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Abstract—Overlapping speech has been identified as one of the
main sources of errors in diarization of meeting room conversa-
tions. Therefore, overlap detection has become an important step
prior to speaker diarization. Studies on conversational analysis
have shown that overlapping speech is more likely to occur at spe-
cific parts of a conversation. They have also shown that overlap oc-
currence is correlated with various conversational features such as
speech, silence patterns and speaker turn changes. We use features
capturing this higher level information from structure of a con-
versation such as silence and speaker change statistics to improve
acoustic feature based classifier of overlapping and single-speaker
speech classes. The silence and speaker change statistics are com-
puted over a long-term window (around 3-4 seconds) and are used
to predict the probability of overlap in the window. These esti-
mates are then incorporated into a acoustic feature based classi-
fier as prior probabilities of the classes. Experiments conducted
on three corpora (AMI, NIST-RT and ICSI) have shown that the
proposed method improves the performance of acoustic feature-
based overlap detector on all the corpora. They also reveal that
the model based on long-term conversational features used to es-
timate probability of overlap which is learned from AMI corpus
generalizes to meetings from other corpora (NIST-RT and ICSI).
Moreover, experiments on ICSI corpus reveal that the proposed
method also improves laughter overlap detection. Consequently,
applying overlap handling techniques to speaker diarization using
the detected overlap results in reduction of diarization error rate
(DER) on all the three corpora.

Index Terms—Meeting room recordings, simultaneous speakers,
speaker diarization, spontaneous conversations, spontaneous over-
lapping speech.

I. INTRODUCTION

O VERLAPPING speech occurs when there is more than
one speaker speaking at any given instant of time in

an audio recording. This is a very common phenomenon in
spontaneous conversations like meeting room discussion, tele-
phone conversations, television chat shows and other similar
media [1], [2]. The factors causing overlapping speech in a
multi-party conversation are diverse [3], [4], [5], [6]. It can
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occur when listeners use back-channels to show their involve-
ment and also to convey their agreement with the foreground
speaker. It also most commonly occurs when one or more
participants try to interrupt the foreground speaker and take
the conversation floor. In informal conversations among mul-
tiple participants, there are situations where multiple parallel
conversations (schism) [7] take place involving several partici-
pants in each sub-conversation. Also, it has been observed that
overlaps are a common phenomenon during conversation floor
exchanges among speakers. Apart from the above mentioned
broad patterns of occurrences of overlaps, there are always
some idiosyncrasies specific to a particular conversation or
participant that can cause overlapping speech at any place
during the conversation. Previous studies have shown that the
error rates of automatic speech processing systems increase
when processing speech from multiple simultaneous speakers
[8], [3]. Several diagnostical studies on speaker diarization
systems have also shown that overlapping speech is one of
the main sources of error in state of the art speaker diarization
systems [9], [10], [11].
Several previous works have proposed methods to detect

overlapping speech in meeting room conversations. Earlier
works have concentrated on detecting overlapping speech in
audio captured using head/lapel microphones worn by the par-
ticipants in the conversation [12], [13], [14]. These works have
focussed on issues arising from cross-talk, breath noise and
channel variations across different close talking microphones
used to capture the audio. Pfau et al. [13] have proposed a
hidden Markov model (HMM) based approach to infer the
sequence of hidden states speech and non-speech in each
participant’s channel. They have also proposed a method to
detect overlapping speech segments by putting a threshold on
the cross correlation value between speech signals of multiple
channels.
Wrigley et al. [12] proposed a more generalized approach

to multi-channel speech activity detection, where a HMM
with four states, single-speaker speech, cross-talk, overlap-
ping speech and non-speech was used. They explored various
acoustic features useful for this task and found kurtosis, ‘fun-
damentalness’ and cross-correlation related features to be most
effective. Laskowski et al. [14] have proposed a method to
improve multi-channel speech activity detection in overlap-
ping speech regions by modelling the turn taking behavior
of participants in the conversation. These works were mainly
concerned with improving speech activity detection on the
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meeting room data captured by close-talking microphones
with an aim to facilitate reliable automatic speech recognition
(ASR). Speaker diarization in its standard setup is evaluated
on distant microphone speech where there is no one-to-one
correspondence between the speakers and the channels used
in the recording. So, recent works on overlap detection and
speaker diarization have focussed on detecting the overlapping
speech in recordings captured using distant microphones.
Otterson et al. [15] trained overlapping speech models using

synthesized overlapping speech obtained by adding multiple
single-speaker speech utterances. But, experiments revealed
that though the trained models were effective in detecting
artificially synthesized overlaps, they did not generalize well
to naturally occurring overlaps in meeting conversations. The
same authors [16] proposed a two step method to handle over-
lapping speech in speaker diarization assuming oracle overlap
detection. Boakye et al. [17], [18], [19] explored various
acoustic features for overlapping speech detection in distant
microphone audio. They found features such as Mel-frequency
cepstral coefficients (MFCC), energy, spectral flatness as being
the most useful features for overlap detection. Experiments on
meeting recordings from AMI meeting corpus [20] have shown
that overlap detection is possible with reasonable accuracy
which in turn reduced the diarization error rate (DER).
Huijbregts et al. [21] proposed a method for overlapping

speech detection in a two pass speaker diarization system by
training overlapping speech models from speech surrounding
speaker changes hypothesized by an automatic speaker di-
arization system. The trained overlap model was used in the
second pass along with speaker models in Viterbi decoding to
identify overlapping speech segments. Zelenak et al. [22], [23],
[24] have proposed the use of time delay of arrival (TDOA)
based features extracted from the cross-correlation of speech
signals captured by multiple distant microphone channels to
improve short-term spectral feature based overlap detection.
The cross-correlation based features were used along with
short-term spectrum based features as two parallel feature
streams in a multistream overlapping speech detection system.
To reduce the dimensionality of the cross-correlation based
feature vector, and also to make it independent of the number of
distant microphone channels used for the recording, they have
proposed a way to transform these features to a fixed dimension
feature space by applying principal component analysis (PCA)
or artificial neural networks (ANNs). Experiments have shown
that the cross correlation based features improve the overlap-
ping speech detection. Zelenak et al. [25] have also shown
improvements in overlapping speech detection by the use of
prosodic features. More recently, convolutional non-negative
sparse coding based approaches have been successfully applied
to the problem of overlap detection [26], [27].
All the methods described above rely directly on features

computed from the acoustic signal captured by distant micro-
phones. However, in the recordings of meeting room conver-
sations by distant microphones, the speech signal is often cor-
rupted by background noise resulting in a recording with low
signal to noise ratio (SNR). In such scenarios, it is important
to explore higher level information present in the structure of a

conversation which carries useful cues in modelling the occur-
rence of overlapping speech. Such information if captured ef-
fectively, could potentially be more robust to noisy conditions
in the recording. It can also be easily transferred across dif-
ferent corpora of multi-party conversations irrespective of the
recording conditions and meeting room setup, which have a di-
rect influence on acoustic features. Studies on conversational
analysis have shown that overlaps are more likely to occur at
specific locations in a conversation such as speaker turn changes
[8], [4] and have also shown that single-speaker speech, silence
and overlapping speech patterns are related to each other [28],
[29], [30].
Motivated by these studies, the present work proposes the use

