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Abstract
Current speaker diarization systems typically fail to succesfully
assign multiple speakers speaking simultaneously. According
to previous studies, overlapping errors account for a large pro-
portion of the total errors in multi-party speech diarization. In
this work, we propose a new approach using Vector Taylor Se-
ries (VTS) to obtain overlapping speech models assuming indi-
vidual speaker models are available, e.g. from the diarization
output. We extend the VTS framework to use multiple acoustic
classes to account for the non-stationarity of corrupting speaker
speech. We propose a system using multi-class VTS to detect
single-speaker and two-speaker overlapping speech as well as
the speakers involved. We show the effectivity of the approach
on distant microphone meeting data, especially with the multi-
class approach performing at the state-of-the-art.

1. Introduction
Speaker diarization is the task of determining “who spoke
when” as well as the number of speakers in a recording. State-
of-the-art systems are known to struggle to assign speech seg-
ments to the right speakers on multi-party spontaneous speech
such as meetings, especially in the presence of overlapping
speech. For the cepstral features, the overlapping speech can be
modeled as a set of linear and non-linear operations, whereas
it simply boils down to a linear combination of the individual
sources in the signal and even spectral domains. Unfortunately,
statistical modeling is more challenging in these domains as
well.
Speaker diarization systems are affected by the presence of
overlapping speech in two different ways [1]. First, the speaker
segments output by the diarization system are used to train pure
speaker models and, since they are corrupted with overlapping
speech, the resulting models are less precise. Second, the sys-
tem is asked to attribute a single speaker label to a segment
which actually contains overlapping speech from two or more
speakers. Given that around 20% [1] time of meetings have
speech overlaps, both types of errors contribute to a significant
increase in Diarization Error Rate (DER). This provides a gen-
uine motivation to devise approaches to detect and model over-
lapping speech.

Overlapping speech detection has been addressed by pre-
vious studies. A HMM-based segmenter is used in [2] to de-
tect speech, non-speech and overlapping speech from meeting
audio, where the models are trained using cepstral features to-
gether with instantaneous and LPC residual energies and di-
arization posterior entropy from ground truth alignments. As-
signing the highest scoring speakers to the overlapping speech
segments output by the diarization system improves the DER
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performance. Another family of approaches [3], [4], [5] and [6]
use convolutive non-negative sparse coding (CNSC) to detect
overlap, where the bases learnt for each speaker are concate-
nated into a single basis matrix and the decomposition provides
the activity of each speaker for each frame. A wide variety of
features have been used including cepstral features, energy, jit-
ter, shimmer, CNSC features and even linguistic features in a
probabilistic framework. The work in [6] uses the same set of
features in a Long Short-Term Memory (LSTM). Two other ap-
proaches use knowledge of the silence distribution in meeting
recordings [7] and long-term conversational features, namely
the distribution of overlap occurrence around speaker changes
[8]. Similar goals have been addressed for multi-speaker speech
recognition using graphical models in [9]. Otherwise, tech-
niques derived from speaker identification using Gaussian mix-
ture models have also been proposed [10]. In this paper, we
propose to model the feature space of two simultaneous speak-
ers using the Vector Taylor Series (VTS) technique.

The paper is organized as follows: Section 2 describes the
VTS approach to noisy speech modeling and how it can be ap-
plied to model overlapping speech. We give details about the
algorithm and parameter estimation. Section 3 focuses on how
VTS can be used for the task of overlapping speech detection.
We extend de VTS framework to deal with multiple acoustic
classes in Section 4. Sections 5 provides experimental results
of the approach on meeting data. Conclusions are given in Sec-
tion 6.

2. VTS Modeling of Overlapping Speech
The standard VTS approach estimates a noisy speech model
from a clean speech model and some statistics about additive
and convolutional noises assumed to be present in the noisy
speech signal. The process of corrupting a clean speech sig-
nal x(t) with additive, n(t), and convolutional, h(t), noises can
be written by

y(t) = x(t) ∗ h(t) + n(t) (1)

The corresponding relation in the feature domain, where we do
the modeling, is much more complex [11]. For MFCC features
this becomes

y = x + h + Cln(1 + exp(C−1(n− x− h))) (2)

where y,x,n and h are cepstral vectors for noisy speech,
clean speech, additive, and convolutional noise, respectively.
C and is the discrete cosine transform (DCT) matrix and C−1

is its pseudo-inverse.

