments.

• Confusion matrix: the information about actual and predicted classifications.

• Head pose prediction error per VFOA class: the mean of the errors in degrees, between

the head pose actually used to look at the target, and the prediction made by head

pose-gaze correspondence models.

• Average recognition per VFOA class: the average percentage of correct recognitions for

each target.

5.3.3 Statistical significance test

As in [Ba and Odobez, 2011], we used a variant of the McNemar test to evaluate whether the

difference between the recognition results of two algorithms is statistically significant. The

McNemar test looks only at the samples where the two algorithms give different results. It

checks whether an algorithm provides almost systematically the same or a better answer than

the other one. Following [Ba and Odobez, 2011], to ensure independence between VFOA

samples, we extracted data chunks of 5 minutes separated by 1 minute intervals. On these

chunks we performed a variant of the McNemar test that can account for correlated data in

the clusters [Durkalski et al., 2003]. In this approach, it is assumed that there could be some

correlation between data inside each cluster but different clusters are independent from each

other.

In this approach the paired responces (Yi j k ,Y′i j k ) of the two algorithms to be compared are

used as input, where Yi j k is the binary outcome (correct or wrong result), i is the algorithm

(i = 1,2), j is the unit within the cluster (1,2, . . . ,nk ), k is the cluster (k = 1,2, . . . ,K ). N denotes

the total number of units (
∑K

k=1 nk ) over all clusters, and K is the total number of clusters used

in the study. For each cluster k, the data can be presented in a 2×2 contingency table for

matched-pair data with the frequencies ak ,bk ,ck and dk of the concordant and discordant
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algorithm 1 true algorithm 1 false row total

algorithm 2 true ak bk ak +bk

algorithm 2 false ck dk ck +dk

column total ak + ck bk +dk nk

Table 5.2 – 2×2 contingency table for cluster k.

pair types inside the cluster as shown in Figure 5.2.

Having these frequencies, the proposed test statistic of [Durkalski et al., 2003] is

χ2
V =

(
∑K

k=1
1

nk
(bk − ck ))2∑K

k=1[ bk−ck
nk

]2
(5.3)

which is assumed to be asymptotically distributed as a chi-square with one degree of freedom

for large number of clusters.

Given this test statistic χ2
V and assuming a chi-square distribution for it, we can compute the

p-value which is the probability of obtaining the test statistic result, assuming that the null

hypothesis (in our case, that the two algorithms perform similarly) is true. If the p-value is

less than the significance level 0.05, we conclude that the difference between the algorithms is

statistically significant. Using this approach we computed the test results for the Vernissage

dataset.

5.4 VFOA recognition results on Meeting and NaoD datasets

In this Section we present the results for the Meeting and NaoD datasets, since they both do

not contain robot contextual data and experiments are limited to different head pose-gaze

correspondence models.

5.4.1 Meeting Dataset

The Meeting dataset as described in 3.4 and shown in Figure 5.2 was the first data we used

for the experiments with VFOA models. We used all 8 sequences and performed our study

on the two persons on the seats in front of the camera, for a total of 16 persons. Although we

aim to provide algorithms applicable to usual human robot interaction scenarios with more

dynamics and different setting, using such dataset helps to test and verify that our models are

also valid and can be used as well in less dynamic setting with different behavior.

VFOA targets and statistics: As mentioned in Chapter 3.4, VFOA annotations are available

for all sequences of this dataset. Each of the participants has 5 possible gaze targets: one

other participant, two meeting organizers (observers), the slide screen and the table defined.

These targets in addition to ’other’ for looking elsewhere define the VFOA target set by F =
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a) b)

Figure 5.2 – Meeting Data set. (a) A view from the meeting room and settings. Where two
organizers O1 and O2 are seating on the left side of the table(O1 is the one closer to the slide
screen) and two participants are seating on the right side. (b) Data set view, with VFOA targets
for the participant seating on the right.

Label OP O1 O2 T B SS other

Frame Frequency 0.15 0.35 0.05 0.17 0.25 0.02
Event Frequency 0.15 0.36 0.12 0.16 0.17 0.03

Average Duration (frames) 58.2 58.6 26.1 62.6 84.8 40.4
Average Duration (seconds) 2.3 2.3 1.0 2.5 3.4 1.6

Table 5.3 – VFOA frequency for the meeting dataset in percentage of frames, events frequency,
and average event duration in number of frames and in seconds.

{OP,O1,O2,SS,T B ,other }.

Table 5.3 provides the VFOA statistics for this recording from three dfferent participants. As

can be seen, the first important target that participants look at is the first organizer and the

second one is the slide screen which is used to show and explain the materials of the meeting.

In terms of durations, events are generally short. However, people make longer gazes on

the slide screen as compared to the organizer and another targets. This is also due to the

importance of the slide-screen in this scenario and the fact that following the slides is less

interactive than group conversations and therefore there are less interruptions there.

Head pose inputs: For this dataset we performed the experiments using ground truth head

poses, captured from flock of bird sensors.

Gaze directions: Position of objects and people (and their head) were assumed to be known

and fixed for each recording (thus neglecting people’s motion), and therefore defined mainly

from the geometrical setting.

Parameter setting: We followed the work of [Ba and Odobez, 2009] for setting the parameters

for this dataset. We set the variances of the Gaussians according to the size of the targets

and the expected noise and uncertainty. For the meeting data we use the same values as
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Table 5.4 – Performance on the Meeting data

Person Training Baseline Model G1 Model G2 Model G3

Person on left same seat 63.8 64.9 66.3 68.5
Person on left other seat 63.2 65.1 65.2 67.8

Person on right same seat 56.7 58.8 58.6 60.0
Person on right other seat 44.7 59.1 59.5 60.1

in which are σpan(O1,O2,OP ) = 12, σpan(SS) = 25, and σpan(T B) = 20 for the pan, and

σt i l t (O1,O2,OP ) = 12 , σt i l t (SS,T B) = 15 for the tilt. Here, σpan and σt i l t denote the standard

deviations for pan and tilt angles.

The initial value for the reference direction is particularly important for the baseline where it

remains the same over time, but less important for the other models as the reference value

evolves and quite rapidly becomes the average over head pose values. For the baseline, we

experimented with setting the reference as the middle of the gaze target directions, which was

shown to work the best in previous works [Ba and Odobez, 2009].

VFOA recognition results: Table 5.4 shows the results of the three models. The first model

outperforms the baseline, particularly in more mismatched conditions, when parameters

are learned from the other seat, exhibiting therefore a better adaptation capacity. The main

(mismatched) parameters leading to the degradation is the parameter αpan of the gaze model

(see Eq. 4.5) that directly impacts the prediction of the head poses: for the ’person left’, the

optimal parameter is around 0.8, which can be understood as the person has to rotate more

the head to look at the different targets (with the slide screen completely on his right, and the

’person left’ completely on his left). For the ’person right’, however, the optimal value for αpan

is around 0.5. The different values of αpan obtained from two different seats could be due to

the fixed choice of the reference (in the middle of the targets; that is i.e. 0 degrees for person

left and 45 degrees for person right) and this fixed body reference should be used for a larger

visual domain. This effect does not exist for the first model G1 and the chosen parameters

through cross-validation are consistent with an optimal value for both seats around 0.7 for

αpan .

On the other hand, we can see that G3 performs better than the G1 in most cases. We observed

that the improvement happened mainly during consecutive gaze shifts involving stable head

pose changes. This is due to the fact that in this scenario people anticipate that they may go

back to the previous gaze in a discussion. Therefore, previous gaze plays an explicit role here.
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Figure 5.3 – NaoD dataset sample image.