of features that can be easily extracted automatically from con-
versations such as silence [31] and speaker change statistics [32]
to capture higher level information in a conversation that is rel-
evant for overlap detection. These features are extracted from
a long context of about 4 seconds surrounding a given time
instant and are used to estimate the probability of occurrence
of overlap at that instant. We also explore methods to combine
the complementary information present in the two features, si-
lence and speaker change statistics, to improve upon the proba-
bility estimates obtained from either of the individual features.
These probability estimates are incorporated into the acoustic
feature based classifier as prior probabilities of the overlap-
ping and single-speaker speech classes. We report experiments
on the AMI [20], NIST-RT [33] and ICSI [34] meeting cor-
pora to validate the generalizability of the proposed method in
overlap detection. In these experiments, we demonstrate that the
model that is trained to estimate the probability of occurrence
of overlap using the meetings from AMI corpus generalizes
to other meeting corpora such as NIST-RT and ICSI. We also
report speaker diarization experiments on AMI and NIST-RT
data sets to evaluate the subsequent improvements in speaker
diarization achieved due to improvements in overlap detection.
The paper is organized as follows. Section II provides a

brief overview of the various datasets used in the present
work. Section III describes the baseline systems for speaker
diarization, overlap detection and briefly explains overlap han-
dling mechanism typically used in speaker diarization systems.
Section IV explains the proposed conversational features based
on silence and speaker change statistics to estimate the proba-
bilities of single-speaker and overlapping speech classes along
with the details of how these features are combined to improve
the probability estimates from individual features and how
these probabilities are incorporated into acoustic feature based
system. Section V presents the experimental results on overlap
detection studies and their impact on speaker diarization and
Section VI summarizes the conclusions of the present work.

II. DATA-SETS USED

For the experiments in the present work, we use meeting
room recordings from three different corpora namely, AMI,
NIST-RT and ICSI. The audio captured using multiple distant
microphones is enhanced by performing beamforming using
BeamformIt toolkit [35]. The acoustic features for speaker
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diarization and overlap detection are extracted from this en-
hanced signal.

A. AMI Meeting Corpus

The AMI corpus [20] consists of about 100 hours of meeting
recordings recorded at multiple sites (Idiap, TNO, Edinbrough).
The corpus contains both natural and scenario based meetings.
The corpus is annotated at multiple levels with several low-level
and higher-level information such as speakers segments, word
transcripts, summaries, dialogue acts etc. For the experiments
reported in the present work we have randomly selected 35
meetings for training set and 25 meetings for the test set (re-
ferred as AMI-test set) and 10 meetings for the development
set. Meetings from all the recording sites are present in training,
testing and development sets.

B. NIST RT Meeting Corpus

The NIST RT meeting corpus [33] consists of meetings be-
longing to NIST RT speaker diarization evaluation campaigns
of 2005, 2006, 2007 and 2009. Each set consists of meeting
recordings from multiple sites and varying number of speakers.
The corpus also contains ground-truth speaker segmentation ob-
tained by force-aligning the manual transcripts of individual
head-microphone channels. The meetings from RT 05, 06, 07
are used as training set while the RT 09 set of meetings is used
for testing.

C. ICSI Meeting Corpus

The ICSI meeting corpus [34] contains 75 meetings which
contain on the whole around 72 hours of spontaneous multi-
party conversation recordings recorded at ICSI, Berkeley. All
meetings were recorded by both close talking and distant micro-
phones and contain word level orthographic transcription and
speaker information. For the experiments in the present work,
we have used meetings from the groups Bmr, Bro, Bed. We
have randomly picked 35 meetings as part of training set and 15
meetings as part of the test set (referred as ICSI-test set). Both
training and test sets have meetings from all the three groups.

III. BASELINE SPEAKER DIARIZATION AND OVERLAP
DETECTION SYSTEMS

A. Speaker Diarization System and Overlap Handling

The baseline speaker diarization system is a non-parametric
system based on the information bottleneck (IB) framework
[36], [37], [38], [39]. The method has been shown to give
similar performance to that of parametric systems based on
the HMM/GMM framework [40] with the advantage of sig-
nificantly less running time. The IB method of clustering
is a distributional clustering algorithm that clusters items
with similar distributions over a set of variables known as
relevance variables. It was initially applied to the task of
document clustering, using the set of words in the documents
as a relevance variable set [41]. In this scenario, documents
containing similar distributions over words were clustered
together. In the case of speaker diarization, components of a
background GMM estimated over speech regions of a given
multi-party speech recording are used as a set of relevance

variables. This is motivated from state-of-the-art methods
in speaker identification where GMMs are used as universal
background models (UBMs). Let
denote the set of input variables that need to be clustered and
let denote the set of relevance variables
that carry meaningful information about the desired clustering
output . The IB method aims to find the
optimal clustering by maximizing the function below:

(1)

where is a Lagrange multiplier, denotes mutual infor-
mation between the set of relevance variables and the clus-
tering output , and similarly denotes mutual informa-
tion between the input variables set and the clustering output
. By maximizing in (1), the clustering algorithm aims at

preserving as much information as possible about the relevance
variables in the final clustering i.e., maximizing while
being as compact as possible by minimizing mutual informa-
tion between the input variable set and the clus-
tering output . The IB function can be maximized in sev-
eral ways, the current system [37] uses a greedy agglomerative
solution to the optimization. The clustering starts with uniform
(over) segmentation of speech regions, which are treated as set
of input variables . The set of relevance variables is de-
noted by components of background GMM estimated over these
speech regions. The agglomerative clustering is initialized with
each member of set as an individual cluster and then at each
clustering step of IB method, the two clusters that have most
similar distributions over the relevance variables are combined.
The similarity is obtained in the form of loss in the IB function
, resulting due to the merge of two clusters as,

(2)
where stands for Jensen-Shannon divergence between two
distributions and is given by,

(3)

where stands for Kullback-Leibler divergence between
two distributions, , and
is the cluster formed after the merge of the clusters and .
The relevance variable distribution of the cluster formed due to
the merge is obtained by averaging the relevance variable dis-
tributions of the individual clusters in the merge. At each step,
two clusters that result in the lowest value of are merged
into one cluster. The stopping criterion is based on a threshold
over the normalized mutual information . Once the final
clusters have been obtained, a re-alignment step is performed
by estimating a GMM from the data assigned to each cluster
and using these cluster models to perform Viterbi decoding with
a minimum duration constraint. This step is intended to cor-
rect the errors in the segmentation introduced due to initializa-
tion of clustering by uniform segmentation of speech regions.
The diarization output is evaluated using a metric called di-
arization error rate (DER), which is a standard metric used in



YELLA AND BOURLARD: OVERLAPPING SPEECH DETECTION USING LONG-TERM CONVERSATIONAL FEATURES 1691

Fig. 1. Block diagram of overlap handling for speaker diarization: Overlaps
obtained from overlap detection are first excluded from diarization process and
later, appropriate speaker labels are assigned to the overlap segments based on
methods described in Section III-A1 in the labeling stage, to generate the final
diarization output.

NIST-RT evaluation campaigns [33]. DER is the sum of speech/
non-speech error and speaker error. Speech/non-speech error is
the sum of miss and false alarm errors by the automatic speech/
non-speech detection system. Speaker error is the clustering
error happening whenever speech segments of a speaker are at-
tributed to a different one. A forgiveness collar of sec-
onds is applied around the reference segment boundaries while
scoring the automatic systems’ output.
1) Overlap Handling for Speaker Diarization: Overlapping

speech causes errors in speaker diarization system in two ways.
First, it introduces impure segments containing speech from
multiple speakers into the clustering process. Secondly, the
overlap segments are scored times where is the number
of speakers in the overlap, which increases the missed speech
error even if one of the speakers is not assigned correctly.
To avoid these errors, Otterson et al. [16] have proposed a
method to handle overlaps for speaker diarization that consists
of two steps which are overlap exclusion and overlap labeling.
In overlap exclusion, detected overlap segments are excluded
from the clustering process so that they do not corrupt the
speaker models. In overlap labeling, the segments detected as
overlap are labeled by two speakers according to a heuristic
such as assigning the overlap segment to two nearest speakers
in time. This heuristic is based on observations from studies on
NIST RT meeting data which revealed that assigning speakers
based on proximity to the overlap gives a significant reduction
in DER [16]. The two speakers can also be assigned based on
cluster likelihoods, in which the segment is assigned to two
clusters for which the data in the overlap segment has highest
likelihood [17], [22]. The overlap handling method in a typical
speaker diarization system is summarized in the Fig. 1.

