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Abstract

Intonation modelling is an integral part of text-to-speech sys-
tems from their very beginnings. This has led to the prolifer-
ation of various intonation models, each with its own relative
strengths and weaknesses. Only a few of these intonation mod-
els are based on physiology, despite the advantage that such
models are language independent. We propose a new intona-
tion model inspired by the physiology of intonation production,
which is based on decomposing the Fj contour into elemen-
tary atoms. The model, named the Weighted Correlation Atom
Decomposition model (WCAD), is a generalisation of the com-
mand response (CR) model and has the advantage of having a
simple parameter extraction method. The decomposition pro-
cess follows a matching pursuit approach based on using the
perceptually relevant weighted correlation as a cost function.
The results have affirmed the plausibility of using the WCAD
model to model Fj contours across different languages and
speakers. The results have also shown that the WCAD model
has good comparative performance to the CR model, giving it
practical importance.

Index Terms: intonation model, physiology, matching pursuit,
weighted correlation

1. Introduction

Current state of the art text-to-speech (TTS) synthesis systems
are able to produce speech with reasonably good quality. How-
ever, one issue in TTS is the still unsatisfactory prosody of the
synthetic speech. As an important part of prosody, intonation is
one of the research areas that remain open in TTS. Many dif-
ferent approaches to intonation modelling can be found in the
literature, but only a few of them are trying to model the pro-
duction of intonation [1, 2, 3].

The command-response (CR) model [1] is the most popu-
lar in this category and more generally one of the most popu-
lar intonation models. It defines intonation by looking at the
physiological process behind its production. Relating the vo-
cal folds’ tension with the activity of the muscles ruling them,
Fujisaki showed that the fundamental frequency can be decom-
posed in several additive components in the log domain [4]. In
this model, two different types of components are credited to
the translation and rotation of the cricothyroid (CT) muscle.

Strik [5] identified more muscles at work in the production
of Fy, as well as the influence of the subglottal pressure Ps;. In
our previous work, we investigated a generalisation of the CR
model that would account for more than 2 types of movements
influencing the Fy production [6]. Following some work on
modelling intonation using the CR model [7, 8], we replaced
the step functions used for local components in the CR model

by impulses. By defining all the components of the model as
impulse responses to a critically damped system, we argue that
these components could be linked to the response of the muscles
involved in intonation generation. The parameters of this model
also present the advantage of being easy to extract using the
matching pursuit algorithm [9], followed by a selection of the
relevant atoms using a weighted root mean square distance.

In this paper, we present further development of our model
by directly extracting relevant atoms by using weighted corre-
lation; the perceptual relevance of the weighted correlation is
discussed. We also present a different definition for the global
component of intonation. The paper is structured as follows:
Section 2 presents the weighted correlation-based decomposi-
tion method, Section 3 describes the experiments, Sections 4
and 5 give results and conclude the paper.

2. Weighted Correlation based Atom
Decomposition

The Weighted Correlation based Atom Decomposition
(WCAD) algorithm is based on the integration of the modified
version of the perceptually relevant weighted correlation
(WCORR) measure [10] as a cost function in the matching
pursuit framework [9]. The algorithm is an improved and more
compact version of the algorithm we presented in our previous
work [6], which was based on using the weighted RMS error
(WRMSE) to filter out the perceptually irrelevant atoms output
by the matching pursuit algorithm. The WCAD algorithm
also introduces a novel physiologically inspired type of atom
for representing the global, i.e. phrase component in the F
contour.

2.1. Weighted Correlation

The weighted RMS and the weighted correlation measures were
both first introduced in the work of Hermes [10]. In his work,
Hermes found that the WCORR measure had the best corre-
lation (0.67) with the auditory dissimilarity ratings of five ex-
perienced phoneticians. This is a solid correlation, having in
mind that the interexpert agreement was found to be 0.65, in
the same work. Moreover, Hermes found approximate thresh-
olds that can be used to classify the perceptual similarity of two
intonation contours using the WCORR, given in Table 1.