Label OP N ao bookl et other

Frame Frequency 0.49 0.34 0.13 0.05
Event Frequency 0.38 0.39 0.13 0.11

Average Duration (frames) 26.2 17.3 19.9 9.4
Average Duration (seconds) 2.9 1.9 2.2 1.0

Table 5.5 – VFOA frequency for NaoD dataset in percentage of frames, events frecuency, and
average event duration in number of frames (9 Fps) and in seconds.

5.4.2 NaoD dataset

The second dataset for our experiments explained in Section 3.3 is a video recorded by our

robot Nao envolving three participants (two at any given instant) as shown in Figure 5.3 . The

total duration of this video is 22 minutes. In this case there are two participants seating in

front of Nao as shown in 5.3.

VFOA targets and statistics: As mentioned in Chapter 3.3, we have annotated VFOA for this

dataset. Each of the participants have 3 visual targets: the other participant, Nao and a booklet

which they refer to during the recording and is placed on the coffee table in front of the

participants. By adding ’other’ for looking elsewhere, the total set of VFOA targets is defined

by F = {OP, N ao,bookl et ,other }.

Table 5.5 provides the VFOA statistics for this recording from the three different participants.

As can be seen, as a consequence of the scenario, looking at the other partner is clearly

dominating and after that is looking at Nao as the main topic of discussion. In terms of

durations, people make longer gazes on the other person (2.9 sec) as compared to the robot

(1.9 sec) or the booklet (2.2 sec).

Head pose inputs: For this dataset, we do not have ground truth head poses. Therefore, our

experiments are done using the head poses obtained from our previous tracker (section 5.2)

which does joint tracking and head pose estimation.

Gaze directions: The participants were seating and were more or less static with respect to
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Table 5.6 – Performance on NaoD data

Person Baseline Model G1 Model G2 Model G3

Person1 46.3 62.6 62.6 63.4
Person2 89.6 94.4 94.3 94.7
Person3 63.8 63.4 63.5 64.6

the camera Nao’s head. Therefore, gaze directions to look at different targets were asumed to

be fixed and people’s slight motions were neglected. These directions were defined from the

geometrical setting.

Parameter setting: The initial value for the reference direction is considered to be Nao’s

direction (i.e. 0 for pan and tilt angles) which is a reasonable choice in human robot interaction

scenario when people face the robot. We set the standard deviations of the Gaussians in the

likelihood model of the targets to 10 for the pan and 8 for the tilt angle.

For the rest of the parameters, since there are only a few number of people in this dataset with

different gazing behaviors cross-validation will not produce reliable parameters. To choose

the parameters we consider the meeting data as the training set and use parameters obtained

from that data for running our algorithms on Nao’s data. Note however, that the resulted αpan

value from meeting data is 0.7. In this Nao dataset this ratio is big considering the fact that we

use tracked head poses which are a little underestimated. Therefore we do our experiments

with a smaller value of 0.65.

VFOA recognition results: The results with this dataset are summarized in Table 5.6. Despite

the quite different setting, the conclusions are similar to the meeting data. However, model G1

outperforms the baseline with a larger difference. This is particularly true for the first person,

who was sitting on the edge of the sofa, and being more dynamic during the interaction,

shifted her body orientation towards both the robot and the other participants, wheras the

two other people remained more firmly seated in the back of the sofa and thus remained

oriented towards Nao, which better matches the looking at Nao assumption of the baseline.

Also, model G3 performs better than model G1 for all of the sequences.

Note that the results for person 2 are in general much higher than the other two participants.

Person 2 is the guest who comes in at the second part of the recording. His role is to listen to

the explanations of the other person. Therefore, he sits very calmly, does not use much body

dynamics and mostly looks only at the robot and the partner and not the bookflet. Therefore,

the recognition task becomes much easier for him than the other two participants.
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a) b)

Person 1 

Nao 

Pain,ng 1 

Pain,ng 3 

Pain,ng 2 

Figure 5.4 – Vernissage dataset. a) Potential ambiguity between looking at painting 3 or the
partner, for the person on the right. b) VFOA targets.

5.5 VFOA recognition results on Vernissage dataset

5.5.1 Dataset properties

We used the Vernissage dataset explained in section 3.2 and illustrated again in Figure 5.4 to

conduct most of our experiments. As mentioned in section 3.2, it involves two participants

standing in front of Nao and free to walk around and look at different objects. In each recording

(10 minutes on average), Nao first engages with the two participants and explains them

three paintings. Then, in the second part, he gives them a quiz in which participants could

discuss before the person to whom a question was addressed gave the answer. Both parts are

approximately of equal duration. Some of the questions (4 out of 10) referred to paintings in

the room. We denote the person on the left side of the robot by ’person 1’ and the one on the

right side of the robot by ’person 2’.

VFOA targets and statistics:

Given the scenario, 5 main VFOA targets have been identified and shown in Figure 5.4 (a).

They are: N ao, par tner (ptr ) (the other participant), and the three paintings pai1, pai2, and

pai3. In addition, we defined a label other to denote a person looking at any other place in

the room. In the dataset there are two additional labels, DK (don’t know) is used when there is

too much ambiguity between several VFOA targets and making a decision for the annotation

is not possible, and NV (not visible) is used when the person is not in the robot’s field of view.

Data with VFOA labels DK and NV are not used in the evaluations and the VFOA target set is

defined as {N ao, par tner, pai1, pai2, pai3,other }.

Table 5.7 provides the annotation statistics from eight of the recordings. As can be seen, as

a consequence of the scenario, looking at Nao is clearly dominating, especially in terms of

durations and is characterized by long gazes (average duration of 2.6 s). Among the paintings,

pai2 is more important because it is right above the robot’s head and easier for the participants

to look at. However, note that the occurrence frequencies are not distributed evenly during
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Label N AO ptr pai1 pai2 pai3 other NV DK

Frame Frequency 0.43 0.11 0.06 0.14 0.06 0.09 0.06 0.05
Event Frequency 0.25 0.10 0.06 0.14 0.06 0.17 0.04 0.19

Average Duration (frames) 78.9 54.1 44.3 47.2 48.4 25.7 67.6 11.9
Average Duration (seconds) 2.6 1.8 1.5 1.6 1.6 0.8 2.2 0.4

Table 5.7 – VFOA frequency for Vernissage dataset in percentage of frames, events frecuency,
and average event duration in number of frames (30 Fps) and in seconds.

the sessions: in the first part (introduction to the paintings), looking at paintings obviously

happen more often; during the quiz part, interacting with and looking at the other person is

more frequent.

Head pose inputs:

As head poses, we used both measures derived from Vicon (a motion capturing system)

data and estimates obtained from a computer vision algorithm. After inspection, the head

pose Vicon measures of one sequence happened to be inconsistent in time (the head-bands

attaching the Vicon markers to people head might have moved), and we dropped it.

Pose estimated from videos were obtained by applying the particle filter tracker framework

described in section 5.2. In this dataset Nao is performing head gestures (pointing to paintings,

rotating the head to address people, nodding) that greatly affects the video quality (with people

disappearing from the field of view, lighting changes, etc). It thus happened that results were

not very accurate. Since our goal is to evaluate VFOA performance under reasonable head

pose estimation, the tracker output was filtered by keeping only track segments that matched

the (sparse) ground truth location available in the dataset as mentioned in Section 3.2, and

persons for whom the average pose error was too large or for whom the tracker recall was too

low were removed. Ultimately, this resulted in a dataset of 14 persons, amounting to around

140 minutes of data for our experiments. On these sequences, the tracker could achieve an

average recall (percentage of frames with an estimate) of 80.7%, (min: 48 and max:92), with

average pose errors shown in Figure 5.5.

