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ABSTRACT

We address the problem of ad hoc microphone array calibration
where some of the distances between the microphones can not be
measured. The conventional techniques require information about
all the distances for accurate reconstruction of the array geometry.
To alleviate this condition, we propose to exploit the properties
of Euclidean distance matrices within the framework of low-rank
matrix completion to recover the missing entries. We provide
rigorous analysis to bound the calibration error using noisy mea-
surements. This study elucidates the links between the performance
and the structure of the missing distances, along with the size of
the network. The experiments carried out on real data recordings
demonstrate these theoretical insights. A significant improvement
is achieved by the proposed Euclidean distance matrix completion
algorithm over the state-of-the-art techniques for ad hoc microphone
array calibration.

Index Terms – Ad-hoc microphone array calibration, Diffuse
noise coherence model, Euclidean distance matrix completion

1. INTRODUCTION

Microphone arrays are widely used in distant audio technolo-
gies to enable source localization and separation [1–7], videocon-
ferencing [8] and distant speech recognition in multiparty environ-
ments [9–12]. Ad hoc arrays provide a distributed and flexible in-
frastructure for high quality sound acquisition, and thus require to
be calibrated to function in synergy. The focus of this paper is on the
microphone array position calibration. This task is often achieved in
two steps: estimation of the distances between the pairs of micro-
phones and reconstruction of the array geometry from the pairwise
distance information.

Prior art often considers activation of a (known) source signal
in a specific configuration to estimate the distances between the mi-
crophones. Sachar et al. [13] used pulsed acoustic excitation of an
array of five domed tweeters. The known test pulse is recorded to
measure the transmit times between the speakers and microphones.
A structured sparse coding approach is proposed in [14] to calibrate
the microphones through a greedy procedure using an unknown sig-
nal at a given position and constructing an overcomplete dictionary
of distant signals projected onto the array manifolds. Chen et al. [15]
introduced an energy-based method for joint microphone calibration
and speaker localization by computing the energy of the signal and
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formulating a nonlinear optimization problem with a non-convex ob-
jective function to perform maximum likelihood estimation of the
positions. Their approach requires at least five active sources. Re-
cently, McCowan et al. [16] proposed to exploit the diffuse noise
coherence model for computing the distances between the micro-
phones. The coherence of the signals of the pairs of microphones is
computed and fitted with a sinc function of their distance in a least
square sense. This process is accomplished per signal frame; the
frame-wise estimates are then combined using k-means clustering to
obtain a single estimate.

Once the pairwise distances are estimated, the classic multi-
dimensional scaling (MDS) method is used to reconstruct the mi-
crophone array geometry [17]. This method applies a double cen-
tering transformation to subtract the row and column means of the
distance matrix. Then a low-rank projection is applied to extract the
relative microphone positions. If some of the pairwise distances are
missing, an extension of this method called MDS-MAP can be used.
This method approximates the missing distances by the shortest path
defined as the minimum sum of the distance measures of the con-
stituent edges of the microphones. Recent advances incorporate the
properties of the Euclidean distance matrix through definition of the
appropriate cost functions via the algebraic s-stress method [18] and
formulate effective optimization schemes for finding the geometry
via semidefinite programming (SDP) [19].

In this paper, we use the coherence model of a diffuse field for
estimating the distances between the microphones; the diffuse field
has been shown to be a typical characteristic of the acoustic field
in a reverberant enclosure [3]. The conventional approach provides
reasonable estimates if the microphone array aperture size is less
than 30 cm [16]. As the distance is increased, the frame-wise esti-
mation leads to many outliers. Therefore, we apply an averaging of
the frames’ coherence prior to fitting a sinc function and propose a
multi-stage clustering using k-means followed by GMM-based clus-
tering to discard the outliers. This revised procedure enhances the
reliable distance estimation up to 73 cm. The pairwise distances be-
yond that can not be estimated reliably, and thus assumed missing.
To reconstruct the geometry, we exploit the recent advances in low-
rank matrix completion and propose to recover the elements of the
distance matrix via a Euclidean distance matrix completion algo-
rithm. We provide rigorous analysis of the performance of the pro-
posed approach to obtain the fundamental error bound and elucidate
its relation to the problem setup. The proposed theory is demon-
strated through the experiments conducted on real data recordings.

