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ABSTRACT

Speaker diarization finds contiguous speaker segments in an

audio recording and clusters them by speaker identity, with-

out any a-priori knowledge. Diarization is typically based on

short-term spectral features such as Mel-frequency cepstral

coefficients (MFCCs). Though these features carry average

information about the vocal tract characteristics of a speaker,

they are also susceptible to factors unrelated to the speaker

identity. In this study, we propose an artificial neural network

(ANN) architecture to learn a feature transform that is opti-

mized for speaker diarization. We train a multi-hidden-layer

ANN to judge whether two given speech segments came from

the same or different speakers, using a shared transform of the

input features that feeds into a bottleneck layer. We then use

the bottleneck layer activations as features, either alone or in

combination with MFCC features in a multi-stream mode, for

speaker diarization on test data. We evaluate the resulting sys-

tem on multiple corpora of multi-party meetings. A combina-

tion of MFCC and ANN features gives up to 14% relative re-

duction in diarization error, demonstrating that these features

are providing an additional independent source of knowledge.

Index Terms— speaker diarization, artificial neural net-

works, discriminative feature extraction

1. INTRODUCTION

Speaker diarization addresses the problem of “who spoke

when” in a multi-party conversation. It is an unsupervised

task, as there is no a-priori knowledge of the speakers

or the number of speakers in a conversation [1, 2]. It

has been studied in various domains such as broadcast

news [3], telephone calls [4], and more recently focusing on

spontaneous meeting-room conversations [2, 5, 6]. The main

issues in performing speaker diarization of meeting room

recordings arise due to far-field audio (background noise and

room reverberation) and conversational speech (short speaker

turns and interruptions).

State of the art systems for speaker diarization use

an agglomerative (bottom-up) clustering framework [7,
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8]. These systems typically use short-term spectral

characteristics, such as Mel-frequency cepstral coefficients

(MFCCs) to represent the vocal tract characteristics of

a speaker, as features for diarization. Recently factor-

analysis based techniques, which are popular in the speaker-

verification domain, have been adapted to the speaker

diarization task [9]. These methods cluster i-vectors extracted

from speech segments using a cosine similarity measure

to provide speaker diarization output. Experiments on

summed telephone channels have shown that i-vector based

methods improve the performance of speaker diarization

when compared to the traditional MFCC features. Another

approach based on feature transforms uses linear discriminant

analysis (LDA) after initial passes of diarization to obtain

discriminative features [10]. However, none of these methods

developed for two-party telephone conversations have so far

been applied to multi-party, conference-style meetings.

In this work, we propose to use an artificial neural

network (ANN) trained as a classifier to extract features

for diarization. We train the ANN classifier on a related

task: to decide whether two given speech segments belong

to same or different speakers. We hypothesize that the hidden

layers of a network trained in this fashion should transform

spectral features into a space more conducive to speaker

discrimination. We propose to use the hidden layer activations

from the bottleneck layer of the network as a new feature for

speaker diarization. We conduct experiments to evaluate the

usefulness of the bottleneck features for the task of speaker

diarization on various meeting-room data sets.

The paper is organized as follows. Section 2

presents a brief overview of speaker diarization system

based on hidden Markov model/Gaussian mixture model

(HMM/GMM) framework. Section 3 presents the method of

using the proposed ANN based classifier as feature extractor

for speaker diarization. Section 4 reports the experimental

results on various meeting room datasets. Section 5 presents

the conclusions and future directions.



2. HMM/GMM BASED SPEAKER DIARIZATION

SYSTEM

A HMM/GMM based speaker-diarization system represents

each speaker by a state of an HMM and models the state

emission probabilities using GMMs. Let ci denote the ith

speaker cluster (HMM state), and bi denote the emission

probability distribution corresponding to speaker cluster ci.

Then we model the log-likelihood log bi(st) of input feature

st for cluster ci using a GMM as:

log bi(st) = log
∑

(r)

w
(r)
i N(st, µ

(r)
i ,Σ

(r)
i ), (1)

where N() is a Gaussian pdf and w
(r)
i , µ

(r)
i and Σ

(r)
i are

the weights, means and covariance matrices respectively of

the rth Gaussian mixture component of cluster ci. Clustering

in an agglomerative framework starts by over-estimating the

number of speaker clusters and uniformly segmenting a given

audio recording. At each iterative step, we merge the clusters

that are most similar. We measure the similarity between

two clusters using a modified Bayesian information criterion

(BIC) [11]. In modified BIC, the complexity term in the

standard BIC [12] cancels out because the total number of

model parameters before and after merging is kept constant.

