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‡Laboratory for Information and Inference Systems, École Polytechnique Fédérale de Lausanne, Switzerland
Emails: afsaneh.asaei@idiap.ch, golbabaee@ceremade.dauphine.fr, herve.bourlard@idiap.ch, volkan.cevher@epfl.ch

Abstract—A novel formulation of acoustic multipath is proposed for
estimation of the room acoustic using recordings of unknown concurrent
speech sources at unknown locations. The framework exploits sparsity
and low-rank structures characterized by the Image method for esti-
mation of the geometry and the absorption factors of the reflective
surfaces. The experiments conducted on real data recordings demonstrate
the effectiveness of the method for modeling the room acoustic and its
application for speech separation and dereverberation.

I. INTRODUCTION

We assume the room to be a rectangular enclosure consisting of
finite impedance walls. The planar area of the room is discretized
into grid of G-cells such that the sources occupy exclusive cells. A
signal spectrum Sg is attributed to each cell thus S = [ST1 . . .STG]

T

forms the signal of the acoustic field. The signal recorded by the
microphone i is denoted by Xi and X = [XT1 . . .XTM]T denotes
the microphone array recordings. A sparse vector S (i.e., sources)
generates the recorded signals by the linear model X = ΦS where
Φ characterizes the compressive acoustic projections consorted to
acquisition of the acoustic scene data. The objective is to identify Φ
from recordings of few unknown source signals at unknown locations.

II. FACTORIZED MULTIPATH ACQUISITION MODEL

The point source-to-microphone impulse responses of the room
are calculated using the Image Method and the acoustic projections
are characterized by the media Green’s function [? ]. We assume
that the G-cells grid of the room containing N sources is expanded
into G-cells free-space discretization where the actual-virtual sources
are active. The room geometry can be estimated by sparse approxi-
mation and low-rank clustering of the individual source images [?
]. Given the geometry of the room, a free-space Image Model
maps the position index i ∈ {1, . . . ,G} of each source to a group
Ωi ⊂ {1, . . . ,G} containing the location indices of this source and its
images. Hence, we can factorize the acoustic projections as Φ = OP,
where O ∈ CM×G is the free-space Green’s function matrix and
P ∈ RG×G

+ is the permutation matrix such that its ith column contains
the absorption factors of G points on the grid of actual-virtual sources
with respect to the reflection of the ith actual source. Since the
Image Model characterizes the source groups, each column P.,i is
consequently supported only on the corresponding (non-overlapping)
group Ωi i.e., ∀i ∈ {1 . . . ,G}, ∀j /∈ Ωi,Pj,i = 0.

III. SOURCE LOCALIZATION AND REFLECTION ESTIMATION

Relying on spatio-spectral sparsity of concurrent speech sources,
the covariance matrix of the reverberant recordings exhibits structured
sparsity such that C = XX∗ = OΣO∗ =

∑G
i=1O.,Ωi

ΣΩi ,Ωi
O∗.,Ωi

,
where .∗ denotes conjugate transpose and O.,Ωi

corresponds to the
row elements of Ωthi column of matrix O. Σ = PSS∗P∗. The
third equality follows because of the structure of the permutation-
attenuation matrix P which indicates that Σ is supported only on the
set
⋃
iΩi ×Ωi i.e.,

Σi , ΣΩi ,Ωi
= ‖Si,.‖2

2PΩi .,P
∗
Ωi ,., and ∀i 6= j ΣΩi ,Ωj

= 0 (1)

Note that if ‖Si,.‖2
2 6= 0 then the corresponding matrix Σi is rank

one. As we can see, recovering the diagonal elements of ΣΩi ,Ωi
is

sufficient to identify the energy of the corresponding source i and
the absorption coefficients PΩi ,.. We thus focus on recovering these
sub-matrices for all i ∈ {1, . . . ,G} from the observation covariance
matrix C. Using the property of the Kronecker product, we can write

Cvec =
[
B(1)B(2) . . .B(G)

]
︸ ︷︷ ︸

B

[
v(1)Tv(2)T . . .v(G)T

]T
︸ ︷︷ ︸

V

∀i ∈ {1 . . . ,G} : v(i) ,
(
ΣΩi ,Ωi

)
vec

, B(i) ,O.,Ωi
⊗O.,Ωi

.

(2)

where ⊗ denotes the Kronecker product between two matrices and
O.,Ωi

is the element-wise conjugate of O.,Ωi
. The simultaneous

low-rank and joint sparse recovery can then be formulated by the
following convex problem with the tuning parameter λ:

arg min
Σ1 ,...,ΣG

G∑
i=1

∥∥∥Σivec∥∥∥
L2

subject to ‖Cvec −BV‖L2 6 ε

Σi = (Σi)∗ ∀i ∈ {1, . . . ,G} Σil,j > 0 ∀l, j, i

(3)

We solve (3) using the iterative proximal splitting algorithm [? ].

IV. EXPERIMENTS AND CONCLUSION

Given the location of the sources and the characterized room
acoustic channel, the desired signal can be recovered by inverse
filtering. The Zelinsky post-filtering is applied to the recovered speech
to reduce the effect of late reverberation. We evaluate the performance
of the method on separation of three concurrent speech sources in
terms of Perceptual Evaluation of Speech Quality (PESQ), Source
to Interference Ratio (SIR) to measure the amount of interference
cancellation and Word Recognition Rate (WRR). The proposed
method relying on room acoustic modeling via joint sparse recovery
(RAM-SR) is compared with superdirective (SD) beamforming. The
results are summarized in Table I.

TABLE I: Performance evaluation of speech separation

Meas. Baseline Lapel Mic. SD Beamf. RAM-SR
PESQ 1.6 2.27 2.48 2.62
SIR -0.7 18.35 10 14.2

WRR% 39.92 68.13 61.45 79.21

We can see from (1) that Σi = ‖Si,.‖2
2PΩi .,P

∗
Ωi ,. is a rank one

matrix so we can replace the objective of (3) by
∑G
i=1

∥∥∥Σi∥∥∥
∗

to
perform low-rank recovery. We further compare the results with joint
sparse recovery and explore the advantages of incorporating the low-
rank structures for room acoustic modeling and dereverberation.
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