The overal tracker estimation distribution against the actual Vicon head poses is plotted as

a quantile function in Figure 5.6. These curves suggests an underestimation of the pose.

Moreover, for larger angles there is more underestimation and more ambiguity.

Gaze directions:

We also need to feed our algorithms with the gazing directions for different targets for each

participant in terms of pan and tilt angles. Given that people are free to move in these

recordings, these directions are not fixed and change over time. These values were obtained

using the Vicon sensors which are placed on the Nao’s head, participant’s head and on each

of the paintings as mentioned in Chapter 3.2. However, for a more general application, we
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Figure 5.5 – Tracker head pose obtained from the 14 persons. Minimum, maximum, mean and
standard deviations of the errors.

Figure 5.6 – Tracker vs Vicon head poses. Estimated head pose quantiles for the given head pose
values. The tracker is relatively accurate up to 40 degrees, but with a tendency to underestimate
the pose. This is accentuated for pose beyond 40 degrees.

assume that Nao knows the room’s geometry and can localize itself in the room [Fojtu et al.,

2012]. By tracking the participants and knowing its location regarding to the other objects in

the room, it is capable of measuring these directions and using them for the recognition task.

Parameter Setting:

For both Vicon and tracked head pose data, the reference direction for the baseline was set

as looking at Nao, which is a reasonable choice in our HRI scenario. Standard deviations of

Gaussian were set to 20 and 10 for pan and tilt. The remaining parameters (including context

tables) were adjusted by leave-one-out cross-validation separately for each of the models i.e.

considering the rest of the all participants as the training set while testing on each participant.

Table 5.8 summarizes the parameters of the gaze-head pose mapping models described in
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Table 5.8 – Parameters of the dynamical model obtained in majority through cross-validation
on Vicon data. W R , W p and ∆p are expressed in seconds.

Parameters αpan W R W p ∆p αH α1 α2

Baseline 0.7 - - - - - -
G1 0.6 20 - - - - -
G2 0.6 20 1 0.4 1 - -
G3 0.7 20 - - - 0.22 0.07

Table 5.9 – Recognition rates of head-gaze mappings methods.

Vicon head poses Tracker head poses
Full Explain Quiz Full Explain Quiz

Baseline 53.8 52.4 54.6 57.3 59.3 57.4
G1 65.5 68.8 64.2 59.1 61.7 58.7
G2 66.6 69.9 65.3 59.8 62.3 59.3
G3 64.3 66.7 63.3 56.7 60.2 56.0

Section 4.4 that were selected in majority for each of the dynamic model. We can notice that

the selected value of αpan (amongs values ranging from 0.4 to 0.9) corresponds to numbers

reported in the literature. With respect to the size W R of the window used to average the head

poses and use it as an approximation of the body orientation, we can see that a rather short

size of 20 second was selected (amongs values ranging from 20s to 50s). Indeed, while larger

windows provide more stable results, they also introduce more lag to adapt to new situations

in case of strong body shifts which occurs for instance when people look at painting pai3 and

then switch to looking at painting pai1.

5.5.2 Results o head pose-gaze correspondence models

As first experiments, we evaluate and compare the different head pose-gaze dynamical map-

ping approaches (Baseline, G1, G2 and G3), leaving aside the context part. Experiments are

done using both Vicon and tracker head poses. Table 5.9 summarizes the obtained results.

Vicon head poses

The baseline relying on the geometrical model to set the head pose means has only a 53.8%

recognition accuracy. This is mainly due to the wrong predictions of the Gaussian means (head

directions). In particular, as can be seen from typical confusion matrices. of the baseline (left

matrices in Figure 5.7a) and 5.7b)) for a person located on the right (person 2) or left (person 1)

in Figure 5.4a, the main source of confusion is between N ao and the painting pai2. This is not

surprising given their proximity in the gaze space, where they mainly differ in the tilt angular

space. Similarly, as expected given the setup, confusion between looking at the third painting
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a) b)

Figure 5.7 – Confusion matrices (rows are ground truth, columns denote the recognized labels)
for (a) a person located in position ’person 1’ in Figure. 5.4b) and (b) a person located in
position ’person 2’. In (a) and (b), the matrices on the left are obtained from the Baseline
model, whereas the matrices on the right are computed from the G2 results. For space reasons,
VFOA targets in the legend of confusion matrices are denoted by N for N ao, pr for par tner ,
pi for painting paii , and O for other . Notice how looking at N ao is often confused with
looking at painting 2 (p2) and looking at the partner is confused with looking at painting 1 (for
a ’person 1’) or looking at painting 3 (for a ’person 2’).

(pai3) and par tner can be seen for the VFOA of person 2 (see Figure 5.4a) and between the

first painting (pai1) and par tner for person 1. Moreover, although the Gaussians standards

deviations in the HMM are relatively large, several labels are wrongly recognized as looking at

other .

Among the different dynamic models, G2 which implements the midline model is the best,

leading to an average gain of 13% over the baseline. Notice that the gain is more important in

the explanation part (17.5%) where people do not face the robot all the time, but orient their

bodies towards the paintings (see Figure 5.4a for instance), rather than in the quiz part (10.7%)

where people mainly stay oriented towards the robot. The confusion matrices on the right of

Figure 5.7a) and 5.7b) obtained with G2, compared to those from the baseline clearly show

that the gain is due to a reduced confusion between N ao and painting pai2, a reduction of

the misclassifications between par tner and the confusing painting (either painting pai3 for

person 2, or painting pai1 for person 1), and less recognition as other .

Table 5.10 – For each target, the table provides the means of the angular errors (in degrees)
between the head pose actually used to look at the target, and the prediction made either by
the baseline or the G2 models. Vicon head poses are used.

Pan angle Tilt angle
Target Baseline Model G2 Baseline Model G2
N ao 7.5 4.4 5.8 3.8

par tner 10.6 9.9 5.0 5.0
pai1 21.6 14.1 11.9 13.1
pai2 38.6 30.3 7.2 4.6
pai3 47.4 39.5 8.0 4.8

Since between the different models, the only elements that change are the setting of the mean
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(a)

(b)

2200 2300 2400 2500 2600 2700 2800 2900 3000
!60

!40

!20

0

20

40

60

 

 

Nao Partner Paint 1 Paint 2 Paint 3 others

2200 2300 2400 2500 2600 2700 2800 2900 3000
!60

!40

!20

0

20

40

60

 

 

2200 2300 2400 2500 2600 2700 2800 2900 3000
!60

!40

!20

0

20

40

60

 

 

Nao Partner Paint 1 Paint 2 Paint 3 others

2200 2300 2400 2500 2600 2700 2800 2900 3000
!60

!40

!20

0

20

40

60

 

 

Figure 5.8 – (a) Left: during frames 1700-2200, Nao is the main speaker and participants
tend to look straight at him. Right: afterwards (quiz part) participants discuss together, and
alternatively look at the robot and the second person (amongst others). Their reference
direction is thus different, and so are the poses for looking at Nao. (b) Vicon head pose (pan
angle) of the person on the right in image (a). The ground truth VFOA is displayed in the top
bar, with color codes displayed below the plot. The head pose pan data is displayed in the
graph. It is black when the recognition is correct, and in the color of the wrongly recognized
VFOA otherwise. Dashed lines indicate the pan pose mean for looking at each target for the
baseline geometric model (left), or dynamic model G1 (right). In this later case, the black line
shows the head reference Rt (computed on the average of head poses in previous frames).
With the dynamic reference, head poses for looking at each of the target are better predicted,
like for looking at Nao (despite its high variability: pan near 0 at frame 2150, near -17 at frame
2550).

head pose for looking at individual targets, the VFOA recognition improvement is clearly is

due to a better prediction of the expected head pose for looking at the different targets. To

quantify this prediction improvement, we performed the following experiments using the

ground truth VFOA. We compared at any given instant the participants’ head pose used for

looking at the VFOA target with its predicted value as given by the baseline and the model G2.

