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Abstract. Deep neural networks (DNNs) have been recently introduced
in speech synthesis. In this paper, an investigation on the importance of
input features and training data on speaker dependent (SD) DNN-based
speech synthesis is presented. Various aspects of the training procedure
of DNNs are investigated in this work. Additionally, several training sets
of different size (i.e., 13.5, 3.6 and 1.5 h of speech) are evaluated.
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1 Introduction

Much of the text-to-speech (TTS) work at Idiap is in the context of speech-
to-speech translation (S2ST). To this end, good quality speech recognition and
synthesis are prerequisites. Further, the translation scenario requires both tech-
nologies to exist in multiple languages. Data can be scarce for some languages.

Hidden Markov model (HMM)-based TTS approaches have become dominant
in TTS for S2ST, mainly due to their adaptation abilities and flexibility in
changing voice characteristics (e.g. speaker, speaking style, emotional state, etc.),
using a relatively small amount of data [10], occasionally outperforming even
unit-selection approaches [13]. Nonetheless, various limitations and drawbacks
occur in HMM-based TTS as listed in the work of Zen et al. [12].

Trying to address some of these deficiencies, deep neural networks (DNNs)
have been introduced in speech synthesis over the last few years, outperform-
ing HMM-based TTS approaches, such as Zen et al. [12] using 33k sentences
of speech for training and Qian et al. [7] where a more modest database of
approximately 5k sentences (approx. 5 h) was used. In an attempt to use an
even smaller database, Lu et al. [5], used a training set of 1k sentences in a
framework combining Vector Space Representation (VSR) [8] and DNN mod-
elling without managing to outperform the HMM-based one. It seems that there
is a data threshold below which HMMs are superior to DNNs.

In the following sections, we describe experiments aimed at evaluating
whether recent DNN technology described above could be beneficial in our S2ST
scenario. The main focus is on the amount of training data. We hypothesize that
although the DNNs will clearly show their superiority over the HMMs when the
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amount of training data is relatively large (i.e. more that 5 or 10 h of speech),
this might not be the case when relatively small amount of data (i.e. approxi-
mately 1 h of speech) is used. Moreover, other aspects of the training procedure
such as model order in terms of layers and nodes per layer, along with positional
information in the input layer are also examined.

2 Framework

A DNN is a feed-forward artificial neural network with multiple hidden lay-
ers between the input and output layer, creating a mapping function between
the input (i.e. linguistic features) vector and the output (i.e. acoustic features)
vector. In the training phase, the input text is processed and transformed into
labels, which contain linguistic features in an appropriate format for training the
DNNs, i.e., containing binary and numerical features. Back-propagation is used
for training the DNN using the input and output data.

In the synthesis phase, the input text is processed by the same front-end as in
the training phase, creating the input vectors and the trained DNN is used in a
forward-propagation manner for mapping them to output vectors. Consequently
the acoustic features are created using maximum likelihood parameter generation
(MLPG) trajectory smoothing [11] and finally, a vocoder is used for synthesizing
the final waveform.

2.1 Database and Input/Output Features

For the experiments the blizzard-challenge-2011 [4] database was used. The
speaker is known as “Nancy” and is a US English native female speaker. The
database consists of 16.6 h of data, comprising around 12k utterances. The audio
was re-sampled to a sampling frequency of 16 kHz for these experiments.

For the training of the DNNs, three different sizes of the training set were
implemented, i.e. T13.5 : 13.5 h (10k sentences), T3.6 : 3.6 h (2.6k sentences) and
T1.5 : 1.5 h (1.1k sentences). The development set and the evaluation set con-
sisted of 1.35 h (1k sentences) and 0.4 h (0.3k sentences) of speech respectively.

The text corresponding to each audio file has to be converted into a sequence
of labels suitable for HMM and DNN training. A conventional and freely available
TTS front-end was used for this [1].