This paper is organized as follows. The procedure of pairwise
distance estimation is explained in Section 2. The proposed Eu-
clidean distance matrix completion is elaborated in Section 3. Theo-
retical insights of the calibration error is provided in Section 4. The



experimental evaluations are carried out in Section 5 and the conclu-
sions are drawn in Section 6.

2. DISTANCE ESTIMATION

In this section, we summarize the theory of distance estimation
based on the diffuse field coherence model and propose a multi-stage
clustering approach to improve the accuracy and reliability.

2.1. Diffuse Field Coherence Model

A diffuse sound field consists of signals propagating with equal
probability in all directions [20]. The coherence between the signals
recorded with microphones i and k at angular frequency ω is defined
as

Γik(ω) =
Φik(ω)√

Φii(ω)Φkk(ω)
, (1)

where Φik is the cross-spectral density between the signals of mi-
crophones i and k. Denoting the distance between the two mi-
crophones by dik, the coherence in a diffuse field is equivalent to
sinc(ω dik/c), where c is the speed of sound. Based on this model,
one can estimate the distance between each pair of microphones by
fitting a sinc function to the coherence between their recorded sig-
nals [16]. In order to fit a sinc function to the coherence of the
recorded signals, a simple quadratic objective function is used

d̂jik = arg min
d

[
εjik(d) =

ωmax∑
ωmin

∣∣∣∣<{Γjik(ω)} − sinc

(
ω d

c

)∣∣∣∣2
]
,

(2)
where [ωmin, ωmax] defines the frequency band in which the fitting
is performed and j is the segment number in time; the <{.} oper-
ator takes the real part of its input. The coherence of a segment is
obtained by averaging the coherence over a sequence of frames [21].
The segment based estimates have to be combined to obtain a single
estimation of the distance.

2.2. K-Means – GMM Clustering

Let J denote the number of segments used for extracting the
distance between two microphones i and k. For each segment j,
(d̂jik, ε

j
ik(d̂jik)) represents the estimated distance and its correspond-

ing objective value. To obtain a single estimate, k-means clustering
has been employed and the mean of the cluster with a lower average
objective value is used as an estimate of the distance [16].

In practice, the dependency of the level of diffuseness on fre-
quency, and several physical parameters of the acoustic field, leads
to many outliers in distance estimation, indicating a deviation from
the model [22]; the number of these outliers increases as the distance
grows rendering k-means clustering insufficient. Hence, we propose
a multi-stage clustering by applying a GMM-based clustering to the
result of k-means.

At the first stage, k-means is used to remove the cluster with
an average larger error measure; an example is illustrated with blue
points in Fig. 1. The winning cluster has many points conforming to
similar distances and lower average error measure as illustrated with
green crosses and red stars. To detect the outliers from the remaining
points, we apply a GMM-based clustering and estimate the distance
as the mean of the class with the least variance. Note that the outliers
normally have a large spread in the two-dimensional feature space,
that justifies the comparison of the classes based on their variance
rather than the average objective value.
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Fig. 1: Example of k-means followed by GMM clustering to re-
move the outliers for distance estimation. The blue dots have
large errors, while the green crosses have more variance so the
red stars are the winners.

In line with this heuristic justification, a 2-D histogramming ap-
proach is also effective for outlier removal and majority voting [21];
however, effective histogramming requires precise tuning of the bin
resolutions whereas a two-stage k-means followed by GMM clus-
tering yields more robust estimates. This approach enables us to
estimate the distances less than dmax and the ones beyond that are
missing. We refer to them as structured missing entries.

3. GEOMETRY ESTIMATION

In this section, we propose a Euclidean distance matrix comple-
tion algorithm to recover the missing distances exploiting the low-
rank characteristic of the squared distance matrix.