B. Overlap Detection Using Acoustic Features

The baseline overlap detection system is based on acoustic
features derived from short-term spectrum that have been
shown to be effective in classifying single-speaker speech and
overlapping speech in the literature [18]. In the present work,
we use 12 Mel frequency cepstral coefficients (MFCCs) with
log energy, spectral flatness, linear prediction (LP) residual
energy computed from LP analysis of 12th order, along with
their deltas resulting in a feature vector of dimension 30.
All features were extracted from an acoustic frame of size
30 ms with a frame rate of 10 ms. Prior to overlap detection,
automatic speech/non-speech detection is performed using the
SHOUT algorithm [42] and non-speech regions are excluded
from further processing. After this single-speaker, overlapping
speech detection is performed on the detected speech regions
in the recording. In baseline overlap detection system, the

classes single-speaker and overlapping speech are represented
by states of a hidden Markov model (HMM). The emission
probability distributions of these states are modelled using
Gaussian mixture models (GMMs). To control the tradeoff be-
tween the false overlap detections and total number of overlaps
being detected, an overlap insertion penalty (OIP) is introduced
which penalizes the overlap detections. This has a positive
effect on the precision of the classifier while effecting the recall
in a negative manner. Let denote the set of
HMM states representing overlapping ( ) and single-speaker
( ) speech classes, and let denote the sequence of acoustic
feature vectors then, the most likely sequence of the states in a
given audio recording can be obtained by Viterbi decoding as,

(4)

The prior probability of the state sequence is usually
approximated by first order Markov model assuming that the
current state is dependent only on its previous state and is repre-
sented by the state transition probability. In the baseline overlap
detection system, these probabilities are fixed to a constant value
based on the statistics observed in the training data. But studies
on conversational analysis show that the probability of occur-
rence of an overlap is not constant across the recording, and
there are places in a conversation where overlaps are more likely
to occur [8], [4]. In the current work, we propose a method to
capture this information and use it in the acoustic feature based
overlap detection system.

IV. CONVERSATIONAL FEATURES FOR OVERLAP DETECTION

In this section, we present in detail the long-term features
extracted from the structure of a conversation that are supposed
to carry relevant information about occurrence of overlap. We
explore features that can be easily extracted automatically such
as silence and speaker change statistics.

A. Silence Statistics for Overlap Detection

Several studies on multi-party conversational analysis have
shown that single-speaker speech, silence and overlap patterns
in a conversation are related to each other and carry useful infor-
mation about the conversations and the participants in the con-
versations [28], [29], [30]. Motivated by these studies, we ex-
plore the relation between silence, single-speaker speech, over-
lapping speech durations in a segment to predict the occurrence
of overlap in that segment. In particular we hypothesize that seg-
ments containing more silence are less likely to contain overlap-
ping speech. To verify this hypothesis, we perform experiments
using the AMI training set meetings.
Let be a variable indicating the duration of silence in a

segment and be the number of segments that con-
tain seconds of silence where, the length of the segment is
given by the variable . Let be a binary vari-
able denoting the classes we are interested in detecting which
are overlapping speech ( ) and single-speaker speech ( ). Let

denote the number of segments of length
seconds that contain seconds of silence and an occurrence of
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Fig. 2. Probability of overlap based on silence duration obtained using ground
truth speech/sil segmentation and automatic speech activity detector output.

overlap. Given these counts, it is possible to estimate the prob-
ability of overlap in a segment conditioned on the amount of
silence in that segment as:

(5)

Fig. 2 shows for different values of
(duration of silence) for a segment length of four seconds (i.e.,

). In the left plot, speech/silence segmentation is ob-
tained from the ground-truth segmentation and in the right plot,
it is obtained from the automatic speech activity detector (SAD)
output [42]. It can be noticed from Fig. 2 that the probability of
overlap in a segment is inversely proportional to the amount of
silence in the segment which supports our hypothesis that seg-
ments containing more silence are less likely to contain over-
lapping speech. In particular, from the left subplot of Fig. 2, it
can be observed that when the amount of silence in a segment
is zero, the probability of occurrence of overlap in that segment
is around 0.7. In other words, this illustrates that it is possible to
estimate the probability of occurrence of an overlap in a segment
by the amount of silence present in that segment. This informa-
tion is potentially useful as speech/silence detection is a simpler
task compared to single-speaker/overlapping speech detection.
The right subplot in Fig. 2, which uses SAD output to compute
the amount of silence in a segment, also shows similar trends
which means that ground-truth silence duration can be replaced
by the estimates of silence from SAD output. The probability of
a single-speaker speech within a segment can be estimated as:

(6)

To compute these statistics for the whole recording,
the segment is progressively shifted by one frame at each
step. The probabilities are estimated

where is the total number of frames in the
recording and denotes the duration of silence in the segment
centered around the frame . This process is depicted in Fig. 3.
To verify how the estimated probabilities and

generalize to sets of meetings that are different from
those used during training, cross entropy between these esti-
mated probabilities and true distribution of the classes in a de-
velopment set of meetings is computed. The probabilities for

Fig. 3. Estimation of probabilities of single-speaker speech and overlapping
speech states for a frame based on duration of silence present in the segment
centered around the frame .

the true distributions are obtained for each frame
as follows, if the frame is over-
lapped and if the frame belongs
to single-speaker speech. The knowledge of whether a frame
belongs to the overlapped ( ) or single-speaker ( )
class is obtained from the ground-truth segmentation of these
meetings. The cross entropy between the true distribution and
the estimated distribution is computed as follows:

(7)
where is the total number of frames used in the computation.
To eliminate the bias in the estimate of resulting from un-
even number of samples present in single-speaker speech and
overlap classes, the cross entropy measure is computed by con-
sidering equal number of samples from each class.
It can be observed from Fig. 4 (a) that the cross entropy de-

creases as we increase the segment length ( ) used to estimate
the probabilities of overlap until some point and then starts to
increase. This decrease in the cross entropy suggests that the
estimated probabilities are much closer to the true probabilities
when they are estimated from a longer context than a frame. The
lowest value of cross entropy is found around a segment length
of 4 secs. This indicates that a segment length of 4 secs is op-
timal to compute the silence statistics. Similar plots of cross en-
tropy are also shown for RT 09 and ICSI meetings respectively
in subplots (b) and (c) of Fig. 4. Note that the probability es-
timates for NIST-RT 09 and ICSI meetings are obtained using
the model learned from AMI training set. These plots also show
similar trends to that observed on AMI development set, which
gives an indication that the estimated statistics have similar ef-
fects on other data sets. It also shows that model learned to esti-
mate the probabilities of overlapping and single-speaker speech
fromAMI training set can be generalizable to other meeting cor-
pora such as NIST-RT and ICSI.

B. Speaker Change Statistics for Overlap Detection

Studies on conversational analysis have shown that overlaps
occur more often at some specific parts of conversations [8].
Especially, it was shown that a significant proportion of the
overlaps occurs during speaker turn changes [8]. Motivated by
these studies, the current work analyzes the relationship be-
tween the occurrence of overlap in a segment and the number of
speaker changes in the segment. Specifically, the study hypoth-
esizes that overlap probability in a segment is directly propor-
tional to the number of speaker changes in the segment. In other
words, segments containing more speaker changes are highly
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Fig. 4. Cross entropy between estimates based on silence duration (obtained from model learnt from AMI-train set) and true distribution on various datasets
(a) AMI development set (b) NIST-RT 09 (c) ICSI.