In essence, VTS uses a multivariate linear approximation
of (2) to estimate a Gaussian Mixture Model (GMM) for the
corrupted features y.



Overlapping speech is actually the superposition of two or
more individual-speaker speech signals. For the two speaker
case, an equation analogous to (1) can be derived as

y(t) = x1(t) + x2(t) , (3)

with x1(t) and x2(t) being the speech signals spoken by
speaker 1 and 2 respectively. The expression

y(x1,x2) = x1 + g(x2 − x1) (4)

with

g(x2 − x1) = Cln(1 + exp(C−1(x2 − x1)) (5)

is the corresponding relation in the MFCC feature domain. Note
that the convolutional noise term h has been neglected and the
corrupting speaker term x2, which is additive just like noise,
has been introduced. Although the acoustic structure of speech
is expected to be much richer than that of noise, the latter is typ-
ically modeled using a single Gaussian, thus assuming station-
arity. We focus on the overlapping speech case from here on,
first by using a single Gaussian to model the corrupting speaker
and using multiple classes later in Section 4.

In this work, we use prior knowledge of two individual-
speaker GMM trained using the feature vectors X1 =
(x1,1, . . . ,x1,T and X2 = (x2,1, . . . ,x2,T ), with T frames
duration, and we let the VTS technique estimate the corrupted
GMM parameters assuming these two sources are overlapping.

2.1. Approximating the corrupted model using VTS

In the context of overlapping speech, we assign noisy and clean
speeches to main and corrupting speaker speeches in our ap-
proach. Keeping these assumptions in mind, we let µym

and
µx1m

be the mean vectors of the mth Gaussian component of
the corrupted and main speaker GMM respectively. The mean
of the single Gaussian representing the corrupting speaker is de-
noted by µx2

. The first-order VTS expansion of (4) for Gaus-
sian m w.r.t. vectors x1 and x2 around the point (µx1m0,µx20

)
is

y ≈ µx1m0 + g(µx20
− µx1m0) + Gm(x1 − µx1m0)

+Fm(x2 − µx20
)

(6)

where Gm and Fm are the derivatives of y w.r.t. x1 and x2

evaluated at the point (µx1m0,µx20
), that is,

Gm = Cdiag(
1

1 + exp(C−1(µx20
− µx1m0))

)C−1 (7)

Fm = I−Gm (8)

The mean of y for Gaussian m, i.e. µym
, can then be ob-

tained by taking the expectation operator on both sides of (6)
which can be reduced to

µym
≈ µx1m0 + g(µx20

− µx1m0) (9)

Similarly, using Σx1m and Σx2 the covariance matrices for
Gaussian m of the main speaker and the corrupting speaker re-
spectively, the corrupted covariance matrix Σym for Gaussian
m can be approximated by

Σym ≈ GmΣx1mGT
m + FmΣx2FT

m (10)

2.2. Estimation of VTS parameters

Given T frames of overlapping speech data X = (x1, . . . ,xT )
and an initially corrupted GMM with M mixtures and parame-
ters given by (9) and (10), the expectation-maximization (EM)
algorithm iteratively finds estimates of µym

that further maxi-
mize the likelihood function

Q =
∑
t∈T

∑
m∈M

γt,mlog(p(xt|µym
,Σym)) , (11)

eventually converging to a local maximum.
Since VTS can be a resource consuming technique, only

µx2
is optimized in thsi work. In turn, µym

, Fm, Gm and
Σym are updated accordingly. If we replace the expectation
of (6) into (11) and then differentiate w.r.t. µx2

, the update
equation for µx2

becomes

µx2
= µx20

+ {
∑

t∈T,m∈M

γm,tF
T
mΣ−1

ymFm}−1

×{
∑

t∈T,m∈M

γm,tF
T
mΣ−1

ym
(yt − µym

)}
(12)

whereµx20
is the previous estimate of the corrupting mean vec-

tor.
The algorithm used to update the VTS model for each Gaus-

sian m is summarized as follows:

1. Initialize the overlapping speech model parameters µym
and Σym using the main speaker model parameters
(µx1m0,Σx1m0) and the corrupting speaker parameters
(µx20

,Σx20) using (9) and (10). µx20
is taken as the

mean vector of the Gaussian component with hightest
average posterior probability over X, and Σx20 as the
corresponding covariance matrix.