Ideally, these two measures should coinside. The resulting mean error computed over the 18

individuals are shown in Table 5.10, where the smaller the error, the better the predicted head

pose is. As can be seen, the pan angle errors are smaller for all VFOA targets when the dynamic

model G2 is used, and in all but one cases for the tilt angle. This is particularly important for

N ao and pai2 which differ only slightly in their tilt angle.
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a) b)

Figure 5.9 – Vicon vs Tracker data. (a) average confusion matrices obtained using either the
Vicon (left) or tracker data (right). (b) confusion matrices for Vicon (left) vs tracker (right) data
using the dynamic model G2.

Given the small gain obtained by G2 over G1, we can conclude that the dynamic mapping

(through the estimated body orientation) is what contributes the most to the improvement.

Qualitatively, its effect is illustrated in Fig. 5.8. Nevertheless, the midline effect (centripetal

movement) is also useful as it provides better recognition results in 13 out of 14 sequences.

However, since this effect is happening rarely in the data its effect on performance is also

small.

Finally, we see that model G3 performs much better than the baseline, but a little worse than

G1 and G2. Note however that applied to meeting and NaoD data, G3 was shown to outperform

them, indicating that it might be more appropriate in presence of more frequent and shorter

gaze shifts.

Head Pose tracker data

With these data, the main conclusions (ranking of the dynamical models) drawn using Vicon

head poses hold. However, here the baseline already gives good recognitions as compared

to the Vicon data, and the improvement is smaller (2.5%). This situation can be understood

by looking at the average confusion matrices shown in Figure. 5.9 and comparing them with

those of the Vicon data. As can be seen from the diagonal elements, the higher accuracy in the

baseline is mainly due to a higher recognition for the Nao class, which, given its predominance

in the data, results in a higher frame-recognition rate.

A potential explanation for the bias towards Nao can be understood by looking at the tracker

estimation results in Figure 5.6 which displays estimated values given by tracker for ground

truth head poses given by the Vicon. As mentioned earlier, these curves suggest an underesti-

mation of the pose in general, with the effect of favoring the recognition of Nao as compared

to painting 2 for instance (painting 2 is in fact a set of 3 paintings and is wider than Nao). In

addition, the underestimation for larger poses leads to head poses that do not match well

any of the predicted VFOA targets, and result in a higher recognition of the other label (right

column in confusion matrix). The dynamical model G2 (most right matrix of Figure 5.9) tends

to reduce the later aspect in certain situations, and to increase the recognition of some targets
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like painting pai3, including looking at N ao.

Statistical significance

In order to check whether the difference of the algorithms we propose is significant we also

ran the statistical test described in section 5.3.3.

When using Vicon head poses, the result of different models Baseline, G1, G2 and G3 were

compared together. All algorithms differences in performance showed to be significant at

the significance level of 0.05. When applying the algorithms on the tracked head poses, the

differences between all pairs of algorithms were statistically significant except for Baseline

and model G3. Importantly, the difference between our selected model G2 and the baseline is

significant with both Vicon and tracked head poses.

5.5.3 Results of conversational dialog context

To evaluate the contribution of the different contexts, we considered different settings: No

context, one single context cue (speaking, addressee, or topic), and all cues together. Fur-

thermore, we experimented the use of the context with both the baseline (static geometrical

model where the body orientation is assumed to be equal to 0, i.e. facing N ao) and the best

dynamic gaze prediction models (G2) to investigate whether the context is still useful when

more accurate gaze-to-head pose predictions are exploited. Tables 5.11 and 5.12 show the

results when using Vicon and tracked head poses.

When using Vicon data and the baseline dynamical model, we see that the performance

improves whatever individual cue we consider (with around 7, 7.5 and 9.5% improvement

using speaking, addressee and topic cues). The increase is larger when we use the topic

context. Altogether, the use of all context cues brings a considerable improvement of more

than 10%. This improvement is valid for all of the 14 persons, and is illustrated through the

confusion matrices of 2 persons in Figure 5.10. As suggested by the shown confusion matrices,

the context improves the recognition of all targets simultaneously, and is particularly helpful

for removing ambiguities between N ao and pai2, par tner and pai1 and other for most

cases.

Looking at the combination of context with the dynamical model G2, we can first notice that

the context alone (i.e. with the geometric model and static body reference) does not reach the

accuracy of the dynamical setting (64.2% with context vs 66.6% with G2). Still, the effects of

both approaches are complementary, as the addition of context improves the results of G2

with a gain of 6% when using all cues, and further decreases the confusion between VFOA

targets similarly to what is explained above (i.e. between N ao and pai2, par tner and pai1

or pai3). The improvement due to context is observed for 12 out of 14 sequences, and the

degradation for the other 2 sequences is very small (2.0% and 0.1%).

Interestingly, the results with individual cues exhibit different behaviors depending on the
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Table 5.11 – Recognition rates using dialog act contexts - Vicon head poses

Baseline Model Model G2
Context Full Explain Quiz Full Explain Quiz

None 53.8 52.4 54.6 66.6 69.9 65.3
Speak. 60.9 58.3 62.1 70.2 72.3 69.4
Addr. 61.4 59.8 62.2 70.8 73.1 69.9
Topic 63.4 62.2 64.0 72.1 75.3 70.9

All 64.2 63.3 64.7 72.6 75.9 71.3

Table 5.12 – Recognition rates using dialog act contexts - tracked head poses

Baseline Model Model G2
Context Full Explain Quiz Full Explain Quiz

None 57.3 59.3 57.4 59.8 62.4 59.3
Speak. 59.1 61.5 59.1 61.0 63.1 60.9
Addr. 59.5 62.2 59.3 61.3 63.7 61.0
Topic 60.1 64.2 59.5 62.0 65.6 61.4

All 60.6 65.4 59.8 62.4 66.4 61.7

interaction phase. As can be seen, the communication cues (speaking, addressee) which

emphasize Nao or people as VFOA prior make a bigger increase in performance during the quiz,

which is more interactive, and lower increase during the painting explanations, whereas the

topic context improves almost equally on both parts. Finally, using all cues, the performance

is higher in all situations.

Considering the results on the tracked head poses, shown in Table 5.12, we can see that the

main conclusions still hold. Individual cues are all useful, the topic cue is more beneficial

especially on the explanation part. Combined with the baseline, the context and dynamical

model lead to a total improvement of 5%, a gain that is smaller than with Vicon due less

accurate head poses and thus more ambiguous situations.

Statistical significance. In order to check whether adding the context to our algorithms

makes a significant dfference we ran the statistical test described in Subsection 5.3.3 with

the significance level 0.05. We considered the addition of diffrent contexts (’none’, ’speak’,

’addr’, ’topic’, ’all’) when Baseline or model G2 are used as the head pose-gaze correspondence

models.

Considering the Baseline model, when using Vicon head poses, the performance differences

between all pairs of models were statistically significant, except for when we were using either

’addr’ or ’topic’ contexts. When using Tracker head poses however, all pairs ofmodels were
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a) b)

Figure 5.10 – Context effect (Vicon data) (a) the image on the left shows the confusion matrix
for a given participant when context information is not used while the right one shows the
matrix when using the context. (b) shows the same matrices for another participant.

significantly different except for the case of using either ’speak’ or ’addr’ contexts. Considering

the selected dynamic model G2, with both Vicon and tracker head poses, all pairs of models

were significantly different except for the case of using either ’speak’ or ’addr’ contexts.