Fig. 5. Probability distributions of number of occurrences of overlaps ( ) for
different number of speaker changes ( ) obtained using ground truth segmenta-
tion and diarization output.

probable to have more number of overlaps than those having
fewer speaker changes. To verify this hypothesis, we perform
experiments using the AMI training set.
In the first experiment, the distribution of the number of

overlaps is analyzed for different number of speaker changes
in a segment. Let and respectively denote the variables
indicating number of speaker changes and overlaps in a seg-
ment. In the present work, an occurrence of overlap is defined
as a contiguous segment of overlapping speech surrounded
by single-speaker speech or silence regions. The number of
overlaps is obtained by counting such occurrences in the
segmentations (obtained by force-aligning close talking micro-
phone audio with manual transcripts) provided by the corpus
authors. Let denote the number of segments of
length seconds which contain number of speaker changes
and, let denote the number of segments
containing number of overlaps and speaker changes. Then,
the probability of having number of
overlaps in a segment of length seconds conditioned on
the fact that it contains number of speaker changes can be
estimated as:

(8)

Fig. 6. Estimation of probabilities of single-speaker and overlapping speech
classes for a frame based on number of speaker changes present in the
segment centered around the frame .

Fig. 5 shows the distribution of i.e., the distri-
bution of the number of overlaps ( ) in segments of length six
seconds ( ) for different number of speaker changes ( ).
The speaker changes are obtained from the ground truth speaker
segmentation and automatic diarization output for left and right
subplots respectively. It can be observed from Fig. 5 that, as the
number of speaker changes increases, the probability of occur-
rence of more overlaps also increases. Also, it can be observed
that the distribution of for different seem to
follow a Poisson distribution with a rate that is directly propor-
tional to the number of speaker changes ( ). Number of speaker
changes in the diarization output is lower when compared to
ground truth speaker segmentation due to constraints and er-
rors introduced by the automatic system. Nevertheless, a similar
phenomenon can also be observed for distributions estimated
from diarization output. Fig. 5 supports our hypothesis that seg-
ments containing more speaker changes contain more overlaps.
This information can be useful when incorporated into the base-
line overlap detector which is based on acoustic features, since
it does not contain evidence from the conversational patterns in
the meetings.
Motivated from the empirical distributions in Fig. 5, we

model the probability of number of occurrences of overlaps in a
given segment by a Poisson distribution whose rate depends
on the number of speaker changes in the segment i.e.,

(9)

where the rate parameter is a maximum likelihood estimate
from the training set of meetings, which is simply the mean of
the number of occurrences of overlaps in segments of length
seconds which contain speaker changes. After estimating the
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Fig. 7. Cross entropy measure between estimates based on speaker changes (obtained from model learnt from AMI-train set) and true distribution on various
datasets (a) AMI development set (b) RT 09 (c) ICSI for various segment lengths.

set of rate parameters for different values of , the proba-
bility of occurrence of overlap in a segment conditioned on the
number of speaker changes in the segment can be obtained as,

(10)

(11)

and, the probability of single speaker speech can be obtained as,

(12)

(13)

The probabilities and are
estimated for all the frames in a given recording as depicted
in Fig. 6. Cross entropy between the estimated probabilities
and the true distribution is computed by replacing the proba-
bility estimates in (7) by the estimates based on speaker changes

and . Fig. 7 shows the cross entropy values
for various segment lengths computed on the AMI, NIST-RT
09 and ICSI data sets. It can be observed from Fig. 7(a) that
a segment length of three seconds yields optimal estimates of
the probabilities on the AMI development set. It can also be
observed from subplots (b) and (c) in Fig. 7 that the estimated
statistics generalize well to unseen meetings from different cor-
pora such as NIST-RT 09 and ICSI.

C. Combination of Silence and Speaker Change Statistics

The probability estimates of single-speaker and overlapping
speech classes obtained using silence and speaker change statis-
tics are based on different conversational phenomenon and we
hypothesize that combining the information captured by these
two features might result in a better estimate of the class proba-
bilities. Motivated by this hypothesis, we explore various com-
bination strategies proposed in the literature to obtain an esti-
mate that exploits the information captured by both features.
In particular, we experimented with two types of combination
methods, early combination and late combination.
In the early combination strategy, a combined feature vector

is formed for each frame by appending the individual features,
corresponding to the frame. Let and denote the duration

of silence and number of speaker changes in a segment cen-
tered around frame . Let denote the combined feature vector
formed by appending the features and corresponding to
the frame i.e., . A logistic regression classifier
is trained using these feature vectors on a training set of meet-
ings with a binary target variable denoting single-speaker
and overlapping speech classes respectively. The target labels
for each frame are obtained from the ground-truth segmenta-
tion. The output of this classifier is in the range [0,1] and can be
treated as a probability estimate of the overlapping speech class
i.e., . Given this estimate, the probability of single
speaker speech is obtained as .
In the late combination method, we explore different ways

to combine the probability estimates and
obtained from the individual features to get

the final overlap probability estimate . We
experimented with the standard combination methods such as
the sum and product rules with uniform weights for individual
estimators as well as inverse-entropy based weighting scheme
[43]. The combination according to sum rule can be written as,

(14)

The combination according to product rule can be written as:

(15)

where denotes the prior probability of a class where
. While using uniform weights, both and are

set to 0.5 each. In the inverse entropy based weighting scheme,
the weights are set as explained below. Let and respec-
tively denote entropy of probability estimators based on silence
and speaker change statistics for a frame . The weights of in-
dividual probability estimators for a frame are computed as,

and .
To evaluate the usefulness of different combination strate-

gies, we use the cross-entropy measure computed on AMI
development set. The cross entropy is computed based on
(7) using the probability estimates of the classes obtained by
the above mentioned combination strategies. Cross entropy
based studies on development set of meetings revealed that
the inverse-entropy based weighting gave similar results to the
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TABLE I
CROSS ENTROPY MEASURE ON AMI DEVELOPMENT SET OF

MEETINGS FOR VARIOUS COMBINATION STRATEGIES

uniform weighting of the individual estimators. Table I shows
cross entropy measures obtained for different combination
methods mentioned above. It can be observed from Table I that
estimates obtained by the product rule of combination have the
lowest cross-entropy. Therefore, based on these findings, in the
current work, we use product rule based combination method
to combine information captured by different conversational
features.

D. Combination of Conversational and Acoustic Features

The probability estimates of single-speaker and overlapping
speech classes obtained from silence and/or speaker change sta-
tistics are integrated into the acoustic feature based classifier
as prior probabilities of these classes. As mentioned earlier, the
prior probabilities of the classes in the acoustic feature based
system usually are fixed to a constant value based on the propor-
tion of samples in each class observed during the training phase.
However, studies have shown that the probability of overlap oc-
currence is neither constant across different conversations nor
within a conversation. Therefore, to address this issue in the
acoustic feature based classifier, we introduce prior probabilities
that are estimated based on the silence and the speaker change
statistics in context of a frame. These probabilities encode infor-
mation present in the long-term context of a frame and change
depending on the context. Let denote the sequence of acoustic
features and let denote the sequence of conversational fea-
tures which can be either the individual features or their combi-
nation. Given these, the most probable state sequence where
the states in the sequence belong to the set can be es-
timated by Viterbi decoding as:

(16)

assuming that given the state/class the observed acoustic fea-
tures are independent of the conversational features . The
term is modelled using GMM distributions of the cor-
responding states and is only dependent on the current frame.
The term estimates the probability of the states based
on the conversational features such as silence duration and/or
number of speaker changes in a segment surrounding the current
frame and captures the information present in the long-term con-
text of the frame which is not present in the acoustic features.
Therefore, we hypothesize that this combination will improve
the performance of the classifier.