2. Update µx2
using (12) using the current estimates of

µym
,Σym ,Gm and Fm.

3. Replaceµx20
withµx2

obtained in step 2 and recompute
the overlapping speech model parameters (µym

,Σym).

4. Go to 2 until a number of iterations has been reached.

After running this algorithm, the µym
and Σym obtained

in the last iteration are retained as the optimal parameters mod-
eling the overlapping speech data X.

3. Overlapping Speech Detection System
The overlapping speech detection (OSD) system requires indi-
vidual speaker models and speech data as inputs. We assume the
speaker models are available, either trained from oracle speaker
segmentation or after automatic speaker diarization. We use the
data collected for the Augmented Multiparty Interaction (AMI)
project to evaluate the OSD system. These data consist of meet-
ing audio of around 30 minutes long involving four participants
recorded using far-field microphones. We preprocess the audio
for beamforming using the BeamformIt toolkit [16] and also
for Speech Activity Detection (SAD) so that the OSD system
can focus on rather homogeneous speech segments, usually spo-
ken by one speaker with overlaps and interruptions from other
speaker. Together with the VTS technique described above, this
setup allows the system to detect non-speech, single-speaker
speech and overlapping speech regions.



The overlap detection, involving the modeling and decision
steps, is done on a window sliding over each of the speech seg-
ments mentioned above. For each window, a set of hypothesis
tests are performed comparing how more likely it is for overlap-
ping speech to occur compared to single-speaker speech. Since
we consider overlap from two speakers only, the number of pos-
sible overlapping speech models is N2 with N being the num-
ber of speakers. We choose to assign a main speaker to each
segment, the speaker obtaining the largest average likelihood
score, to decrease the number of hypotheses fromN2 toN −1.
In short, if speaker i is the main speaker, we obtain the set of
likelihood ratios

p(X|S1,i)
p(X|Si)

, . . . ,
p(X|Si−1,i)

p(X|Si)
, 1, . . . ,

p(X|SN,i)

p(X|Si)
(13)

with Si,j representing the hypothesis of speaker overlap be-
tween speakers i and j, and Si representing the hypothesis of
only speaker i speaking. In this work, we model the former us-
ing VTS adaptation and the latter using Maximum A Posteriori
(MAP) adaptation [15], as

• Overlap: For the speaker pairs j, i in (13), we estimate
the models p(X|Sj,i) using VTS mean adaptation as de-
scribed in Section 2.

• Single-speaker: For the main speaker i, we adapt the
mean vectors of the corresponding GMM using MAP
adaptation as

µ̂xm
= αEm[x] + (1− α)µxm

(14)

where Em[x] = 1
nm

∑T
t=1 γmtxt and nm =

∑T
t γmt.

We determine the value of the interpolating factor α ex-
perimentally.

To determine whether overlap occured in the current win-
dow, we just pick the largest likelihood ratio value and decide
on the corresponding hypothesis, i.e. single-speaker for hypoth-
esis i, overlap otherwise.

4. Multi-Class VTS
The stark difference between overlapping and noisy speech is
that the former is essentially non-stationary. Within the span of
a window there might be several sounds being uttered by both
main and corrupting speakers. This point not addressed by the
standard VTS approach motivated us to look for an alternative
way to represent the corrupting speaker.

In this work, we propose a multi-class version of the VTS
framework to model multiple phonemes uttered by the corrupt-
ing speaker. The acoustic space of the corrupting speaker is
clustered into multiple classes and VTS is used to adapt the
mean vectors of the representatives of each cluster separately.

We start assuming that all the Gaussian components are ob-
served in the data. If the average number of frames, γ̄mt =
1
T

∑T
t=1 γmt), assigned to a given Gaussian component is be-

low a threshold, η, that component joins the Gaussian with the
closest mean vector in terms of squared Euclidean distance1.
The average gamma for the new cluster becomes the sum of the
corresponding average gammas. We use the mean of the Gaus-
sian with largest gamma as the new cluster centroid. Using a
large enough threshold η avoids singularity issues during VTS
estimation.

1The squared euclidean distance was used here for the sake of speed.