What is specially important is that all the individual cues provide significant improvement

compared to not using context at all. This, in addition to the fact that using a given individual

cue does not always provide significant improvement over the other ones suggests that these

cues can provide complementary improvements over eah other. In addition to that, the

combination of them also provides significant improvement over the individual ones.

5.6 Conclusion

In this Chapter we addressed improving VFOA recognition from head poses in an HRI context

using two different solutions. First, we proposed algorithms inspired from body, head and gaze

behavioral models to improve the dynamic prediction of the head pose used to look at different

VFOA targets. Our experiments on a challenging dataset showed that these models indeed

generated more accurate predictions, improving head pose-gaze direction association for all

VFOA targets, resulting in a performance increase of more than 10%. Secondly, we proposed

a contextual VFOA recognition approach to exploit the robot’s gaze-related conversational

context (communicative cues, topical cues). It was shown to greatly improve results, and to be

complementary to the head-pose dynamical model. Altogether, the combination of the two

approaches led to an increase close to 20% in VFOA recognition.

The experiments also showed that obtaining unbiased and accurate head pose is important,

as the improvement was smaller using head poses derived from our vision tracker than with

the Vicon ones. Such pose estimation improvements come from advances in sensing, and

in particular the use of RGB-Depth camera like Kinect. In practice, given the availability of

real-time head pose tracking with such device1, we expect our model to be directly usable by

researchers and developers in the HRI or ECA field. Furthermore, the most effective part in

our dynamical gaze-to-head prediction approach relies on the use of the body orientation.

1http://msdn.microsoft.com/en-us/library/jj130970.aspx
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5.6. Conclusion

Hence it would be interesting in the future to test our method on a dataset with available

RGB-D dataset that would provide a more direct and more accurate way of estimating it than

what we propose. In another direction, with higher definition images, using image-based gaze

directions [Gorga and Otsuka, 2010] would be beneficial, and could be combined with our

approach. Our prediction model could provide priors on the gaze and be fused with actual

image measurements even in noisy conditions.

On the context side, since the dialog act information required by the method is directly

incorporated in the dialog system and used at runtime, the model can be exploited for any

interactions and in any other scenarios implying objects with the robot is aware of. Finding

more systematic ways of setting appropriate VFOA statistics is an avenue for future work, as

well as the addition of timing information (how long is a dialog act active?) as well as the use

of other cues that can affect the attention of interacting people, like the robot’s gestures.
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6 Addressee Estimation

6.1 Introduction

In human-human interactions, who is the current addressee of a spoken utterance, whether it

is an individual or a group of people, plays an important role in regulating the conversation.

The same holds true for natural and human-like interaction with robots. Most importantly

knowing the addressee of a person’s utterance is useful for the robot to decide automatically if

he "should" or "should not" react and possibly respond to the utterance.

As discussed in Chapter 2, the gaze or VFOA of the speaker has been shown to be the most

informative cue for recognizing the addresseehood (e.g. [Katzenmaier et al., 2004, Takemae

and Ozawa, 2006]) since people mostly look at the person they are addressing rather than

others. It has been shown as well that, even when we have accurate gaze information, this

might not be sufficient for addressee estimation. As a result, researchers have investigated

other cues (e.g. lexical, prosodic cues) to provide context and improve performance [Jovanović

et al., 2006, Huang et al., 2011]. In this chapter, we also followed this path and investigated in

our Vernissage scenario the effect of different contexts on the overall addressee estimation task

where context can act at two different levels: directly for addressee recognition, or indirectly

on VFOA recognition. We summarize below the main points we addressed.

First, context can be used directly for addressee classification. Thus, in addition to the speaker’s

gaze, we considered several other cues as inputs to the addressee classifier: the gaze cues from

the other participants, whether the current speaker spoke the previous utterance or not, the

subjective difficulty of the quiz question was also used. When relying on ground truth VFOA,

these contextual cues were shown to provide a slight improvement for addressee estimation.

However, this effect when using noisier automatically estimated VFOA had not been studied.

Since the use of noisier VFOA input could be expected to degrade the addressee recognition

performance, the hope in this situation is that the context would play a more important role

and lead to a larger improvement, and we investigate this question in this Chapter.

Context could also be used to improve VFOA recognition, and thus indirectly addressee
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recognition. In this work, we use the robot’s conversational context as explained in Chapter 4.

Although using context has been shown to improve VFOA recognition (Chapter 5), the question

that arises is whether such improvement would benefit or not other tasks relying on VFOA

such as addressee.

Finally, from a computational perspective, there are several issues that we investigated. Which

features should we use as output from the VFOA recognition module? how should we normal-

ize them? Importantly, in a given scenario the VFOA module may have to monitor gazing at

other visual targets in the scene (for instance, the robot needs to monitor whether people look

at the right paintings to check that they follow his explanations in our scenario) in addition to

potential addressee targets. In this Chapter we show that accounting for such targets signifi-

cantly affect the addressee recognition task which suggests that it might be better in a robotic

system to exploit a VFOA module specifically devoted to addressee that only cares about

potential addressee targets which are the robot and other participants. The material of this

Chapter was published in [Sheikhi et al., 2013a] as a collaboration with two other postdoctoral

researchers D. Babu Jayagopi and V. Khalidov.

In summary, in this Chapter we investigate the following. First, we investigate the use of

context for addressee estimation, both at the addressee and VFOA levels. Secondly we study

different computational issues that can significantly affect the addressee recognition task, as

described above. Finally, we show that, when using automatically recognized VFOA (VFOA

estimated using tracked head poses) for addressee estimation in our multiparty HRI setting,

the performance does not drop much as compared to using ground-truth VFOA or VFOA

estimated from ground-truth head-poses.

This Chapter is organized as follows. In section 6.2 we give an overview of our full addressee

estimation system with its different parts for head pose tracking, VFOA recognition and

addressee classification. Section 6.3 gives more details on the recognition approach used

for estimating addressee. Section 6.4 contains our experimental protocol and results using

ground truth VFOA and automatic VFOA (both from estimated head poses and ground truth

head poses). Section 6.5 provides a conclusion for this Chapter.

6.2 Addressee detection: scenario and system overview

We propose a system for addressee detection that could be used in realistic robotic setup where

a humanoid robot with significant nonverbal displays induces nonverbal behavior in human

participants that interact with the robot in a natural way. More specifically, in this thesis, we

considered the Vernissage scenario and used the data from our dataset for evaluation.

Data Considered:

We use 7 interactions from the Vernissage corpus (see overall description in Chapter 3). For the

addressee analysis in this Chapter, we use only the quiz part, which consists of nine questions
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6.2. Addressee detection: scenario and system overview

Figure 6.1 – Overview of the addressee estimation task. Based on different information (top
left side: I know that he is looking at me, she too, and I just asked an easy question), the robot
has to infer whether a person talked to him or not.

(or quiz episodes) in art and culture, which are the same across the participant set. The reason

we only use the quiz part is the fact that in the explanations part of the recordings the robot

is speaks most of the time and the participants only follow the explanations. Moreover, in

the few cases where a participant speaks, he/she usually only provides short responses to the

robot to show his/her agreement, disagreement or only provides backchannel which are not

very interesting for the addressee estimation task. In the quiz parts, some of the questions

are about a set of paintings that NAO introduced to the participants before the quiz in the

explanation part of the scenario. In general, participants discuss among themselves before

answering a question, but this is not always the case (e.g. when questions are ’easy’). Figure 6.1

illustrate the addressee estimation task in this setup. The robot has access to the speaking

status of the participants, their gaze cues and additional cues from the interaction and given

this information should detect if it is addressed to provide the appropriate response.