The modified BIC criterion BIC(ci, cj) for two clusters ci
and cj is given by:

BIC(ci, cj) =
∑

st∈{ci∪cj}

log bij(st)−
∑

st∈ci

log bi(st)

−

∑

st∈cj

log bj(st)
(2)

where bij is the probability distribution estimated over the

combined data of cluster ci and cj . We merge the clusters

that produce the highest BIC score. After each merge step,

a Viterbi decoding pass realigns the speech data to the new

speaker clusters. A minimum duration constraint on each

state prevents rapid speaker changes. The clustering stops

when no two clusters have a BIC score greater than zero. The

baseline HMM/GMM diarization system used in the current

study is modelled after the state-of-the-art system developed

by ICSI [7].

When multiple feature streams are present, we estimate a

separate set of GMMs for each feature stream, and a weighted

combination of the individual stream log-likelihoods gives the

combined log-likelihood. For the case of two feature streams

x and y, let b
(x)
i , b

(y)
i denote the probability distributions

estimated from streams x, y respectively for cluster ci. The

combined log-likelihood for cluster ci is:

log bi(s
(x)
t , s

(y)
t ) = w(x) log b

(x)
i (s

(x)
t ) + w(y) log b

(y)
i (s

(y)
t ),

(3)

where s
(x)
t , s

(y)
t are the feature vectors corresponding to

feature streams x, y respectively, w(x), w(y) are the weights
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Fig. 1. An ANN architecture to classify two given speech

segments as belonging to same or different speakers. The

dotted box indicates the part of the network used to generate

features for diarization after the full network is trained.

of the feature streams, such that w(x)+w(y) = 1. We estimate

the weights w(x), w(y) on a held out development data set.

3. ANN FEATURES FOR SPEAKER DIARIZATION

Artificial neural networks are extensively used in supervised

tasks such as speaker recognition and identification. Konig

et al. [13] used a multi-layer perceptron (MLP) with five

layers, trained to classify speakers, as a feature extractor.

Their MLP was discriminatively trained to maximize speaker-

recognition performance. They used the outputs from the

second hidden layer (units of which had linear activation

function) as features in a standard GMM-based speaker-

recognition system. The rationale behind using hidden-layer

activations as features is that the initial layers of a network

that is trained to classify different speakers will transform

the input features into a space more conducive to speaker

discrimination, and thus make the classification task easier.

Speaker diarization is an unsupervised task and there is

no a-priori information about the speakers. Therefore, in

this work, we propose a neural network that is trained to

classify two given speech segments as belonging to the same

or different speakers. We extract features from this network

to use as a new stream in an HMM/GMM diarization model.

Figure 1 shows the architecture of the four-layer network

we use in this work. We split the input layer of the network

into two halves, left and right, to represent acoustic features

belonging to the two speech segments being compared. The

first hidden layer (bottleneck) is also split into two halves

similar to the input layer, so each half receives input from

the respective input segment i.e., the right half of the hidden

layer only gets input from the right half of the input layer

and the left half from the left half of the input layer. We tie



Table 1. Meeting corpus statistics as used in experiments,

including numbers of distinct speakers, meeting room sites,

and number of meetings used as part of ANN training,

development and diarization test sets.

Corpus Speakers Sites Meetings

Train Dev Test

AMI 150 3 148 - 12

ICSI 50 1 - 20 55

NIST-RT 100 6 - - 24

the weight matrices (denoted by W in Fig. 1) connecting the

right and left halves of input and hidden layers so that the

network learns a single common transform for all speakers.

The second hidden layer connects each half of the first

hidden layer to the output layer. The output layer has two

units denoting the class labels—-same or different speakers—

depending on the source of the two input speech segments

(segment1, segment2 in Figure 1). All the hidden layers

have sigmoid activation functions and the output layer has a

softmax function to estimate the posterior probabilities of the

classes (same/different). We train the network using a cross-

entropy objective function.