The text is turned into a sequence of labels, which contain segmental infor-
mation and rich contextual parameters such as lexical stress and relative position
within syllables, phrases or sentences. The standard “full” labels generated by
the scripts, i.e. quinphone segmental information, and a large number of categor-
ical, numeric, or binary linguistic and prosodic information, was used [13]. These
labels were aligned with the speech signal through a phone-based forced align-
ment procedure, using the Kaldi toolkit [6]. The models for the alignment were
trained on the training plus development sets, and state-level labels force-aligned
to acoustic frame boundaries were generated for the training, development and
evaluation sets.
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Concerning the output features, the STRAIGHT [13] vocoder was used for
the acoustic analysis and feature extraction, essentially using the default set-
tings from the EMIME [9] scripts: 5ms sampling step, STRAIGHT Mel-cepstral
analysis with 40 coefficients, single f0 value, and 21 coefficients for band aperiodic
energy, extracted by the STRAIGHT vocoder. For each acoustic feature, deriv-
atives of first and second order are added. The overall acoustic vector dimension
is 186.

2.2 DNN Setup

A slightly modified version of the Kaldi toolkit for the DNN training was used.
An automatic procedure was used to convert the labels into numeric values:
the categorical data (such as segmental information) was turned into arrays of
binary values, while the numerical and binary data was preserved.

Since training requires a frame-level mapping between input labels and
acoustic features, the segment-based labels have to be sampled so that we have
an input label per acoustic frame. Based on this fact, various implementations
were evaluated. Additionally, we hypothesize that the information concerning the
input features included in the questions, which are used during the HMM-based
TTS training procedure for building the decision tree [13] could be beneficial for
training the DNNs. Based on this hypothesis, several sets of binary features were
extracted from the questions. The different implementations are the following:

– DNNba: “baseline” DNN system trained using only the states within the
phone in the input features, along with the standard “full” labels (i.e. a total
of 424 input features).

– DNNmp: “multi-pos” DNN system trained using the state position within
the phone as categorical data, plus using two position features, i.e. numeric
values corresponding to the frame position within the current state, and to
the frame position within the current segment, plus the standard “full” labels
(i.e. a total of 431 input features).

– DNNmpq: “multi-pos plus phonological questions” DNN system trained using
the previous implementation plus some additional phonological information
for the current phone extracted based on the questions used in the HMM-
based system (i.e. a total of 519 input features).

In some preliminary experiments other implementations of the input fea-
ture sets, adding more information extracted based on the question set, were
investigated without being beneficial for the DNN-based system after all.

The DNNs were built implementing various combinations of the number of
hidden layers (i.e. from 3 to 6 hidden layers), and nodes (i.e. 700, 1000, 1500 and
2000 nodes) in each layer. Each layer comprised an affine component followed
by a sigmoid activation function. The input (label) data was further normalized
for each component to be of zero mean and unit variance. The output (acoustic)
data was normalized globally so that each component had values between 0.01
and 0.99; the output activation function was a sigmoid.
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Unlike other approaches (such as Zen [12] or Qian [7]), we did not remove
silent frames from the training. The training procedure was standard: we used
a stochastic gradient descent based on back propagation. The minimisation cri-
terion was the Mean Square Error (MSE). The training was run on the training
set, and we used the development set for cross-validation.

2.3 HMM Setup

For comparison with state-of-the-art parametric systems, HMM-based synthesis
models were built using the HTS v.2.1 toolkit [2]. More specifically, an imple-
mentation from the EMIME project [9], freely available online, was employed.
We used standard five-state left-to-right Hidden Semi-Markov Models (HSMM),
with no-skip.

2.4 Synthesis

The aligned label files from the evaluation set were used for synthesis. In the
case of DNN-based synthesis, state-level alignments were used, while in the case
of HTS, the alignment was only enforced up to the phone level. In the case of
the DNN, synthesis was performed doing a forward pass through the network,
followed by acoustic trajectory smoothing [2], through applying the “mlpg” tool
from SPTK [3] and global variance computed on each acoustic component. This
was followed by resynthesis using the STRAIGHT vocoder. For the HTS system,
resynthesis is performed using “HMGenS” with global variance information, fol-
lowed by STRAIGHT synthesis.