V. EXPERIMENTS AND RESULTS

In this section, we present the experimental results of over-
lapping speech detection using standard acoustic features as

Fig. 8. Block diagram of the proposed method of overlap detection: Speech,
silence statistics and speaker change statistics are obtained as by product of ini-
tial pass of IB speaker diarization. These statistics are used to estimate proba-
bility of occurrence of overlap as explained in sections IV-A, IV-B and IV-C.
These probabilities are incorporated into acoustic feature based overlap detector
(section III-B) as prior probabilities as detailed in section IV-D.

explained in section III-B and the proposed method of using
probability estimates of the classes obtained from conversa-
tional features as prior probabilities of the states as explained
in section IV. We also present experiments evaluating the effect
of the acoustic feature based overlap detection system and the
proposed method for overlap detection on speaker diarization.
Fig. 8 summarizes the proposed method for overlap detection.
The obtained overlaps are used for overlap handling in speaker
diarization as explained in section III-A1.

A. Experiments on Overlap Detection

We evaluate the performance of the acoustic feature based
overlap detector and the proposed method of incorporating
conversational information into acoustic feature based detector
on three different meeting corpora namely, AMI, NIST-RT
and ICSI. A HMM/GMM based overlap detector is trained for
each corpus using training set of meetings for the respective
corpus as described in section III-B. The parameters needed for
estimating the probabilities of single-speaker and overlapping
speech classes from the conversational features as described in
sections IV-A, IV-B and IV-C are obtained from the training
set of meetings from the AMI corpus. These parameters are
then used to estimate the probabilities of the classes on the test
set of meetings in all the corpora and are incorporated into the
acoustic feature based HMM/GMM system as explained in
section IV-D.
In the first experiment, we verify the hypothesis stated in the

section IV-D that, incorporating the probabilities of overlapping
and single-speaker speech classes estimated from the proposed
conversational features such as silence and speaker change sta-
tistics as prior probabilities of the classes in the acoustic feature
based classifier improves its performance. The systems are com-
pared using the metrics such as recall, precision, f-measure and
error. Recall of a system on overlap detection task is computed
as the ratio between the duration of overlap that is correctly de-
tected by the system to the total duration of actual overlap. Pre-
cision is computed as the ratio between duration of the overlap
that is correctly detected by the system and total duration of
overlapping speech detected by the system. F-measure is har-
monic mean between recall and precision which is a good indi-
cator of the classifier performance when the number of samples
in each class is skewed as in the current study. The error rate is
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Fig. 9. Overlap detection evaluation on (a) AMI-test set (b) NIST-RT 09 set and (c) ICSI-test set. In each subplot (a), (b), (c), dotted line shows the error, solid
line shows f-measure, dashed line shows recall, and ‘-.-’ shows precision of the classifiers in overlap detection in percentage on y-axis for various overlap insertion
penalties (OIP) in x-axis.

computed as the ratio between the total duration of missed and
false overlap detections to the total duration of overlap.
Fig. 9 shows the performance of the acoustic feature based

overlap detector and the proposed method on the test sets of
three meeting corpora in terms of recall (dashed line), precision
(-.- line), f-measure (solid line) and error (dotted line) of the re-
spective classifiers on the task of overlap detection. In Fig. 9,
the acoustic feature based classifier (section III-B) is denoted
by label Acoustic, the system using probability estimates from
silence statistics (section IV-A) is denoted as +Sil-priors, the
system using probability estimates from speaker change statis-
tics (section IV-B) is denoted as +Spkrch-priors and, the system
using the probability estimates from the combination of the in-
dividual features by product rule (section IV-C) is denoted as
+Conv-priors. The figure plots various evaluation metrics for
different values of overlap insertion penalty (OIP) that is intro-
duced to have a trade-off between the true and the false overlap
detections. In general, it can be observed that higher values of
OIP tend to increase the precision of the classifier while sacri-
ficing the recall.
The error rates achieved by the acoustic feature based overlap

detector on AMI-test set are similar to the error rates obtained
by prior works [17], [23], [27] in literature on the data set. It
can be observed from the Fig. 9(a) that incorporating the prob-
abilities of the classes estimated from the individual conversa-
tional features (Sil-priors, Spkrch-priors) improves the perfor-
mance of the acoustic feature based system as they consistently
achieve higher f-measure and lower error over the acoustic fea-
ture based classifier for all the values of OIP. Also, the combina-
tion (Conv-priors) of the conversational features (Sil-priors, Sp-
krch-priors) leads to further improvements in overlap detection.
In the experiments reported here, the combination is performed
based on the product rule as described in section IV-C since, the
combination based on product rule obtained the lowest cross-en-
tropy on AMI development set (see Table I). The improvements
in terms of f-measure and decrease in the error rate achieved
by the proposed method is mainly due to increase in the recall
of the classifier when compared to the acoustic feature based

system. This indicates that the proposed method is able to iden-
tify instances of overlaps which are not detected by the acoustic
feature based system. Similar trends can be observed in all the
corpora though the absolute values of the evaluation metrics are
different. In general, it can be observed that incorporating con-
versational features into the acoustic feature based classifier im-
proves the performance of the classifier as shown by the consis-
tent higher f-measure and the lower error rates achieved by the
proposed method on all the three corpora when compared to that
of the acoustic feature based system. This result is particularly
encouraging as it demonstrates that, model trained to estimate
probability of overlap based on conversational features using
one corpus (AMI), generalizes well to meetings from the other
corpora (NIST-RT and ICSI).
1) Laughter Overlap Detection: Laughter is a very common

phenomenon in human interactions [44]. Studies on sponta-
neous conversations have shown that overlaps and laughter
occurrences are correlated with each other [45], [46]. Studies
done on ICSI corpus have shown that 9% of speaking time
contains laughter [45]. Based on these studies, we evaluate the
performance of the proposed method for overlap detection in
laughter segments of ICSI corpus. The start and end times of
laughter segments and the corresponding speakers are obtained
from the annotations done for analysis of laughter in [45].
Fig. 10 presents results of overlap detection on laughter seg-
ments based on acoustic features alone(Acoustic) and combina-
tion of acoustic and conversational features (+Conv-priors). To
obtain the conversational features silence and speaker change
statistics which are used to estimate the prior probabilities of
the classes, we superimpose the ground-truth laughter seg-
ments of a meeting recording over speaker diarization output
of the respective meeting. It can be observed from the Fig. 10
that the combination of conversational features improves the
performance of the acoustic feature based overlap detector as
shown by the f-measures for various OIPs.
2) Robustness to Speaker Diarization Errors: The conver-

sational features proposed in the current work make use of the
baseline IB diarization output to compute speaker change sta-
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Fig. 10. Overlap detection evaluation on laughter segments from ICSI-test set:
dotted line shows the error, solid line shows f-measure, dashed line shows recall,
and ‘-.-’ shows precision of the classifiers in overlap detection in percentage on
y-axis for various overlap insertion penalties (OIP) on x-axis.

Fig. 11. Effect of diarization errors: (a) High error set (b) Low error set. Dotted
line shows the error, solid line shows f-measure, dashed line shows recall, and
‘-.-’ shows precision of the classifiers in overlap detection on in percentage
y-axis for various overlap insertion penalties (OIP) on x-axis.

tistics. These statistics computed over a long-term context of
a frame are used to estimate the probability of overlap at that
frame. To evaluate the effect of errors made by the clustering al-
gorithm of speaker diarization on overlap detection, we compare
the overlap detection performance on meetings with high and
low diarization error. For this purpose, we divided the AMI-test
set into two subsets, based on the speaker error of the clustering
algorithm. All the meetings less than speaker error of 15% were
put in low error set and rest of the meetings were put in high
error set. Fig. 11 plots the evaluation metrics for overlap detec-
tion for acoustic feature based system (Acoustic) and the com-
bination of acoustic and conversational feature based system
(+Conv-priors) on high and low error sets. From Fig. 11, it can
be observed that the performance of the acoustic feature based
detector is improved on both the sets by the combination of con-
versational features. The low error set (Fig. 11(b)) has slightly
high precision when compared to the high error set (Fig. 11(a)).