System.

Our system consists of three different modules: head pose tracking, VFOA recognition and

addressee estimation as illustrated in Figure 6.2. The head pose tracking module described

in Section 5.2 uses the video sequence captured by the robot to localize faces and extract

head poses. These head poses are then used in the VFOA recognition module described in

Chapter 4 to estimate the participants’ gaze direction and recognize the visual target they

are looking at. Finally the addressee estimation module uses participants’ VFOA during the

utterances to detect whether the robot or another participant is the addressee of the speaker’s

speech. Addressee estimation is studied at the utterance level in contrast to head pose tracking
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Figure 6.2 – Addressee detection system. It consists of head pose tracking, VFOA recognition
and addressee estimation. Context can be used for both VFOA recognition and addressee
estimation.

and VFOA recognition which are studied at frame level. As shown in the Figure, context

information can be utilized in both the VFOA recognition and addressee estimation modules.

Currently the context in the VFOA recognition module is provided by the robot’s conversational

state as defined in Section 4.5, whereas in the addressee estimation, it comes from the other

participant’s gaze information, the previous speaker and the difficulty of the quiz question.

The addressee estimation module is explained in the following Section.

6.3 Contextual Addressee Estimation

We predict the addressees on semi-automatically estimated utterances using the speaker’s

VFOA and other contextual cues. Utterances are extracted as explained in Chapter 3). As

contextual cues, we investigate not only the cues from the speaker, but also gaze cues from the

side-participant, and contextual prior information about the current activity (here the quiz),

and the current dialog context (previous speaker). In the following, we detail the features we

used and present the recognizer used.

Features:

For every utterance, we defined the following features, summarized in Figure 6.3:

• SpkrL@NAO: denoted by SN, represents the proportion [%] of time when the speaker

looked at NAO during the last one second of an utterance;

• SpkrL@Ptr: denoted by SP, represents the proportion [%] of time when the speaker

looked at the partner;

• PtrL@NAO: denoted PN, represents the proportion [%] of time when the partner looked

at NAO;

• PtrL@Spkr: denoted PS, represents the proportion [%] of time when the partner looked
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Figure 6.3 – Addressee estimation task. Tested features and their encoding.

at the speaker;

• TimeSinceQ: defined as the time difference between the end of a quiz question and the

start of the utterance;

• PrevSpkrSame: defined as whether the previous speaker is the current speaker (coded

as 2) or not (coded as 1);

• EpType, the episode type that roughly indicate the difficulty of the quiz question: 1

being easy and 2 being difficult.

In this work, we assigned the difficulty of the question manually, but it it could also be learned

over multiple sessions i.e. with experience, as we implicitly propose towards the end of the

addressee experiments. A question could be difficult because the listeners do not understand

what the robot is saying or they follow the question but do not know the answer. Note that

while PtrL@NAO and PtrL@Spkr are contextual cues from the side-participant, EpType is a

task-related long term context, and PrevSpkrSame is a short-term context about the dialog.

Classifier:

We used a supervised and discriminative model to predict the addressee. This classifier is a

Logistic Regression where the log-ratio of the probability of addressing the partner vs NAO is a

linear function of the features:

LRLog R = log(
P (Add = N AO| f1:N )

P (Add = P tr | f1:N )
)

= β0 +β1 f1 +β2 f2 + ...βN fN (6.1)
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the β parameters are estimated during training and indicate the relative importance of the

features. When LRLog R is greater than 0, then the estimated addressee is NAO.

6.4 Experiments

In this Section we will describe our experimental details and explain different experiments we

conducted on the Vernissage data. We provide our experiment results and make the important

conclusions made by the experiments.

6.4.1 Experimantal details

Ground truth data: In addition to the VFOA annotations which are provided for the Vernissage

dataset, addressee is also manually annotated as mentioned in Chapter 3. In the 7 sequences

that we used, which corresponds to data from 14 participants, there are 374 utterances of

human participants in total, of which 176 were directed towards Nao, and 198 were directed

towards a human partner (denoted Ptr henceforth).

VFOA recognition results: We have estimated the VFOA using the algorithms in Chapter 4 run

on both the Vicon and tracked head poses. The best performing gaze-head dynamic model,

G2, was used once without context and another time leveraging all contextual information.

Experimental protocol: All experiments were obtained using a leave-an interaction-and-quiz

question-out evaluation. This means that when evaluating addressee recognition on the data

of a question within an interaction, all data from the same interaction (same people) and of

the given question (in the other interactions) were excluded from the training.

Statistical significant: In order to evaluate whether the improvements provided by different

algorithms were statistically significant, we used the McNemar test. The exact McNemar test

looks only at the samples where the two algorithms give different results. It checks whether an

algorithm provides almost systematically the same or a better answer than the other one.

6.4.2 Results

We have performed three sets of addressee experiments to study our research questions. In

the first one, we compare how the results vary depending on the VFOA data (ground truth

data, estimations obtained from either Vicon head poses or from tracked head poses). In this

experiment no context information is used. In the second experiment, we compare the results

when context information is used at either the VFOA or addressee level.

In the third experiment we consider the situation when the robot is not aware of other visual

targets in the scene and only considers itself and the other participant as possible visual

targets. We would like to compare this condition with the initial one where the robot extracts
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the full VFOA information consisting of all visual targets. This is important since for addressee

estimation task it might be better to only consider looking at the targets which are also possible

addressees. Considering that people can look at additional targets might distract the system

from the information which really matters for detecting the addressee. For instance it might

be more useful to assume that the speaker is looking at a participant even if this could be

confused with looking at a painting.

The results are given in Figure 6.4 - 6.5. Note that predicting the majority class would provide

52.0% accuracy since we had 52.0% occurrences of Nao being addressed.

Analysis 1 - VFOA data input.

We first consider results obtained with VFOA features from the speaker (SP, SN, and both)

computed without context information. We compare the addressee estimation accuracy

obtained when using the ground-truth VFOA annotations, VFOA automatically derived from

Vicon head poses or from tracker head poses. As can be seen, while when using the VFOA GT

looking at the partner (SN) happened to be a better cue for recognition than looking at Nao

(with an increase of 7%), the reverse happened with the automatically derived VFOA cases,

especially when using the tracker poses. Furthermore, in general, the combination of both SN

and SP did not increase performance (a fact that will stay true even when using the context for

VFOA recognition). Surprisingly, the results without context, obtained using the noisier tracker

head poses rather than the Vicon ones, produced much better results (76.3% vs 67.9%) -this

might be due to the head pose bias towards Nao that has a positive effect for addressee. Still

the best result with VFOA GT (83.4%) is 7% higher than the best result using estimated VFOA

(76.3%). Given the natural scenario that included paintings as potential VFOA, this result is

already very good. Errors were mainly due to participants addressing Nao’s request while still

looking at the partner, and vice-versa, making a side-comment to the partner while looking at

Nao. Automatic VFOA produced additional errors due to wrong VFOA estimates.

Analysis 2 - Using Context.

Next we considered using the VFOA context (Nao speaking status and addressed person,

topic context), and addressee context (that included the partner features e.g. PtrL@Spkr (PS)

and dialog context -EpType EP and PrevSpkr). Results are shown in Figure 6.4. We observe

that while the VFOA context helped in general across all addressee context conditions in the

Vicon case, it does not impact the tracker results very much. Indeed, smaller improvement

is expected since the context’s effect on VFOA recognition is smaller with head pose tracker

(see Table 5.12). Moreover, the VFOA context gives a higher expectation for recognizing Nao

as VFOA, which cumulates with the head pose pan angles underestimation towards Nao.

Therefore, although the context still improves the VFOA, this bias towards recognizing Nao

when people are speaking may reduce its impact for addressee estimation.