The weighted correlation (WCORR) introduced by Her-
mes [10] is calculated according to (1). Here fo is the reference
Fo, fo is the modelled Fy, i.e. its reconstruction, fo,, and f()m
are their respective means, and w(¢) is the weighting function.
Originally, the weighting function was defined as the maximum
amplitude of the subharmonic sumspectrum (SHS), which is a



weighted sum of the harmonics contributing to the pitch [11].
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In our WCAD algorithm, we use a modified version of the
WCORR, given in 2, in which we alter the originally proposed
WCORR in three ways. 1) We do not subtract the mean of the
Fo contours, as our model does not have a static component,
and we need the extracted atoms to build up the F{ contour
from scratch. 2) We use the logarithm of the Fp, instead of the
equivalent rectangular bandwidth (ERB) scale [12], because it
is both traditionally used in intonation modelling research [1],
and is also essentially equivalent to the use of semitones in per-
ceptual intonation studies [13, 14]. 3) We redefine the weight
according to (3), abandoning the deprecated SHS spectrum, and
in accordance with newer trends in perceptual intonation stud-
ies [14, 13]. Here, p(t) is the probability of voicing (POV) of
frame ¢ as defined by Ghahremani et al. [15], and e(¢) its en-
ergy. The use of a continuous POV estimate, instead of using a
binary thresholded one [13], eliminates the use of hard thresh-

olds, making the weighting function more robust.
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2.2. Phrase atoms

In our previous work [6], we introduced the use of general
gamma form atoms, defined according to (4), as the building
blocks of the F contour. This is based on a higher-order exten-
sion of the critically-damped second-order linear systems [16]
that account for the phrase and accent commands in the original
command-response model [1].

Gro(t) = ﬁ(k)t’“‘le‘”*’ for t>0 4)

The problem with the use of gamma distribution shaped
function to model the phrase atom is that the high 6-s needed
to produce atoms with a sufficiently gradual fall, also stretched
out the rise of the atoms and their peaks. This is in contrast to
the qualitative shape of the global component of the subglottal
pressure Psp, as seen in the measurements of Strik [5]. There,
the global component has a steeper rise with a relatively sharp
peak at the start of phonation, which is followed by a lengthy
fall. This reflects the initial buildup of Ps;, that precedes speech,
and its timely release for the purpose of sustaining phonation.
We seek to capture this observed quality of the global Ps;, com-
ponent using a modified definition of the phrase atom, based on

Table 1: Weighted correlation thresholds for five perceptual
similarity categories of two Fy contours found by Hermes [10].

Category WCORR  Perceptual Fj similarity

1 > 0.978 no differences

2 > 0.946 differences audible

3 > 0.896 differences clearly audible
4 > 0.827 linguistic differences

5 < 0.827 completely different

Algorithm 1 Weighted Correlation Atom Decomposition algo-
rithm.

1: procedure WCORR ATOM DECOMPOSITION

2: Extract fo, e and p from waveform.

3 Calculate w from e and p.

4: Extract ¢ and ¢, of phonation.

5 Find 0 for phrase atom at position ¢, giving max

WCORR forts <t <te —toyy.

6: Calculate phrase atom amplitude using correlation.
7: faify = fo — phrase atom.
8: frecon = phrase atom.
9: Loop:
10: Extract local atom giving max WCORR with fg; ¢ ¢ for
t>ts.
11: Calculate local atom amplitude using correlation.
12: Increment atom count.
13: faifr = fairr — local atom.
14: frecon = frecon + local atom.
15: if WCORRorm Of frecon > WCORRyom thresh then
16: goto End.
17: else
18: goto Loop.
19: End.

the concatenation of two gamma distribution functions:

Gh.o,.0(t) =
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Here, 6, and 6; are the two time constants for the rise and

fall of the phrase atom, ¢,.,,, is the time instant of the phrase atom

peak, and ¢, is an offset meant to compensate for the difference
between ¢,.,, and the maximum of the fall function ¢ ¢, :

to =trm — tfm~ (6)

2.3. WCAD model extraction

The Weighted Correlation Atom Decomposition (WCAD) al-
gorithm is outlined in Algorithm 1. First, the algorithm extracts
the energy e, fo and POV p, and calculates the weighting func-
tion w. Next, the start and end times of phonation, ¢, and t., are
estimated by finding the time instants when the energy e crosses
a start threshold value T, and when it finally goes below a ter-
minal threshold value 7T.. The phrase atom peak is then posi-
tioned at ¢, and we find the 6 that maximizes the WCORR (2)
within a range between ¢ and . — ¢, . Here, £,y is an offset
time introduced to leave out a possible phrase-final fall and rise
in the Fp contour from the phrase atom fitting. Also, we use a
fixed value for 6, due to the consistency in rise times across the
utterances observed in Strik’s measurements [S]. The amplitude
of the phrase atom is calculated using the standard correlation,
and is subtracted from fo to obtain fg;r¢. The phrase atom is
also used to initialise the Fy reconstruction frecon.-