B. Speaker Diarization with Overlap Handling

In this section, we evaluate the effect of overlap detection
on speaker diarization on three different corpora AMI-test set,

NIST RT-09 and ICSI-test sets. For experiments on ICSI-test
set, we included laughter segments in speech regions given
as input to the diarization system to make the scenario as
natural as possible. We used ground-truth speech/non-speech
segmentation for experiments on ICSI corpus to avoid missing
laughter segments because of automatic speech activity detec-
tion which might classifying laughter segments as non-speech.
The detected overlaps are used in speaker diarization by per-
forming overlap exclusion and labeling techniques explained
in section III-A1. Using these methods, we compare the two
overlap detection systems one based on just the acoustic
features and the other incorporating the information from
conversational features as prior probabilities of the classes.
Since the combination of the conversational features showed
the best performance in overlap detection (Fig. 9), we use the
overlap detection hypothesis generated by the system using the
combination of the conversational features based on the product
rule (Conv-priors). To decide the optimal value of OIP to use
in overlap detection system, we perform tuning experiments on
AMI development corpus and pick an OIP that gives lowest
DER. As proposed in earlier works [22], [18], we perform
overlap exclusion and overlap labeling steps using different
overlap detection hypothesis dependent on the value of OIP
used. This is based on the rationale that, high precision overlap
detection hypothesis is desirable for overlap labeling step to
avoid increasing false alarm errors and high recall hypothesis is
desirable for overlap exclusion, as it helps in avoiding as much
overlapping speech as possible from corrupting the speaker
(cluster) models.
1) Overlap Exclusion: To tune the overlap insertion penalty

(OIP) for overlap exclusion, we ran experiments on a develop-
ment set of meetings by performing overlap exclusion using the
overlap hypothesis generated by various values of OIP. These
experiments have revealed a similar trend to that observed
in previous studies [23], where the DER reduction was not a
smooth function of OIP. Therefore, for overlap exclusion we
use the detection hypothesis obtained with OIP set to zero as
done in previous studies [23], [27]. Table II reports DER and
its components speech/non-speech error (SpNsp) and speaker
error (Spkr) obtained on test set of meetings from AMI and
NIST-RT 09 corpus using the baseline speaker diarization
system in three scenarios; without any overlap exclusion
(Baseline), overlap exclusion using the hypothesis generated
by acoustic feature based system (Acoustic) and overlap exclu-
sion using the hypothesis generated by the proposed method
(Conv-priors). First of all, it can be observed from the Table II
that performing overlap exclusion reduces the speaker error
(Spkr) of the diarization as expected, since it avoids corruption
of resulting speaker models. Also, it can be observed from
Table II that on AMI-test set, the proposed method reduces the
DER by around 17% relative to the baseline speaker diarization
system that does not do any overlap exclusion. The acoustic
feature based overlap detector reduces the DER by around 13%
relative to the baseline. The table also reports the f-measures
of both the overlap detection systems used to perform overlap
exclusion. This reveals that higher reduction in DER achieved
by the proposed method is due to the ability of the proposed
method to detect more overlap at the given OIP (0).
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TABLE II
OVERLAP EXCLUSION ON AMI-TEST SET, NIST-RT 09 AND ICSI-TEST DATA
SETS: SPNSP REPRESENTS ERROR IN SPEECH/NON-SPEECH DETECTION,
SPKR AND F-MEASURE OF THE RESPECTIVE OVERLAP DETECTION SYSTEMS

AT THE OPERATING POINT ( ) USED FOR EXCLUSION

Table II also presents results of similar experiments on
NIST-RT 09 and ICSI-test data set. On RT-09 data set the
acoustic feature based overlap detector reduces the DER
by 3.5% relative and adding conversational features further
reduces the DER by 6.4% relative. On ICSI-test set, the
acoustic feature based overlap detector reduces the DER by
2.4% relative and the DER reduces by 4.2% relative when
conversational features are added. The drop in the relative
reductions in DER when compared to AMI data set (Table II)
is mainly due to the performance drop in the acoustic feature
based classifier as indicated by the f-measures of the classifiers
on the corpora in Table II. Nevertheless, the proposed method
(Conv-priors) achieves a lower DER than the system using
overlaps from acoustic feature based system (Acoustic) on RT
09 and ICSI-test data sets also.
2) Overlap Labeling: To determine the optimal value of OIP

for labeling task, we ran tuning experiments on AMI develop-
ment set using overlap hypothesis obtained for different values
for OIP. Fig. 12 plots the relative change in DER due to overlap
labeling as a function of OIP used to generate the overlap hy-
pothesis. In the present work, we use nearest neighbor based
labeling as it gave similar results to the cluster likelihood based
labeling. It can be observed from Fig. 12 that the OIP value of
90 gives the highest relative decrement in DER on the AMI de-
velopment set. Based on this observation, we use the overlap
hypothesis obtained by setting the value of OIP to 90 while
performing overlap labeling. Table III presents the overlap la-
beling results on the test set of meetings in AMI and RT cor-
pora. It can be observed from Table III that on AMI corpus,
the proposed method (Conv-priors) decreases the DER by 2.9%
relative to baseline diarization system that does not use any
overlap information (Baseline). It also achieves lower DER than
the system using overlaps detected by acoustic feature based
system (Acoustic). The decrease in DER achieved by the pro-
posed method is due to the decrease in speech/non-speech error
(SpNsp). The speech/non-speech error (SpNsp) is reduced from
13.5% in the baseline diarization system to 11.9% in proposed
method which is around 12% relative reduction. This reduction
is due to the detection of overlapping speech and labeling it
as speech. But the improvement in the final DER is not in the
same range due to the errors introduced during labeling which
increase the speaker error when the identified overlap segments
are not assigned to correct speakers. This highlights the need
for a novel speaker labeling method for the detected overlaps.

Fig. 12. Overlap labeling: Tuning for optimal overlap insertion penalty (OIP)
on AMI development set.

TABLE III
OVERLAP LABELING ON AMI-TEST AND NIST-RT 09 AND ICSI-TEST
DATA SETS: MISSED (MISS) AND FALSE-ALARM (FA) ERRORS IN

SPEECH/NON-SPEECH DETECTION AND TOTAL SPEECH/NON-SPEECH ERROR
(SPNSP), SPEAKER ERROR (SPKR), DIARIZATION ERROR RATE (DER) AND
F-MEASURES OF THE RESPECTIVE OVERLAP DETECTION SYSTEMS AT THE