3.1. Euclidean Distance Matrix Completion

Matrix completion exploits the low-rank property to reconstruct
a matrix given a subset of its entries. The distance matrix after ap-
plying a simple transformation has very low rank as stated through
the following lemma [23].

Lemma 1. Consider a matrix MN×N consisting of the squared
pairwise distances between N microphones defined as

M =
[
d2ij
]
, dij = ‖xi − xj‖2 , i, j ∈ {1, . . . , N}

where dij is the distance between microphones i and j located at xi
and xj in Rκ. The matrix M has rank at most η = κ+ 2.

Based on Lemma 1, there is a strong dependency among the en-
tries of the squared distance matrix, thereby O(ηN) measurements
suffice to recover the missing components [24]. The matrix comple-
tion algorithm recovers M via the following optimization

M̂ = arg min
M

∑
(i,j)∈E

(
Mij − M̃ij

)2
subject to: rank(M) = η.

(3)

where E denotes the set of distances measured using the method ex-
plained in Section 2 and M̃ is the corresponding measured squared
distance matrix. In this paper, we use the procedure proposed by
Keshavan et al. [24] for estimating a matrix given the desired rank.

The standard matrix completion algorithm recovers a low-rank
matrix with elements as close as possible to the known entries. How-
ever, the recovered matrix does not necessarily correspond to a Eu-
clidean distance matrix. Hence, we propose to project the matrix



obtained at each iteration of the matrix completion algorithm to the
cone of Euclidean distance matrices, EDMN . To this end, after one
step of the gradient descent method, we apply a two-step projec-
tion, P : RN×N 7−→ SNh 7−→ EDMN to decrease the distance
between the estimated matrix and the EDM cone. The SNh desig-
nates the space of symmetric, positive hollow matrices. The projec-
tion onto SNh is achieved by setting the diagonal and negative values
to zero followed by averaging the symmetric elements; thereby, a
new matrix M̄ is obtained. The ultimate projection to EDMN en-
sures that the matrix in addition to live in SNh , has the property of
−zTM̂z ≥ 0 for all z ∈ RN such that ‖z‖ = 1, 1TNz = 0 where
1N ∈ RN is the all ones vector and .T denotes the transpose opera-
tor [25]. To achieve the full EDM properties, we search in the EDM
cone using the following cost function

H(X) =
∥∥∥1NΛT + Λ1N

T − 2XXT − M̄
∥∥∥2

F
, (4)

where XN×κ denotes the position matrix whose ith row, xTi =
[xi1, . . . , xiκ]T , is the position of microphone i in κ-dimensional
Euclidean coordinate and Λ = (X ◦ X)1κ where ◦ denotes the
Hadamard product. The minimum ofH(X) with respect to xi1 can
be computed by equating the partial derivation of equation (4) to
zero to obtain the new estimate X̂ and the corresponding squared
distance matrix M̂ . The stopping criterion is satisfied when the new
estimate differs from the old one by less than a threshold or the max-
imum number of iterations is reached.

4. THEORETICAL ANALYSIS

This section presents some theoretical insights on the perfor-
mance of microphone array calibration using the matrix completion
algorithm.

4.1. Evaluation Measure

The error of geometry estimation has to be quantified with a cost
function robust to rigid transformations (translation, rotation and re-
flection). We define the distance between X and X̂ as [26]

dist(X, X̂) =
1

N

∥∥∥LXXTL−LX̂X̂TL
∥∥∥

F
,

L = IN − (1/N)1N1
T
N ,

(5)

where ‖.‖F denotes the Frobenius norm and IN is theN×N identity
matrix.

4.2. Theoretical Guarantees

We denote the radius of a table where the microphones are de-
ployed with a. The measurements of pairwise distances are noisy
with an independent identically sub-Gaussian distribution of vari-
ance d2ijς

2. The constructed squared distance matrix has the smallest
singular value designated as ση(M).

The maximum distance that can be measured, dmax, is assumed
to be fixed and independent ofN . In addition, we consider that some
of the distances less than dmax might not be accurately estimated, and
thus missing with a probability 1− p. This consideration provides a
better generalization for the results of our theoretical analysis.