After training the network, we use the first hidden layer

activations, before applying the sigmoid function, as features

for speaker diarization in a HMM/GMM system. To generate

features from the network, we use a window of speech as

input to one half of the input layer and extract activations

at the corresponding half of the bottleneck layer. It should

be noted that, it does not matter to which half a speech

segment is given as input to generate features since the weight

matrices connecting left and right halves of input layer to the

corresponding halves in the bottleneck layer are tied.

4. EXPERIMENTS AND RESULTS

We now describe our data, methodology, and experiments.

As our system learns features using a separate task, we report

the classification performance of this feature-training system

(the ANN), as well as diarization performance of the overall

system.

4.1. Datasets used in experiments

Our experiments make use of meeting room recordings from

various corpora: AMI [14], ICSI [15], and 2006/2007/2009

NIST-RT [16]. Table 1 summarizes the characteristics of

these data sets. The AMI data set is split into train and

test sets of 148 and 12 meetings, respectively. The test and

train sets are disjoint in speakers. We use only speech data

from the AMI train set to train the neural network classifier

described in Section 3. Twenty ICSI meetings are set aside

for the purpose of development and tuning, and the remaining

Table 2. Classification error rate of the ANN on AMI test set.

Train Cross-validation Test Chance

20% 21% 35% 50%

55 ICSI meetings form an additional test set. All NIST-RT

evaluation sets (2006/2007/2009) are also used for testing.

4.2. ANN training and feature generation

We trained the ANN to classify two given speech segments

as to whether they came from the same or different speaker,

using data from the AMI corpus. To avoid skewing the

training toward particular speakers we sampled 50 utterances

from each of 138 speakers. Each utterance has a duration of

about 10 seconds. The cross validation (CV) set contained 10

utterances from each speaker in the training set. To test the

classification performance of the network, we used the AMI

test set which contains all the utterances from the 12 speakers

which are not part of the train set (cf. Table 1).

We manually aligned speech transcripts to the close-

talking microphone recordings to obtain frame-level speaker

labels. For training purposes we removed speech segments

containing overlapping speech. For input features we

extracted 19 MFCCs from a frame of 30 ms with a frame

increment of 10 ms. The two halves of the input layer

(segment 1, segment 2) each have a context of 500 ms, i.e., 51

frames. The dimensions of the two halves of the bottleneck

layer (first hidden layer) is 20. The dimensions of the second

hidden layer is 100 and the dimensionality of the output layer

is 2, corresponding to the two classes (same/different). The

network thus contains 969 × 2 (input), 20 × 2 (bottleneck),

100 (2nd hidden), and 2 (output) units.

The objective function for the ANN was cross entropy;

training used error back propagation and stochastic gradient

descent for 25 epochs. For ANN training and performance

evaluation, we used an equal number of same- and different-

speaker speech segment pairs which made the chance error

rate 50%. Table 2 shows the classification performance (error

rate) on AMI test set after training. Despite not having seen

any of the test speakers in training, the network performs

much better than chance on the unseen speakers. The test set

error rate was roughly half-way between training and chance

error rates.

After training the network, we obtain new features for the

test data by feeding 500ms (50 frames) of acoustic features

around a given frame to one half of the input-bottleneck

layer portion of the ANN (see Fig. 1). We feed the output

values, before the sigmoid nonlinearity, as feature vectors to

the HMM/GMM diarization system.



Table 3. Speaker error rates (%) obtained on various test

sets for different feature streams. ANN denotes the bottleneck

features obtained from the neural net classifier and ANN +

MFCC denotes the multi-stream combination.
Data-set MFCC ANN ANN + MFCC

AMI 25.1 32 21.5

ICSI 20.6 25.8 18.4

RT-06 14.1 32.5 13.9

RT-07 11.3 25.3 11.8

RT-09 16.8 25.9 18.7

4.3. Speaker diarization evaluation

We performed speaker diarization experiments on different

test sets to evaluate the usefulness of the features obtained

from the ANN classifier, comparing performance to that

of the standard 19-dimensional MFCCs typically used for

speaker diarization. We also combined the bottleneck features

with the MFCCs in a multi-stream fashion as described in

Section 2 to exploit any complementary information present

in the two feature streams. We fixed the weights when

combining these two streams to 0.9 for the MFCC stream and

0.1 for the bottleneck features, based on experiments on the

development subset of the ICSI corpus (cf. Table 1).