OPERATING POINT ( ) CHOSEN TO DO LABELING

Similar trends can be observed in Table III on RT 09 data set
also. The lower DERs achieved by the proposed method on
the two data sets can be attributed to better detection of over-
laps as indicated by the higher values of f-measure and lower
error rate obtained by it on the data sets at the given OIP of 90
when compared to acoustic feature based system (see Fig. 9).
On ICSI corpus also, overlaps obtained by the combination of
acoustic and conversational features achieve the highest reduc-
tion of DER by labeling. The relative reduction on ICSI-test set
is better than RT-09 even though the overlap detection perfor-
mance is similar. This is due to the reason that ICSI-test set con-
tains overlaps from laughter segments which tend to have more
speakers than normal speech overlaps. Therefore, the labeling
method is less prone to errors when labeling overlaps in laughter
segments.
3) Overlap Exclusion Followed by Labeling: In this section

we summarize the results of diarization experiments when
overlap exclusion and labeling are performed alone and to-
gether where exclusion is followed by labeling as described
in Fig. 1. Table IV summarizes the DERs obtained on all the
three data sets AMI-test and NIST-RT 09 and ICSI-test while
performing overlap handling techniques Exclusion, Labeling,
and Both (exclusion followed by labeling) using overlaps
detected by acoustic feature based system (Acoustic) and the
proposed method of combining acoustic and conversational
features(+Conv-priors). It can be observed from Table IV that
the proposed method achieves highest reduction in DER on
all the corpora. It increases the relative error reduction due to
overlap detection to around 20% on meetings from AMI-test
from around 15% achieved by acoustic feature based overlap
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TABLE IV
DERS (WITH RELATIVE IMPROVEMENTS OVER BASELINE DIARIZATION WITHIN
PARENTHESIS) OBTAINED WHILE PERFORMING OVERLAP HANDLING BY

USING OVERLAPS DETECTED BY PROPOSED METHOD (+CONV-PRIORS) AND
ACOUSTIC FEATURE BASED OVERLAP DETECTOR (ACOUSTIC)

detection system. On RT 09 meetings, it increases the relative
DER reduction to around 7% from 3.5% achieved by system
based on acoustic features and on ICSI-test set it increases the
relative error reduction to around 7% from 4% achieved by the
acoustic feature based system.

VI. CONCLUSIONS

Motivated from the studies done on conversational analysis,
in the present work, a method to improve the acoustic feature
based overlap detector using long-term conversational features
was proposed. Experiments done in the present work revealed
that features extracted automatically from conversations such
as silence and speaker change statistics carry relevant informa-
tion about overlap occurrence in a conversation. The features
were computed over a window of around 3-4 secs to capture the
information present in the long-term context of a frame. These
features were then used to estimate the probability of overlap
and single-speaker speech classes in the window. Cross entropy
measure based studies on development data revealed that the
probability estimates of the classes are closer to the true distri-
bution as the length of the context used to compute the features
is increased and reaches an optimum around 4 secs. The prob-
ability estimates of the overlapping and single-speaker classes
obtained from the long-term context of each frame in the con-
versation were incorporated into the acoustic feature based clas-
sifier as prior probabilities of the classes.
Experimental results on overlap detection using three dif-

ferent meeting corpora (AMI, NIST-RT, ICSI) revealed that the
proposed method improves the performance of acoustic fea-
ture based classifier. These experiments also revealed that the
model learnt to estimate the class probabilities using data from
AMI corpus is generalizable to other meeting corpora such as
NIST-RT and ICSI. Experiments were also done to evaluate the
effect of overlap detection on speaker diarization using the stan-
dard methods of exclusion and labeling. These experiments re-
vealed that the proposed method decreases the DER by 20% rel-
ative to the baseline speaker diarization system onAMI-test data
set. Using overlap detection from only acoustic feature based
system reduced the DER by 15% relative. Speaker diarization
experiments on NIST-RT 09 and ICSI-test data sets have also
revealed that the proposed method achieves higher reduction in
DER when compared to the system using only acoustic features
for overlap detection. These experiments also highlight the need
for an effective overlap labeling mechanism to assign speakers
to the detected overlap segments as the reductions obtained in
speech/non-speech error are compensated to an extent by the in-
crease in the speaker error due to the errors done during labeling.

ACKNOWLEDGMENT

The authors thank Dr. Fabio Valente for the helpful discus-
sions and suggestions all along the work, Dr. Phil Garner for
proof reading the manuscript and the reviewers whose com-
ments have improved the paper significantly.

REFERENCES
[1] E. Shriberg, “Spontaneous speech: How people really talk and why

engineers should care,” in Proc. Eurospeech, 2005, pp. 1781–1784.
[2] M. Adda-Decker, B. Claude, A. Gilles, P. Patrick, B. d. M. Philippe,

and H. Benoit, “Annotation and analysis of overlapping speech in po-
litical interviews,” in Proc. 6th Int. Lang. Resources Eval. (LREC’08),
Marrakech, Morocco, May 2008, European Language Resources As-
sociation (ELRA).

[3] O. Cetin and E. Shriberg, “Overlap in meetings: Asr effects and anal-
ysis by dialog factors, speakers, and collection site,” in Proc. 3rd Joint
Workshop Multimodal and Rel. Mach. Learn. Algorithms, Washington,
DC, USA, 2006.

[4] O. Cetin and E. Shriberg, “Analysis of overlaps in meetings by dialog
factors, hot spots, speakers, and collection site: Insights for automatic
speech recognition,” in Proc. ICSLP, Pittsburgh, PA, USA, 2006, pp.
293–296.

[5] E. A. Schegloff, “Overlapping talk and the organization of turn-taking
for conversation,” Lang. Soc., vol. 29, no. 1, pp. 1–63, 2000.

[6] E. Kurtic, G. J. Brown, and B. Wells, “Resources for turn competition
in overlapping talk,” Speech Commun., vol. 55, no. 5, pp. 721–743,
2013.

[7] H. Sacks, E. A. Schegloff, and G. Jefferson, “Simplest semantics for
the organization of the turn-taking in conversation,” Language, vol. 50,
pp. 696–735, 1974.

[8] E. Shriberg, A. Stolcke, and D. Baron, “Observations on overlap: Find-
ings and implications for automatic processing of multi-party conver-
sation,” in Proc.Eurospeech, Aalborg, Denmark, 2001, pp. 1359–1362.

[9] M. Huijbregts and C. Wooters, “The blame game: Performance anal-
ysis of speaker diarization system components,” in Proc. Interspeech,
Antwerp, Belgium, 2007, pp. 1857–1860.

[10] M. Huijbregts, D. van Leeuwen, and C. Wooters, “Speaker diarization
error analysis using oracle components,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 20, no. 2, pp. 393–403, Feb. 2012.

[11] M. T. Knox, N. Mirghafori, and G. Friedland, “Where did I go wrong?:
Identifying troublesome segments for speaker diarization systems,” in
Proc. Interspeech, Portland, OR, USA, 2012.

[12] S. Wrigley, G. Brown, V. Wan, and S. Renals, “Speech and crosstalk
detection in multichannel audio,” IEEE Trans. Speech Audio Process.,
vol. 13, no. 1, pp. 84–91, Jan. 2005.

[13] T. Pfau, D. Ellis, and A. Stolcke, “Multispeaker speech activity detec-
tion for the icsi meeting recorder,” in 2001 ASRU ‘01. IEEE Workshop
Autom. Speech Recogn. Understand., 2001, pp. 107–110.

[14] K. Laskowski and T. Schultz, “Unsupervised learning of overlapped
speech model parameters for multichannel speech activity detection in
meetings,” in Proc. ICASSP, Toulouse, France, 2006, pp. 993–996.

[15] S. Otterson, “Use of speaker location features in meeting diarization,”
Ph.D. dissertation, Univ. of Washington, Seattle, WA, USA, 2008.

[16] S. Otterson and M. Ostendorf, “Efficient use of overlap information in
speaker diarization,” in Proc. ASRU, Kyoto, Japan, 2007.

[17] K. Boakye, O. Vinyals, and G. Friedland, “Two’s a crowd: Improving
speaker diarization by automatically identifying and excluding over-
lapped speech,” in Proc. Interspeech, Brisbane, Australia, 2008, pp.
32–35.

[18] K. Boakye, O. Vinyals, and G. Friedland, “Improved overlapped
speech handling for speaker diarization,” in Proc. Interspeech, Flo-
rence, Italy, 2011, pp. 941–943.

[19] K. Boakye, “Audio segmentation for meetings speech processing,”
Ph.D. dissertation, Univ. of California, Berkeley, CA, USA, 2008.