Given that both main and corrupting speaker GMM are
MAP-adapted from the same reference GMM, we assume that
the mth gaussian of the main speaker will be corrupted by the
cluster, c, that contains the mth component of the corrupting
speaker GMM.

A few modifications are required to deal with multiple clus-
ters in VTS. µx2

for the single-gaussian case becomes cluster-
dependent, i.e. µx2c

. Furthermore, we now iterate over the
set of Gaussians, C, assigned to cluster c. The VTS estimation
equation (12) becomes

µx2c
= µx2c0

+ {
∑

t∈T,m∈C

γm,tF
T
mΣ−1

ymFm}−1

×{
∑

t∈T,m∈C

γm,tF
T
mΣ−1

ym
(yt − µym

)}
(15)

The VTS approximation equations given in Section 2 are
shown in Table 1.

Equations for Multi-Class VTS Approximation

µym
≈ µx1m0 + g(µx2c0

− µx1m0) + Gm(µx1m
− µx1m0)

+Fm(µx2c
− µx20

)

Gm = C.diag( 1
1+exp(C−1(µx2c0

−µx1m0))
).C−1

Fm = I−Gm

µym
≈ µx1m0 + g(µx2c0

− µx1m0)

Σym ≈ GmΣx1mGT
m + FmΣx2cF

T
m

Table 1: Equations for Section 2 modified for the Multi-class
VTS Approximation

5. Experiments
5.1. Experimental Setup

We evaluated the proposed approach on 10 meeting recordings
from the AMI Meeting Corpus given in Table 2. We optimize
the calibration threshold on a development data set consisting of
10 meetings from AMI also shown on Table 2. The recordings,
involving 4 participants each, vary from 17 to 57 minutes in
length, with a total of 11 hours of audio, of which 20% are over-
lapping speech. We use one of the single distant microphones
channels to extract 19 MFCC every 10ms over 30ms long win-
dows. The individual speaker models are MAP-adapted from a
reference GMM trained using the speech from each recording
using maximum likelihood estimation and 64 Gaussian compo-
nents.

Development Set
EN2004a EN2013c IS1001c IS1001d IS1005a
IS1007b IS1001c TS3006a TS3007c TS3012b

Evaluation Set
EN2003a EN2009b ES2008a ES2015d IN1008
IN1012 IS1002c IS1003b IS1008b TS3009c

Table 2: AMI corpus meetings used for development and eval-
uation of VTS framework



We measure the precision and recall performances as well
as the overlap detection error, defined as the sum of false alarms
and miss errors in the whole recording over the number of la-
beled speaker overlap time. Note that this measure can take val-
ues over 100%, since the labeled overlap time is much shorter
than the recording length.

5.2. Results

We ran two sets of experiments. The first set uses the standard
VTS algorithm to perform overlapping detection. We used the
oracle speaker segmentation, manually annotated, to train the
individual speaker GMM. These are the purest we can obtain
and we expect VTS to provide the best overlap detection resuts
as well. Since this is not a realistic choice for a practical system,
we also ran experiments that use the segmentation output of an
automatic speaker diarization system [17]. The resulting GMM
are then prone to errors that make the overlapping speech mod-
eling and detection less precise. For both oracle and diarization
segmentations we test both standard and multi-class VTS mod-
eling.

For the standard VTS system we focus on the evaluation of
the effect of the window length on detection performance. In
general terms, the longer the window the more data are avail-
able for modeling. Nonetheless, long windows are likely to be
coarsely modeled if few Gaussians are used. Too long a window
can also make decisions not local. In this set of experiments we
explored the window lengths 0.4s, 0.8s, 1.6s and 3.2s with the
results being shown in Table 3. The detection error is mini-
mized for a window length of 3.2s. Note that multiple sounds
can be uttered in 3.2s and it is still optimal to model the data us-
ing a single Gaussian component. On one side, this may reflect
that long overlap durations are present in the corpus, thus min-
imizing the detection error when the window length is matched
to the average overlap length. On the other side, a long win-
dow ensures that enough data is available to train the statistical
models and that this is preferred over being accurate in the time
domain for this corpus. These results seem reasonable in terms
of precision but at the expense of low recall, which results in
a very low F-measure. Figure 1 shows precision-recall curves
for the explored system setups supporting the fact that a long
analysis window of 3.2s results in the best performance across
the majority of operating points.