Based on the following theorem, we guarantee that the calibra-
tion error has an upper bound that decreases as the local connectivity
and size of the network grow.
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Fig. 2: Diffuse noise recordings: Power pattern of the MVDR
beamformer in (scenario 1) ambient noise and (scenario 2) aug-
mented diffuse sound field.

Theorem 1. There exist constants C1 and C2, such that the output
X̂ satisfies

dist(X, X̂) ≤ C1
a2

p
+ C2ς

d2max√
pN

(6)

with probability greater than 1−N−3, provided that the right-hand
side is less than ση(M)/N .

The proof of this theorem is explained in [27]. Based on The-
orem 1, there is an upper bound on the error of microphone array
calibration determined by two terms. The first term is indicated by
the structured missing entries and the second term is indicated by
the noisy estimates of the pairwise distances due to the deviation
from a diffuse field model [27]. Theorem 1 elucidates that the error
of calibration decreases as the connectivity of the network increases
by adding further microphones. This effect has been investigated
through the experimental evaluations presented in Section 5.

5. EXPERIMENTAL EVALUATION

This section presents the experimental analysis using real data
recordings collected in the Idiap smart meeting room.

5.1. Recording Set-up

We consider a set-up of twelve microphones distributed on a pla-
nar area; eight of them are located on a circle with diameter 20 cm
and one microphone is at the center. There are three additional mi-
crophones with 70 cm distance from the central microphone. This
scenario mimics the MONC database [28]. The sampling rate is 48k
while the processing applied for microphone calibration is based on
a down-sampled signal of rate 16 k to reduce the computational cost
of pairwise distance estimation.

The diffuse field signal is recorded in two scenarios: (1) collect-
ing the ambient noise in the room without any additional source and
(2) playing white Gaussian noise from two small loudspeakers put
under the table and covering them with anti-acoustic material so that
the direct path between the loudspeakers and the microphones are
prohibited to ensure diffuseness [29]. A broadband minimum vari-
ance distortionless response (MVDR) beamformer [30] is used to
scan the whole space and measure the power of the signal impinging
from each direction. Fig. 2 shows the power patterns. We can see
that a more isotropic (diffuse) field is achieved as the beamforming
power pattern of the augmented sound field is closer to a circle.

5.2. Pairwise Distance Estimation

In order to estimate the pairwise distances, we take two micro-
phone signals of length 30 s and window them into short frames of
length 64 ms (i.e., 1024 samples) using a Tukey window (parameter
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Fig. 3: Calibration of the eleven-element microphone array
where several pairwise distances are missing. The geometries
are estimated using MDS-MAP, SDP, S-stress and the proposed
method.

= 0.25). For each five frames (segment), we compute the average
coherence function and estimate the distance by fitting a sinc func-
tion as stated in (2). The segments are 80% overlapping, thereby 460
segments are obtained.

The next step to compute a single estimate of the distance be-
tween the two microphones is clustering the point estimates obtained
per segment. The resulting segment-based estimates can generate
many outliers partly due to the dependency of the diffuseness char-
acteristics to the signal wavelength. The amount of error for various
measured coherence functions along with the frequency dependen-
cies are analyzed thoroughly in [22]. In a typical recording setup,
more diffuseness is obtained at higher frequencies and the assump-
tion of the model is violated at low frequencies. Boosting the power
of the signal at high frequencies by augmenting the sound field as
explained in Section 5.1, increases the power at high frequencies
thus enhances the level of diffuseness. Detection of the outliers is
further achieved by the multi-stage clustering approach elaborated
in Section 2.2. Fig. 1 demonstrates the application of k-means fol-
lowed by GMM clustering to improve the estimation of the distance
between the microphones 9 and 11, cf. Fig. 3, with a distance of
70 cm. In the first stage, k-means clustering removes the segments
that have larger errors (blue points). In the second stage, the green
data points are removed using the GMM-based clustering. Using
only k-means results in 71.2 cm distance while our approach yields
69.9 cm. This approach has been shown to enable reliable estimation
of the pairwise distances up to 73 cm.