[20] [Online]. Available: http://corpus.amiproject.org/
[21] M. Huijbregts, D. A. v. Leuwen, and F. M. G. d. Jong, “Speech overlap

detection in a two-pass speaker diarization system,” in Proc. Inter-
speech, Brighton, U.K., 2009, pp. 1063–1066.

[22] M. Zelenák, C. Segura, and J. Hernando, “Overlap detection for
speaker diarization by fusing spectral and spatial features,” in Proc.
Interspeech, Makuhari, Japan, 2010, pp. 2302–2305.

[23] M. Zelenák, C. Segura, J. Luque, and J. Hernando, “Simultaneous
speech detection with spatial features for speaker diarization,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 2, pp. 436–446,
Feb. 2012.



1700 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

[24] M. Zelenák, “Detection and handling of overlapping speech for speaker
diarization,” Ph.D. dissertation, Univ. Politecnica de Catalunya,
Barcelona, Spain, 2011.

[25] M. Zelenák and J. Hernando, “The detection of overlapping speech
with prosodic features for speaker diarization,” in Proc. Interspeech,
Florence, Italy, 2011, pp. 1041–1043.

[26] R. Vipperla, J. Geiger, S. Bozonnet, D. Wang, N. Evans, B. Schuller,
and G. Rigoll, “Speech overlap detection and attribution using convo-
lutive non-negative sparse coding,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2012, pp. 4181–4184.

[27] J. Geiger, R. Vipperla, S. Bozonnet, N. Evans, B. Schuller, and G.
Rigoll, “Convolutive non-negative sparse coding and new features for
speech overlap handling in speaker diarization,” in Proc. Interspeech,
Portland, OR, USA, 2012.

[28] K. Laskowski, M. Osterdorf, and T. Schultz, “Modeling vocal inter-
action for text-independent participant characterization in multi-party
convrersation,” in Proc. 9th ISCA/ACL SIGdial, Columbus, OH, USA,
2008, pp. 148–155.

[29] K. Laskowski, M. Osterdorf, and T. Schultz, “Modeling vocal interac-
tion for text-independent classification of conversation type,” in Proc.
8th ISCA/ACL SIGdialWorkshopDiscourse andDialogue, Antwerpen,
Belgium, 2007, pp. 194–201.

[30] K. Laskowski, “Modeling norms of turn-taking in multi-party conver-
sation,” Proc. 48th Ann. Meeting of the Association for Computational
Linguistics ser. ACL ‘10. Uppsala Sweden, Association for Compu-
tational Linguistics, 2010, pp. 999–1008.

[31] S. H. Yella and F. Valente, “Speaker diarization of overlapping speech
based on silence distribution in meeting recordings,” in Proc. Inter-
speech, Portland, USA, 2012.

[32] S. H. Yella and H. Bourlard, “Improved overlap speech diarization of
meeting recordings using long-term conversational features,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Vancouver, BC,
Canada, 2013.

[33] [Online]. Available: http://www.itl.nist.gov/iad/mig/tests/rt/
[34] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B.

Peskin, T. Pfau, E. Shriberg, A. Stolcke, and C. Wooters, “The icsi
meeting corpus,” in Proc. ICASSP, Hong Kong, 2003, pp. 364–367.

[35] [Online]. Available: http://www.xavieranguera.com/beamformit/
[36] D. Vijayasenan, F. Valente, and H. Bourlard, “An information theoretic

approach to speaker diarization of meeting data,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 17, no. 7, pp. 1382–1393, Sep. 2009.

[37] D. Vijayasenan and F. Valente, “Diartk: An open source toolkit for re-
search in multistream speaker diarization and its application to meet-
ings recordings,” in Proc. Interspeech, Portland, OR, USA, 2012.

[38] S. H. Yella and F. Valente, “Information bottleneck features for
HMM/GMM speaker diarization of meetings recordings,” in Proc.
Interspeech, Florence, Italy, 2011, pp. 953–956.

[39] S. H. Yella and H. Bourlard, “Information bottleneck based speaker
diarization of meetings using non-speech as side information,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Florence, Italy, 2014,
pp. 96–100.

[40] C. Wooters andM. Huijbregts, Multimodal technologies for perception
of humans, R. Stiefelhagen, R. Bowers, and J. Fiscus, Eds. Berlin/
Heidelberg, Germany: Springer-Verlag, 2008, pp. 509–519, ch. The
ICSI RT07s Speaker Diarization System.

[41] N. Slonim, N. Friedman, and N. Tishby, “Agglomerative information
bottleneck,” in Advances in Neural Information Processing Systems.
Cambridge, MA, USA: MIT press, 1999, pp. 617–623.

[42] M. Huijbregts and F. de Jong, “Robust speech/non-speech classifica-
tion in heterogeneous multimedia content,” Speech Commun., vol. 53,
no. 2, pp. 143–153, 2011.

[43] H. Misra, H. Bourlard, and V. Tyagi, “New entropy based combina-
tion rules in HMM/ANN multi-stream asr,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., ICASSP ‘03, 2003, pp. 741–744.

[44] P. Glenn, Laughter in Interaction. Cambridge, U.K.: Cambridge
Univ. Press, 2003.

[45] K. Laskowski and S. Burger, “Analysis of the occurrence of laughter
in meetings,” in Proc. Interspeech, 2007, pp. 1258–1261.

[46] L. Kennedy and D. P. W. Ellis, “Laughter detection in meetings,” in
Proc. NIST Meeting Recognition Workshop, Montreal, QC, Canada,
2004, pp. 118–121.

Sree Harsha Yella (S’13) is a Ph.D. student at
Idiap Research Institute, Martigny, Switzerland, and
École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland. His Ph.D. thesis is focused
on speaker diarization of spontaneous meeting room
conversations. He obtained his bachelors (Hons)
and masters degrees in computer science and engi-
neering from International Institute of Information
Technology, Hyderabad (IIIT-H), in 2008 and 2010,
respectively. His masters thesis investigated speech
summarization techniques using structural and

acoustic cues in audio recordings. His research interests mainly include speech
and spoken language processing, and applied machine learning.

Hervé Bourlard (F’00) received both the Electrical
and Computer Science Engineering degree and
the Ph.D. degree in applied sciences from Faculté
Polytechnique de Mons, Mons, Belgium. After
having been a member of the Scientific Staff at
the Philips Research Laboratory of Brussels and
an R&D Manager at L&H SpeechProducts, he is
now Director of the Idiap Research Institute, Full
Professor at the École polytechnique fédérale de
Lausanne EPFL, and (Founding) Director of a Swiss
NSF National Centre of Competence in Research on

Interactive Multimodal Information Management. Having spent (since 1988)
several long-term and short-term visits (initially as a Guest Scientist) at the
International Computer Science Institute (ICSI), Berkeley, CA, he is now a
member of the ICSI Board of Trustees.
His research interests mainly include statistical pattern classification, signal

processing, multi-channel processing, artificial neural networks, and applied
mathematics, with applications to a wide range of Information and Commu-
nication Technologies, including spoken language processing, speech and
speaker recognition, language modelling, multimodal interaction, augmented
multi-party interaction, and distant group collaborative environments.
He is the author/coauthor/editor of 6 books and over 300 reviewed papers

(including one IEEE paper award) and book chapters. He is (or has been) a
member of the program/scientific committees of numerous international con-
ferences (e.g., General Chairman of IEEE Workshop on Neural Networks for
Signal Processing 2002, Co-Technical Chairman of IEEE ICASSP 2002, Gen-
eral Chairman of Interspeech 2003) and on the Editorial Board of several jour-
nals (e.g., past co-Editor-in-Chief of Speech Communication). He is the recip-
ient of several scientific and entrepreneurship awards.