3 Results

In the following subsections, the objective evaluation on the different implemen-
tations of the input features and the various sizes of training sets used for train-
ing the DNN- and HMM-based systems, as described in the previous section,
are presented, along with the subjective evaluation.

3.1 Objective Evaluation

In Fig. 1, the Mel-cepstral distortion (MCD) in dB and the F0 in root mean
square error (RMSE) results on the evaluation set, for the different parameters
concerning the number of hidden layers (i.e., 3, 4, 5 and 6) and the number
of nodes per layer (i.e., 700, 1000, 1500 and 2000), using the full training set
(T13.5), for the three DNN-based systems (i.e., DNNba, DNNmp, DNNmpq) can
be seen. In all of the three systems both the MCD error and the RMSE of the
F0 are decreasing with the increase of the number of nodes used. Concerning the
DNNba system, the best performance in respect to both MCD error and RMSE,
is achieved by the 4-hidden layers and 2000 nodes per layer implementation.
The same trend can be seen in the case of the DNNmpq system, while in DNNmp
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case, the best performance is achieve by the 5-hidden layers and 2000 nodes per
layer implementation. In respect to the three systems, the DNNba managed to
model F0 more accurate followed by the DNNmp one, while in respect to the
MCD error, the DNNmpq slightly outperformed and DNNmp one, followed by
the DNNba one.

Fig. 1. MCD error in dB and RMSE of F0 in Hz, for the baseline DNNba (top),
multi-pos DNNmp (middle) and multi-pos plus phonological questions features DNNmpq

(bottom) systems (trained on T13.5 set), on evaluation set.

In Table 1 the results for the HMM-based system are presented. For compar-
ison reasons, the results for three DNN-based systems are shown again. Along
with the MCD error and the RMSE of the F0, the unvoiced/voiced (U/V) error,
in percentage, is presented. As can be seen, all DNN-based systems outperform
the HMM-based one, achieving around 11 % relative improvement (i.e., reduc-
tion) in MCD error, 8–9 % relative improvement (i.e., reduction) in RMSE of
the F0 and 30–32 % relative improvement (i.e., reduction) in U/V error.

Based on the aforementioned objective results and an informal subjective one,
the DNNmp implementation was chosen for the second part of the experiments.
For this, different size of training sets, i.e. the T3.6 training set (3.6 h of speech)
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Table 1. MCD in dB, F0 RMSE in Hz and U/V decision errors in %, for the three
DNN-based implementations and the HMM-based system (trained on T13.5 set).

System MCD (dB) F0 (Hz) U/V error (%)

HMM 5.052 16.14 9.33

DNNba 4.501 14.65 6.39

DNNmp 4.496 14.72 6.54

DNNmpq 4.493 14.89 6.38

Table 2. MCD in dB, F0 RMSE in Hz and U/V decision errors in %, for the three
different training data sets for the DNN-based and the HMM-based systems.

System Training set MCD (dB) F0 (Hz) U/V error (%)

HMM T13.5 5.052 16.14 9.33

DNNmp T13.5 4.496 14.72 6.54

HMM T3.6 5.089 16.94 9.17

DNNmp T3.6 4.563 16.58 6.98

HMM T1.5 5.166 17.53 10.64

DNNmp T1.5 4.741 18.72 7.53

and the T1.5 training set (1.5 h of speech), were used for training both HMM-
based and DNN-based systems. In some initial experiments, the implementations
of 3, 4 and 5 hidden layers with 1000, 1500 and 2000 nodes per layer DNNs, were
investigated. The case with the 4 hidden layers with 2000 nodes per layer gave
the best performance and are presented next.

