A Multipath Sparse Beamforming Method
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Abstract—A novel formulation of beamforming is proposed for acqui-
sition of the signals in reverberant acoustic clutter of interferences and
noise. We derive the beamforming methods which incorporate the sparsity
structure pertained to the acoustic source distribution and multipath
propagation model. The quantitative assessments demonstrate that sparse
beamforming enables effective beampattern steering from far fewer
samples than the conventional beamformers. In addition, linear constraint
on the desired channel rather than the desired direction improves the
signal estimation performance in reverberant enclosures.

I. INTRODUCTION

The signals captured by a microphone array can be represented
as X = AS + N, where S is the source signal and A is the room
response from the source location to each of the microphones in
the array, and N is noise. Alternately, if the room is represented
as a grid, it can be represented as X = ®BS + N, where ¢ is a
matrix whose columns represent room response from each location
in the grid to the array and B is an indicator vector identifying
the locations of sources in the room. The conventional MVDR
beamformer generates the output as Y = WHX where the unknown
filter weights W € RM*! are optimized in order to minimize
the overall noise and interference power while guaranteeing the
signal coming from the desired direction is received distortion-less.
Alternatively, the MMSE estimator adapts the linear filtering for the
reference signal and the weights are optimized to yield the minimum
average power in signal recovery error [1].

II. MULTIPATH SPARSE BEAMFORMING

The conventional beamforming requires information about the
direction of the desired source to estimate the weights. In reverberant
enclosure, this framework can be generalized by providing informa-
tion about the desired channel denoted by ¢s. Hence, the multipath
MVDR (m-mvdr) beamformer is obtained by
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The weights are optimized such that acquisition of the signal with
respect to the desired channel is distortion-less. The solution using a

Lagrange multiplier is expressed as
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Given the forward model of multipath projections, we exploit the
sparsity structure underlying the distribution of sources across the
acoustic scene. The room response matrix includes reflection effects
in the reverberant scenario. We can write W = ®B and estimation
of W" amounts to estimating the sparse vector B. Hence, the
optimization stated in (1) is regularized by the £; norm of B to induce
sparsity structure through
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In a similar manner, we derive the formulation of MMSE estimator
by the following optimization
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This framework requires acoustic and configuration stationarity as-
sumption to obtain a reasonable estimate of the covariance of signal
and noise. The solution can be obtained by equating the derivative

with respect to B to zero. Thus
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Additionally, we can incorporate the sparsity prior on B and derive
the MMSE estimator as

S,B = argmin {||BTOPX—S|,+A:||B|l; st BHOH¢p, =1} 6)
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This formulation can be extended to incorporate the structured
sparsity models pertained to the source representation [2].

ITII. EXPERIMENTS AND CONCLUSION

The experiments are conducted in two synthesized scenarios. (1)
The reverberant scenario: 8-channel circular microphone array is used
with radius 10cm and 50 cm spatial resolution within an enclosure
of dimension 3m X 3m x 3m; RTgy ~ 300 ms. The signals are 1000
speech frames sampled at 8 kHz and analyzed using Han function of
length 64 ms and the weights are estimated per 10 frames. (2) The
farfield scenario: 8-channel uniform linear array is used with inter-
element spacing equal to half of the wavelength and the directional
resolution is 5°. The signals are 1000 trails random samples of a
sinusoid at frequency 1024 Hz of length 1000 sampled at 16 kHz.
However, only 5% of data samples are used to compute the statistics
of the conventional beamformer (2). The sparse beamformers are
computed using CVX package. The signal to noise ratio is 20dB.
We assume that the signal and noise samples are known so the only
uncertainty is attributed to the number of reliable samples available
for beamforming. Table I summarizes the results.

TABLE I: RMSE of signal recovery. The numbers in parenthesis show the
performance of conventional beamforming formulation; in Reverb.: multipath
conventional. The results of conventional beamformers using only direction
of the desired source in a reverberant acoustic are omitted for being the worst.

[ Scenario [ Beamf. [ 1 Source [ 2 Sources [ 3 Sources [ 4 Sources l
Farfield MVDR | 0.05 (0.09) 0.06 (0.16) | 0.12 (0.21) | 0.18 (0.25)
MMSE 0.05 (0.22) 0.05 (0.23) | 0.08 (0.24) 0.08 (0.25)
Reverb, MVDR | 0.03 (0.52) 0.27 (0.54) | 0.39 (0.83) | 0.49 (0.84)
) MMSE 0.66 (0.83) 0.70 (0.84) | 0.73 (0.96) 0.75 (0.96)

The sparse beamformer requires fewer parameters to estimate the
solution than the conventional beamforming techniques hence, it
enables accurate estimation when the number of reliable samples are
limited and suggests a framework for missing data beamforming.
Additionally, it enables better null steering and offers a more robust
solution in multiparty recordings. Furthermore, we can calibrate the
model parameters of an acoustic-informed beamformer using a known
source signal at a given location.
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