WindowSize Prec./Rec. F Error
(s) (%) meas. (%)

VTS 0.4s 57.0/7.20 .127 98.3
VTS 0.8s 57.1/12.0 .198 97.0
VTS 1.6s 54.0/23.8 .330 96.4
VTS 3.2s 55.0/20.5 .299 96.2

Table 3: Precision, Recall, F-measure and Overlap Detection
Error for 0.4s, 0.8s, 1.6s and 3.2s of analysis window in the
standard VTS approach.

The second set of experiments explores the multi-class VTS
approach and compares it to standard VTS for a window size of
3.2s, as found in the previous experiments. As shown in Ta-
ble 4, the multi-class VTS approach (MC-VTS), largely out-
performs standard VTS when at least one frame is enforced for
each cluster, i.e. η = 1. This setup results in optimal overlap
detection error with an average number of 24.7 classes out of
the 64 initial Gaussian components used during modeling. Us-
ing larger thresholds resulted in more reasonble number of clus-
ters found, but actual detection performance decreased as well.
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Figure 1: Precision and recall performance of standard VTS us-
ing different lengths for the analysis window. The output using
the segmentation output by a diarization system is also shown.
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Figure 2: Precision and recall performance of multi-class VTS
using different thresholds η as the minimum number of frames
allowed for each cluster. The output using the segmentation
output by a diarization system and η = 1 is also shown.

Gains up to 16% and 70% relative in precision and recall re-
spectively are observed for an overlap detection error reduction
of 15%. These results are in the line, or even better in terms of
F-measure, when compared to other state-of-the-art approaches
[5, 6, 8] found in the literature. However, these experiments
were run using oracle alignments to train the individual speaker



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
e

c
a

ll

 

 

MultiClass VTS
with Oracle Segmentations

MultiClass VTS
with Diarization Segmentations

Figure 3: Precision and recall performance of the top perform-
ing multi-class VTS system using oracle and diarized speaker
segmentations to train individual speaker models.

models, which makes the comparison not fair. It still allows us
to evaluate the success of modeling overlapping speech using
VTS. Figure 2 shows precision-recall curves for theses systems
revealing a considerable performance gap between multi-class
VTS setups and standard VTS.

Prec./Rec. F Error
System η #Class (%) meas. (%)
VTS 1 - 55.0/20.5 .299 96.2
MC-VTS 0 64 63.9/38.7 .482 84.0
MC-VTS 1 24.7 65.7/41.8 .510 80.0
MC-VTS 2 18.8 66.0/38.5 .486 81.3
MC-VTS 5 10.9 66.7/26.5 .379 86.7
MC-VTS Dia 1 24.7 51.0/17.5 .260 99.3

Table 4: Precision, Recall, F-measure and Overlap Detection
Error for 0, 1 2 and 5 frames as the minimum number of frames
allowed for each cluster in the Multi-class VTS approach. The
first row shows the performance of the standard VTS approach,
for reference. The last row gives results for individual speaker
models trained using the segmentation output by a diarization
system.

We also made a quick assessment of how using the di-
arization output to train the individual speaker models affects
overlapping speech detection performance. Figure 3 shows
precision-recall curves for these systems, highlighting the sen-
sitivity of the multi-class VTS technique to the accuracy of the
individual speaker models. Errors in the estimation of the num-
ber of speakers in the recording and the impurity of the speaker
models might account for these results.

6. Conclusions
We proposed a new approach to overlapping speech model-
ing based on the Vector Taylor Series (VTS) framework that

has been used to model noisy speech for the automatic speech
recognition task. We have extended the VTS framework to ac-
count for the corrupting speaker uttering non-stationary sounds,
i.e. multiple acoustic classes, as opposed to stationary noise
within the analysis window. We used both standard and multi-
class VTS to model different overlapping speech hypotheses
to build an overlapping speech detection system. Rather long
analysis windows of 3.2s were found to be optimal according
to error detection. The multi-class VTS approach significantly
outperformed the standard VTS providing a relative error re-
duction of 15% with relative gains of up to 40% recall and 70%
precision. Alhoutgh the multi-class VTS approach has shown
effective at modeling overlapping speech it still relies on the
purity of individual speaker models to be state-of-the-art. Fur-
ther work will focus on improving the diarization output so that
purer models can be obtain for use with VTS.
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