In the second part of the atom decomposition, local atoms
are extracted from fg;r¢ using the WCORR, by selecting the
atom that maximises it at each iteration. The amplitude of
the extracted atoms is again calculated using the standard cor-
relation, and they are subtracted from fg;rr, and added to
frecon. Local atom extraction ends when either a) the recon-
struction frecon reaches a selected WCORR porm threshold, or b)
when the chosen maximum number of atoms is reached. Here,



WCORR,oim includes the zero-mean normalisation of the two
Fp contours as in (1), which allows us to use the WCORR per-
ceptual thresholds from Table 1 as a stopping criterion. We ar-
gue that this is plausible, because the weight used by the WCAD
algorithm essentially captures the same information as the orig-
inally proposed SHS. A formal proof of this is beyond the scope
of the paper.

3. Experiments

We have designed two experiments to assess the plausibility of
the introduced Weighted Correlation Atom Decomposition al-
gorithm, and to compare its performance with a state of the art
implementation of the standard CR model, as it is a generalised
CR model.

Experiment 1. Our first goal is to analyse how well the
WCAD algorithm models the Fy contour. To assess this, we
will analyse how much the addition of each local atom increases
the WCORR,orm between the original and modelled Fy con-
tours. We expect the WCORR to increase rapidly as the initial
large local atoms are added and saturate at the optimal number
of atoms per syllable. We also evaluate the number of atoms per
syllable necessary to match the perceptual WCORR thresholds
from Table 1. To extract the Fy and the POV we will use the
pitch tracker implemented in Kaldi [15]. It generates a continu-
ous Fy contour through the use of interpolation and smoothing.

Experiment 2. In order to compare the performance of
the WCAD algorithm with the CR model, we use Mixdorff’s
CR parameter extraction tool [17]. Because this tool only
outputs the final optimised CR model parameters, the calcu-
lated WCORR o for the modelled F will be plotted as single
points in the WCORR - atoms/syl plain, and then compared to
the results obtained with the WCAD algorithm. The average
WCORR and number of commands per syllable, obtained with
the CR model per speaker, will also be used in the comparison.

3.1. Database

The experiments were run on the same dataset used in our pre-
vious work [6]. This dataset contains a total of 60 utterances,
and comprises recordings of 6 different speakers and 3 different
languages: English, French and German. For each language,
a male (M) and a female (F) speaker were chosen: rjs (M), re-
leased for Blizzard Challenge 2010" and sir (F) for English [18],
Bernard (M)? and Isabelle Brasme (F)* for French and spid (M)
and alzn (F) for German [19].

3.2. WCAD algorithm parameters

The parameters used in the WCAD algorithm were determined
through qualitative assessment of its performance on a set of
randomly chosen utterances. It’s reasonable to suppose that
these are speaker dependent, but for the purpose of this paper
we pull them together and assume speaker independence.

To determine the start of phonation ¢s, we chose a thresh-
old value 7 for the normalised energy of 0.5. For the end of
phonation t., the threshold 7. was lowered to 0.1, because of
the gradual decrease of energy towards the end of an utterance.
The offset time ¢, subtracted from . to leave out possible
phrase-final falls and rises in Fp was set to 150 ms.

Thttp://www.synsig.org/index.php/Blizzard_Challenge_2010

Zhttps://librivox.org/a-lombre-des-jeunes-filles-en-fleur-by-marcel-
proust-0905/

3https://librivox.org/la-princesse-de-cleves-by-madame-de-la-
fayette/

Table 2: Number of atoms/syllable needed on average to reach a
chosen perceptual similarity category, for each of the speakers.

Catt. enM enF frM frF geM geF Avg.

071 079 038 049 075 083 0.66
048 042 029 030 047 053 041
034 027 0.19 019 032 039 0.28
026 0.17 0.14 012 024 024 0.19

A WN ~

The 6, for the rising part of the phrase atoms was fixed at
0.5. The range for the 6 of the phrase atoms was set to 0.1 - 10,
and for the 6 of the local atoms to 0.01 - 0.05. These two ranges
give the needed atom variability in the WCAD algorithm. The
values k in the atom gamma distribution shaped function 4 was
set to 6, as it was found to have a slightly better overall perfor-
mance than the k of 4 used in our previous work [6].