5.3. Microphone Calibration

We first evaluate estimation of the geometry when all of the pair-
wise distances are known, cf. Fig. 3-microphones one to nine. We
use the recordings of the sound field in an almost silent room with
(ambient noise) no activation of an additional noise. The calibration
error, dist(X, X̂) is quantified based on (5). The calibration error
for the circular array (microphones one to eight) using MDS, SDP,
S-stress, matrix completion (MC) and the proposed Euclidean dis-
tance matrix completion (E-MC) algorithm are 10.49, 9.88, 12.12,
11.03 and 7.15 respectively. We repeat the same experiment using
the recordings of an augmented diffuse field. The results are summa-
rized in Table 1. We can see that boosting the power of the diffuse
field enables more accurate calibration. The stopping criterion for
the convergence of matrix completion is set to 1e-4.

Although SDP yields the best performance in a weak sound
field, by increasing the power of the diffuse sound, the s-stress
method outperforms SDP. It can be justified as the s-stress is more
likely to converge to a local optimum of its non-convex objective if
the distance measures are noisier. By taking into account an addi-
tional microphone in the center, the local connectivity is increased

Table 1: Norm of error in squared distance (cm2) defined in (5)
using different methods for ad hoc microphone array calibration.

Known Missing
8-mic 9-mic 11-mic 12-mic

MDS-MAP 9 8.13 434.4 472

SDP 9.09 8.63 141 135

S-Stress 6.86 6.14 125 95

MC 10.6 9.75 133 115

E-MC 6.5 5.85 49.6 46

which results in more accurate estimation of the distance matrix
to perform calibration. These results demonstrate the theoretical
insights provided in Section 4.2 as the performance improves with
an additional microphone.

To evaluate the microphone calibration performance when some
of the pairwise distances are missing, the positions of the nine closer
microphones as estimated above are assumed fixed and used for
calibration of the rest of the network. The proposed clustering tech-
nique enables reliable estimation of distances up to 73 cm. Hence, in
our setup of 11 microphones, d10,11, d1,10, d8,10, d7,10, d5,11, d6,11
and d7,11 are missing. An extra microphone 12 is also included
which is located with a symmetry to microphone 10. Hence,
d12,11, d10,12, d3,12, d4,12, d5,12 are also missing. The calibration
errors are listed in Table 1. The results show that considering further
microphone improves the calibration performance which is in line
with the theoretical analysis of Section 4.2.

We can see that the proposed Euclidean distance matrix comple-
tion algorithm achieves the best performance of microphone array
geometry estimation. The worst result belongs to the MDS-MAP
as the shortest path is a poor estimate of the missing entries. The
s-stress and SDP search the Euclidean space corresponding to the
feasible positions, hence their performance is more reasonable. The
advantage of being constrained to a physically possible search space
is incorporated in the Euclidean distance matrix completion algo-
rithm and enables more robust calibration from partial noisy esti-
mation of the distances. Once the distance matrix is recovered by
classic matrix completion algorithms, MDS is used to find the co-
ordinates of the microphones, X̂ , whereas the proposed algorithm
directly yields the coordinates. Fig. 3 illustrates an example of the
estimated geometries using different approaches.

6. CONCLUSIONS

In this paper, we proposed a method for ad hoc microphone ar-
ray calibration when only partial information about the pairwise dis-
tances can be measured. We exploited the diffuse field coherence
model for estimation of the distances between adjacent microphones
and proposed a multi-stage clustering scheme to detect and remove
the outliers from the segment-wise estimates. The constructed dis-
tance matrix based on the coherence model is only partially revealed.
To address the problem of missing distances, we proposed a Eu-
clidean distance matrix completion algorithm and recovered a low-
rank matrix where EDM properties are preserved. Moreover, we
presented novel theoretical analysis of the calibration error where
the maximum measurable distance is fixed irrespctive of the size of
the network and the measured distances have i.i.d. noises increasing
with the distances. The experiments conducted on real data record-
ings demonstrate the applicability of the proposed method and the
effectiveness of increasing the local connectivity and diffuse field
power for accurate calibration.
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