In Table 2 the results for the aforementioned experiments can be seen, along
with the respective results with T13.5 for comparison reasons. As can be seen,
in all cases, the respective DNN-based system outperforms the HMM-based cor-
responding one in terms of MCD error and U/V error. In respect to RMSE
of the F0, only in the case of T1.5, the DNN-based system cannot manage to
outperform the HMM-based one.

It should be mentioned here, that various implementations of pre-training
were investigated. The deep belief network (DBN) framework [7] was used,
trained on different size training sets and with or without splicing features along
several frames, but none of them managed to help improve the DNN-based sys-
tems compared to the corresponding ones without pre-training.

3.2 Subjective Evaluation

In order to verify the objective evaluation results, a subjective preference listen-
ing (ABX) test was conducted. The subjective test was composed of two parts.
In the first one, the listeners were asked to state their preference – in terms of
the naturalness of the speech – between the DNN- and the HMM-based system,
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in respect to the three different training sets (i.e., T13.5, T3.6 and T1.5). In
the second part, they were asked to compare each one of the three DNN-based
systems (i.e., T13.5, T3.6 and T1.5) in respect to the other two. In the ABX pref-
erence test, for each sample, there were 5 preference choices: (1) the first sample
sounds much closer to the reference, (2) the first sample sounds a bit closer to
the reference, (3) no sample is significantly better than the other, (4) the second
sample sounds a bit closer to the reference, (5) the second sample sounds much
closer to the reference. Two sets of 7 samples were randomly selected from the
evaluation set, and 11 and 19 listeners respectively, participated in the tests.
In Table 3 the ABX results concerning the first part of the subjective test, are
presented. As can be seen, in all three cases, the DNN-based systems clearly
outperform the HMM-based ones.

Table 3. ABX preference test results (%) comparing the DNN-based system with the
corresponding HMM-based one for the three different training sets, T13.5, T3.6 and
T1.5.

Training set Strong pref. DNN Pref. DNN Equal Pref. HMM Strong pref. HMM

T13.5 33.3 37.1 9.5 14.3 5.7

T3.6 20.5 41.9 16.7 17.6 3.3

T1.5 24.8 48.1 14.8 9.5 2.9

Table 4. ABX preference test results (%) comparing the DNN-based systems trained
with the three different training sets with each other.

Strong pref. DNN (T13.5) Pref. DNN (T13.5) Equal Pref. DNN (T3.6) Strong pref. DNN (T3.6)

5.7 20.5 63.3 10.0 0.5

Strong pref. DNN (T3.6) Pref. DNN (T3.6) Equal Pref. DNN (T1.5) Strong pref. DNN (T1.5)

5.2 25.7 52.9 13.3 2.9

Strong pref. DNN (T13.5) Pref. DNN (T13.5) Equal Pref. DNN (T1.5) Strong pref. DNN (T1.5)

10.0 40.0 40.5 9.0 0.5

In Table 4 the ABX results concerning the second part of the subjective test,
are shown. From these results, it can be seen that there is a preference on the
DNN-based system trained using T13.5, over T3.6 and T1.5, nonetheless, in
all cases the “no sample is significantly better than the other” choice in the
ABX test gathers very high scores (i.e. 40–65 %). These results are in agreement
with the objective results, which have shown the clear superiority of the DNN-
based systems in respect to the HMM-based ones, even (to our surprise) when
a relatively small amount of training data is used, and in parallel the relatively
small differences among the three DNN-based systems.

4 Conclusions
Our attempt to explore features extracted from the question set, used in HMM-
based techniques, turned out not to be as beneficial as expected. However, even
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without the contribution of these features, as both the objective and subjec-
tive results clearly show, the DNN-based systems managed to outperform the
respective HMM-based ones, even when the smallest training dataset, i.e. 1.5 h
of speech, is used for training the systems. Our future focus will be on the adap-
tation aspects of DNN-based speech synthesis, which is essential in the field of
statistical parametric speech synthesis, especially in the area of S2ST.
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