4. Results

Example results of the Weighted Correlation based Atom De-
composition algorithm are given in Fig. 1 for an utterance taken
from the male French speaker in our database. The top panel
shows the original Fy contour, the extracted phrase atom and
the reconstructed Fp by our model. The local atoms that com-
pose this contour are given in the middle panel. Finally, the
bottom panel shows the energy contour, the POV, and the cal-
culated weight, all normalised to 1. Only the larger local atoms
were used in this reconstruction for clarity.

We can see that the WCAD algorithm successfully decom-
poses the Fy contour. The phrase component gives a qualita-
tively good fit to the global trend of the Fp, and the phrase-
final drop is successfully captured. Also, the algorithm uses
both positive and negative atoms to decompose the Fp contour,
which is in line with Strik’s findings [5], and increases its phys-
iological plausibility.

Experiment 1. The results of the first experiment are pre-
sented in Fig. 2 for the English male speaker. The figure shows
plots of the WCORR,orm relative to the number of atoms per syl-
lable for the 10 utterances recorded by this speaker, and the av-
erage curve that is representative of how well the WCAD algo-
rithm models this particular speaker. As expected, the WCORR
curves rise steeply at the beginning as the larger local atoms
are added, and eventually saturate as smaller and smaller atoms
are added. It is interesting to note that saturation is reached
around the 1 atom/syllable mark, which might hint at a deeper
physiological plausibility of our model. Average WCORR6im
plots were calculated for all of the speakers and are shown in
Fig. 3. We can see that the average curves vary across the dif-
ferent speakers and languages, but that they also correlate well
and follow the same general trend.

Table 2 gives the number of atoms per syllable needed on
average for the WCAD algorithm to model the F{, curve to the
different perceptual WCORR thresholds presented in Table 1,
for each of the speakers. Again we can see that there is a vari-
ability among the speakers, but there seems to be some corre-
lation within the languages themselves, which is a matter for
further investigation. The average atoms/syl is also given for
each category.

Experiment 2. To compare the performance of our algo-
rithm with that of the CR model, we plotted the results obtained
with Mixdorff’s CR parameter extraction in Fig. 3 with single
points for each utterance for each of the speakers. We can see
that our algorithm seems to give comparatively good results to
the CR model, asserting its practical value. Note that for some
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Figure 1: Results obtained with the WCAD algorithm for the sentence “L’importance de sa situation lui rendit plus aisé de le prendre.”
by the French male speaker, showing the: original Fy, colored according to POV, phrase atom and reconstructed Fy (top), extracted
local atoms (middle), and the energy, the POV and the weighting function (bottom).
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Figure 2: Weighted correlation of the WCAD algorithm Fy con-
tours relative to the number of atoms per syllable for all of the
sentences for the English male speaker, and the calculated av-
erage curve.
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Table 3: Average WCORR and number of atoms/syllable ob-
tained by the CR model, for each of the speakers.

EnM EnF FrM FrF GeM GeF Avg.

WCORR 0.973 0.964 0.967 0.976 0.967 0.969 0.969

Cat 2 2 2 2 2 2 2
commands 17 12 24 22 14 10 16
com/syl 046 042 037 037 042 047 042

of the utterances the extraction of the CR model parameters with
Mixdorff’s implementation failed and they are not included in
the plot.

Table 3 gives the average WCORR and the average total
number of phrase and accent commands in the CR model for
each of the speakers. The results show that Mixdorff’s im-
plementation of the CR model on average gives a WCORR of
0.97, which corresponds to Category 2 from Table 1, at 0.42
atoms/syl. When comparing the average number of atoms/syl
with those obtained with the WCAD algorithm, we can see that
our algorithm obtains the same perceptual quality with nearly
the same average number of atoms/syl.
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Figure 3: Weighted correlation of the Fy contours relative to the
number of atoms per syllable averaged over all the sentences
for each of the speakers in the database. The WCORRs obtained
with Mixdorff’s implementation of the CR model are shown for
comparison.

5. Conclusions

We have introduced a generalised CR model called the
Weighted Correlation Atom Decomposition model. The model
was designed to qualitatively approximate the physiological
processes of intonation production. The atom decomposition
process is fully automatic and is based on a matching pursuit
framework, which integrates the perceptually relevant weighted
correlation as a cost function. The introduced model has been
shown to successfully model the intonation contours across a
number of speakers and languages affirming its plausibility.
In addition, it has been shown that the introduced model has
comparable performance to the CR model, proving its practical
value to modelling intonation in text-to-speech.
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