Secondly, we can notice the results when using addressee context. In the tracking case and

also when Vicon head poses are used to estimate VFOA, the addressee context helps to slightly

improve the results. The feature combination of SpkrL@NAO, SpkrL@Ptr, PtrL@Spkr, and
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Figure 6.4 – Addressee recognition using GT VFOA and (Top) VFOA based on Vicon head pose
(Bottom) VFOA based on tracker head pose.

EpType for example has the best accuracy of 77.2% in the tracking case. However, with

accurate VFOA measures obtained from the ground truth, the gain of adding addressee context

is higher. For the algorithms results on the ground truth VFOA we also ran statistical tests

to see whether the difference between them is significant or not. As a result the difference

between using the SN feature alone and using the feature sets { SN, SP }, { SN, SP, PS }, { SN, SP,

ET } or { SN, SP, PS, ET } were statistically significant which suggest adding the contextual cues

provides minor but significant improvement.

Experiment 3 - Generalization Capabilities

A change in the set of monitored VFOA targets may affect the VFOA measurements for ad-

dressee. More targets -e.g. more paintings in the room- may lead to more VFOA ambiguities,

while using less targets than the number of real ones (e.g. if the robot is not aware of all

paintings in the room) might lead to gaze erroneously assigned to a VFOA of the smaller

set. In order to achieve robustness in terms of variation setting, we considered the following

approaches:

E1. we considered normalized features sn and sp defined as the proportion of time gazed at

a potential addressee compared to all the time gazed to any possible addressee: sn = SN
SN+SP

and sp = SP
SN+SP . Similarly, we defined pn and ps for the partner VFOA.

E2. we studied two alternative VFOA module settings. The “ALL TARGETS” setting is the one

used in previous experiments, where the VFOA monitored looking at all targets including

the paintings. In the “LIMITED TARGETS” condition, the VFOA module was configured to
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Figure 6.5 – Addressee recognition using the VFOA obtained from tracker results with no
context, considering all VFOA targets or only the limited set of addressee targets and relying
on un-normalized addressee features (Top) or normalized ones (Bottom).

only monitor looking at Nao, the Partner or Other as targets, thus reducing the possibility of

confusion with the non-addressee VFOA. In both cases, no VFOA context was used since it did

not help when using tracker pose estimates.

Results are shown in Figure 6.5. First, we can notice that normalization tended to produce

the same result whatever the considered addressee feature set. Thus, while it did not improve

the best results, it increased the performance that was not good in the un-normalized case

(like SpkrL@Ptr, SP). Secondly, we can notice that the limited set condition systematically

produced higher results by 7 to 10%. This is an interesting result, which shows that what

matters for addressee is mainly to discriminate between VFOA addressee targets. While the

VFOA context helped to reduce VFOA recognition ambiguities between such targets and others

(by reducing the prior weights of the paintings when they are not the topic of discussion), it

is not as drastic as removing them completely from the list of potential targets. In order to

see whether the there is a significant difference between the approached which made this

improvement, we also ran statistical significance tests to compare the approaches when all

targets were monitored to the case of using only the relevant targets (green and pink bars in

Figure 6.5). The difference was not significant for all feature combinations, but for the ones

which show the highest improvement, { SN, SP, PS } and { SN, SP, ET } (improved the results

from 71% to 80% and 73% to 80%) the difference was significant.

Finally, we observe that normalizing features and using only addressee VFOA targets gives the
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best results. For instance, combining SP and SN into sp and sn along with ET has an accuracy

of 82.1%.

6.4.3 Discussion

In order to compare our work with the previous addressee estimation studies, we discuss

our results and methodology in contrast to two previous works [Katzenmaier et al., 2004]

and [Jovanović et al., 2006].

In [Jovanović et al., 2006] addressee estimation is studied for human-human interaction in

the meeting context. In their setup 4 people seated on a table have meetings during which

one person could stand up and give a presentation or explain ideas on the white board. In

their experiments different kinds of features like gaze, utterance and conversational context

are used. Utterance features include lexical features (the occurance of special words such

as we, you, etc.) relying on available speech transcription in addition to dialog act tags (e.g.

agreement, question, agreement, etc.). Meeting context is also used which specifies the

meeting actions categorized monologue, presentation, discussion and white-board.

In this work the features were not extracted automatically. However, using all features would

be challenging for an automatic addresse estimation system considering the available speech

recognition systems and the fact that determining the meeting action automatically is not

obvious. Regardless of this fact, using all features together they obtain the addressee estimation

accuracy of 83.7%. Without using the speech based cues and meeting context, they obtain the

highest accutacy of 80%. These results are close to what we obtain in our setting, although

their task has one more potential addressee.

In the other study [Katzenmaier et al., 2004], which is closer to our work in terms of the

application, addressee estimation is studied for human-human-robot interaction. In their

scenario one person -acting as the host- introduces to another person -acting as his/her

guest- to the new household robot and gives the robot some commands in order to show

its capabilities. The experiments are focused on recognizing whether the host addresses the

robot or the guest and the addressee of the guest is not studied. Different acoustic and visual

cues are used based on the speech transcription, statistical language models, context free

grammars and visual focus of attention.

Since the interaction between the host and the robot is mainly giving commands to the robot

and the robot is not acting as a conversation partner. Considering this fact, the features

extracted from the speech take advantage of the differences in command and conversational

sentences and are in this sense very specific to this scenario. Therefore, we only consider the

results obtained from automatically estimated VFOA cues, in which they report the accuracy

of 89%. This is higher than what we could obtain in our study using the esimated VFOA

(addressee estimation of 82%). However, we should consider that in the Vernissage corpus the

cooccurence of addressee and gaze target is less obvious which results from the higher number
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of the visual targets and the fact that they attract the attention of the participants and bring

additional complications. Furthermore, in this special scenario gaze is a very determining cue

since for giving commands to the robots we normally tend to look at them (and use the word

robot to call them).

6.5 Conclusion

In this chapter we provided a method for addressee estimation in our HRI setting. Our

method is based on the gaze cues from the speaker and other contextual cues like the other

participants’ gaze, question difficulty and the previous speaker. We performed experiments

under different conditions for three separate purposes. First, we wanted to see how effective

could this method estimate addressee with noisy VFOA estimates extracted automatically and

from inaccurate tracker head poses. Second, we wanted to study whether adding contextual

cues at VFOA estimation or addressee classification steps could be useful for improving the

estimation. Finally, we wanted to check what kind of VFOA output would be more beneficial

for estimating the addressee. Specifically comparing the cases where the robot tracks all VFOA

targets compared to the only ones which are potential addressees (the robot and participants).

We have reconfirmed in our setting that gaze cues from the speaker is the most important

feature for addressee estimation. Our experiments showed that the tracker results are quite

competitive, and the best results have an accuracy of 80%. The VFOA context did not improve

the tracker results, as it did for the VICON results. The addressee context (gaze features from

the fellow participant, short-term and long-term dialog-context features) helped, though

only slightly. Our experiments show that it is better if the VFOA recognition module only

monitors whether a person looks at potential addressee targets (the robot, people) rather than

considering all objects of interest.
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7.1 Conclusion

This thesis was conducted in the context of the Humanoids with Auditory and Visual Abilities

In Populated Spaces (HUMAVIPS) project which aimed at providing a robot which is capable

of performing natural interaction with a group of people. The humanoid robot Nao could use

its input audio and video channels to get an understanding of its surrounding and show ap-

propriate behavior. Different tasks were addressed in this project including human perception

and behavior understanding, dialog management and robot localization.