We report performance using the diarization error rate

(DER), the standard evaluation metric used in the NIST-RT

evaluation campaigns [16]. DER is the sum of speech/non-

speech error and speaker error, measured as a percentage

of total speaker time. Speech/non-speech segmentation is

typically handled by a preprocessing step (known as speech

or voice activity detection) to the diarization algorithm. In

order to focus evaluation on the speaker clustering aspect of

the diarization task, we used a manually-defined reference

speech/non-speech segmentation in all our experiments.

Therefore, instead of DER, we report the speaker error

(clustering error), in our experiments.

Table 3 reports the speaker error rates (%) obtained for

various feature streams: MFCC, bottleneck features from

an ANN classifier (ANN), and the multi-stream combination

of MFCC and bottleneck features (MFCC + ANN). We see

that, on their own, bottleneck features do not work as well

as MFCC features. However, when the ANN features are

combined with MFCCs in a multi-stream system, the speaker

error reduces from 25.1% to 21.5% on the AMI test set

and from 20.6% to 18.4% on the ICSI test set (in all cases

comparing MFCC to ANN + MFCC).

The results on the NIST-RT data sets (RT-06, RT-

07, RT-09) are less promising. The bottleneck features

do not decrease the error even when combined with the

MFCC features. We hypothesize that this is because

the NIST-RT datasets were collected from a multitude of

sites, encompassing a variety of acoustic environments and

recording equipment. The ANN, while learning a notion of

Table 4. Speaker errors (%) obtained on AMI and ICSI

datasets for matched and mismatched training conditions.

Train Test MFCC ANN + MFCC Rel. change

AMI AMI 25.1 21.5 -14.3%

AMI ICSI 20.6 18.4 -10.7%

ICSI ICSI 20.6 15.1 -26.7%

speaker identity, may have learned to ignore nuisance factors

as they occurred in the AMI meetings, but not necessarily as

found in other environments.1.

It stands to reason that the ANN features could be trained

to perform better on the RT data given matched training data.

Unfortunately, no such data was available for the various

NIST-RT sites. To further investigate the effect of train/test

mismatch we ran an additional experiment using the ICSI

corpus, where we did have spare data that could be used for

training. While the AMI-trained features did improve the

diarization error on ICSI data, we trained a second ANN on

the non-test portion of the ICSI corpus, with results as shown

in the last row of Table 4. The relevant results from training

on AMI data are also listed for comparison.

We find that, as expected, the performance on ICSI test

set is much improved with matched training data, with the

relative error reduction going from 10.7% to 26.7%. This

relative reduction surpasses the result on the AMI test set,

which is likely due to the fact that, unlike for the AMI data,

there are shared speakers in the training and test portions of

the ICSI corpus.2

5. CONCLUSIONS AND FUTURE WORK

We developed a speaker-diarization framework that uses

ANNs as trainable acoustic feature extractors. The ANN is

first trained to classify pairs of speech segments as belonging

to the same or different speakers, while forcing the raw

MFCC features to undergo a shared transform via a bottleneck

layer. We apply the learned transform to unseen data to

generate features that are combined with baseline MFCCs

as input to a standard agglomerative-clustering diarization

system. We find that the resulting system reduces speaker

error substantially (11–14% relative) when trained on data

that is reasonably matched to the test data (AMI or ICSI

test data when trained on AMI speakers not seen in testing).

With some speakers seen in training (as when training and

testing on ICSI meetings) the reduction in error rate is more

dramatic. Our method thus provides an effective way to

adapt a diarization system to available training data without

requiring specific knowledge of the speakers present in

testing, something that the standard GMM/HMM diarization

1While the AMI corpus was itself collected at three different sites, the

general setup and recording equipment was standardized.
2Speaker overlap was unavoidable in the ICSI train/test sets since a small

number of speakers occur in a large number of meetings.



framework does not allow. In future work, we plan to

explore variations of the framework presented here. First, we

arrived at the network dimensions using only prior experience

with similar ANN applications, and need to systematically

optimize input window size and layer dimensions for our task.

We also plan to investigate deeper and recurrent neural net

architectures as feature extraction networks.
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