Within this context, the goal of this thesis was to study the recognition of people’s visual focus

of attention (VFOA) from video and estimation of the speakers’ addressee. We assumed that

we could only rely on the video and audio captured by the robot. Moreover, images captured

by the robot were not of high resolution and using eye gaze information was not accessible

to apply eye gaze tracking methods. Moreover, people could freely move without constraints

with respect to the robot, making the problem quite challenging and limiting the accuracy of

previous approaches.

Therefore, from the visual data we relied only on head poses and provided methods for head

pose-to-gaze mapping and recognizing the VFOA. Moreover, we exploited the robot’s conver-

sational context to improve the recognition. Estimated VFOA was then used in addition to the

other contextual cues to detect the addressee of the speaker’s utterance. The contributions of

this thesis are summarized as follows:

VFOA and addressee database

In collaboration with our partners in the Bielefeld University and using their recording in-

frastructure, we built a publicly available dataset capturing interactions between the robot

Nao and two participants. We designed the scenario so as to ensure interesting and natural

behaviors and interaction patterns for human robot interaction studies. Data was recorded

using different sensors: Nao camera and microphones, Vicon motion capturing system, close
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talk microphones for participants, and additional HD cameras. We organized and collected

different sets of annotations and specific to this thesis interest, VFOA and addressee annota-

tions. This dataset is an important contribution in this project given the absence of realistic

and unconstrained HRI datasets for studying non-verbal behaviors recognition methods.

VFOA recognition from head pose:

To address this problem, we proposed algorithms to leverage on models described in the

literature for understanding human’s body, head and gaze dynamics involved in shifting

gaze at different directions, and derive head pose-to-gaze mapping models that can be used

within an HMM framework to recognize looking in different visual targets directions. We

provided three different head pose-gaze mapping models and implemented them in our VFOA

recognition system. In the first method we added a dynamic head pose reference that played

the role of the person’s body orientation. In the second one we implemented the midline effect

which was introduced in human behavior studies. Finally in the third proposition we tried to

model gaze shift and consider the effect of the previous gaze direction. Our experiments on

three datasets, showed that our dynamic models always provided higher recognition accuracy

compared to the previous static model and this improvement is more evident on the Vernissage

data where people have more freedom to move. The midline effect also improved the results,

however, the improvement was not very high since this effect does not happen very frequently

in the data. It is important to note that the models are general, and can be applied to any

system able to capture head pose, as is the case for instance for the widely used Kinect sensor.

Leveraging robot conversational context for VFOA recognition:

As a second direction for improving the VFOA recognition and removing some of the ambi-

guities introduced by relying only on the head poses, we explored using contextual data. In

contrast to the previous works which relied on group communication context, we extracted

our contextual cues from the robot’s conversational state. This has the benefit of having direct

access to the robot’s system state instead of relying on its potentially noisy scene analysis

information. In this regard we defined three types of contextual cues which affect the partici-

pant’s visual attention and integrated them into our VFOA recognition system. Experiments

on the Vernissage data showed that the proposed method was very effective. In particular,

when the robot is making reference to scene object, and when when more accurate head pose

measurements are used.

Addressee estimation:

In this thesis we studied this problem in the context of our Vernissage scenario and more

specifically during quiz sessions between the robot and the participants. To address this

problem, in addition to the VFOA estimations obtained from the previous parts of the thesis,
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we investigated the use of contextual cues at different levels for improving the recognition: at

the VFOA recognition level (to improve VFOA and indirectly get better addressee estimates),

and at the addressee estimation level. For the latter case, the other participant’s gaze and short

and long term dialog context features were studied. Our experiments confirmed the known

conclusion that the speaker’s gaze is the most important cue for addressee estimation. Overall

we showed that the different contextual cues as proposed, improved the results, but the gain

was relatively small. Interestingly, however, we showed that for the addressee task, it is better

if the VFOA recognition module only monitors the potential addressee targets (robot, people)

rather than considering all objects of interest.

7.2 Limitations and perspectives

There are several limitations to our work. Below we discuss several of them and how they could

be addressed by proposing different research directions for VFOA recognition and addressee

estimation.

Gaze shift indicator for VFOA recognition: beyond frame level VFOA recognition

As humans, even when we have partial information about visual targets that other people

might be looking at, we are able to recognize when they have gaze shifts from one target to

the other. We can also estimate roughly the position of the destination target with respect

to the initial one. Obtaining an indicator for gaze shift and a measure for its direction and

magnitude could thus be used for automatic VFOA recognition as well. Having a gaze shift

indicator allows us to decompose the sequence of head poses into segments with constant

VFOA. HMM would then work at this segmental level, and the state dynamics could be made

more informative (currently only smooths the output). Gaze shift models could be refined

according to the new requirements.

Temporal modeling of robot conversational context

In this thesis we assumed that the robot state contextual cues used to improve VFOA recog-

nition have the same effect on the whole speech segment where they occur. However, for

some of these cues, studies on human-human and human-robot interaction suggest that it

would be helpful to consider this effect to be time dependent. For instance, when pointing

gesture happens, it triggers looking at the pointed-at object immediately afterwards and not

necessarily during the full utterance. As the second example, when someone speaks, people

look more at him at the beginning and end of his utterance. Incorporating and modeling

this timing effect could then give us a more accurate function for the effect of conversational

cues on VFOA. This problem is closely related to dialog and the gesture synthesis design

and obtaining such timing information, and studying their impact on people behavior could

benefit from advances in this field.
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Addressee estimation

For addressee estimation we did not use any kind of information from the speakers speech.

However, it is known that people indeed speak very differently to the conversational agents

as compared to the other humans. This difference could be revealed by the analysis of their

prosodic cues. For instance people usually talk louder to the agents and try to pronounce

words more clearly as their expectation of the agent’s speech recognition capability is not

as high as humans. Specially, in our quiz scenario, after they discuss the answer among

themselves they announce it louder to the robot and use the words given in the possible list of

answers to give the final answer as clear as possible. Therefore, using additional cues from the

user’s speech could be very useful to estimate the addressee more accurately.

Implementation level

Models were mainly tested on presented dataset where the robot was controlled by WOz

approach. However, experiments using the real system is important and would definitely

bring new challenges. For instance, the current VFOA module implemented on Nao is more

limited by the accuracy of the head pose, and of the 3D position of people in the room. Using

higher quality sensors or other sensors (RGB-D) could help resolving these problems.

Use of context priors

Also, related to the contextual priors, there are two main limitations. First of all, they could

incorporate as well communication cues from participants in addition to robot state, which

has not been addressed in this thesis. Second, using contextual priors as proposed, assumes

that the interaction progresses smoothly and following the usual expectations. If this is not

the case, they may lead to "hallucination", meaning that the robot may think that people are

looking at some targets. Monitoring people’s engagement and interest is thus important to

know whether such priors can be reliably exploited. This means that a higher interpretation of

different tasks is needed.

Data collection

The collection of Vernissage corpus has been very useful for studying perception tasks in

human robot interaction. However, there are limitations in this corpus which could be ad-

dressed in the future datasets. Here we provide two suggestions to consider. First, in this

corpus we only had two people interacting with the robot. However, in many applications

the robot should interact with a variable number of users, from one to 3 or more. There are

many research questions valuable to study in those applications as well. Therefore, it would be

useful to provide similar datasets capturing the interaction between a robot and multiple users

in different group sizes. Second, it would be interesting to use depth sensors In addition to the

cameras. This would be useful for extracting additional information about the participants

96



7.2. Limitations and perspectives

body pose. For instance, shoulder orientation could be extracted and used in the proposed

methods for VFOA recognition. Given the current technological advances, these depth sensors

are widely used in different applications and it is reasonable to assume they would be available

on the future robots.
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