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ABSTRACT

In this paper, a method to use SGMM speaker vectors for

speaker diarization is introduced. The architecture of the

Information Bottleneck (IB) based speaker diarization is uti-

lized for this purpose. The audio for speaker diarization is

split into short uniform segments. Speaker vectors are ob-

tained from a Subspace Gaussian Mixture Model (SGMM)

system trained on meeting data. The speaker vectors are clus-

tered using the K-means algorithm. Two types of distance

measures are explored in the clustering step: cosine distance

of the speaker vectors and that of the vectors in a space pro-

jected by Probabilistic Linear Discriminant Analysis (PLDA).

The clustering output is used as an initialization step for the

Kullback Leibler-Hidden Markov Model (KL-HMM) based

speech segmentation approach commonly used in the IB

system for diarization. The proposed method is compared

to clustering the segments using the IB based approach. A

relative improvement of approximately 14% is obtained on

the diarization performance for the proposed approach us-

ing SGMM speaker vectors with PLDA on the NIST RT 09

dataset.

Index Terms— SGMM, speaker diarization, speaker vec-

tors, K-means

1. INTRODUCTION

Speaker diarization addresses the problem of identifying

who spoke when in a speech recording [1]. Techniques

such as the Hidden Markov Model/Gaussian Mixture Model

(HMM/GMM) [2, 3] and the Information Bottleneck (IB)

method [4] have been successfully applied to speaker di-

arization on meeting data. Approaches using the Bayesian

Information Criterion (BIC) [5, 6, 7] and i-vector based ap-

proaches have been shown to be useful [8, 9] on broadcast

news recordings and telephone conversational recordings.

Diarizing speech involves unsupervised segmentation and

clustering of speakers. A common approach to obtain initial

segmentation is to uniformly divide the entire speech into

segments of equal length. In the HMM/GMM approach the

segments are obtained by splitting the entire speech audio into

a fixed number of segments (typically 16). In the IB approach

however, the length of the segments are shorter (around

2.5s) compared to the initial segments in the HMM/GMM

approach. Each segment is modelled by a Gaussian dis-

tribution. The distribution parameters are estimated from

these short segments assuming the segments belong to only

one speaker. However, the estimates depend on the record-

ing conditions (eg: accuracy of beamforming for meeting

recordings, recording types, etc.). Moreover, due to the short

length of the segments, the speech information could domi-

nate speaker identity during model estimation. Using prior

information, such as a Universal Background Model (UBM),

has been observed to provide little or no improvement over

estimating segment-level Gaussians as the latter preserve

time information in the audio. This motivates investigating

alternative approaches that can use prior data and adapt to the

observed features in the input audio.

In this paper, the SGMM approach is exploited to estimate

speaker models for every segment of audio as it provides ex-

plicit factorization of speech and speaker information in its

models [10, 11]. We assume that the short segments contain

only one speaker to estimate speaker models. The speaker pa-

rameters from the SGMM approach have already been used

in the context of language identification in [12]. Every seg-

ment obtained in the segmentation phase of the IB system is

used to estimate one speaker vector from the SGMM system,

which is trained on a development set with transcribed audio.

The speaker parameters that represent each segment are clus-

tered as opposed to clustering segment-level posteriors in the

IB approach. These vectors are clustered to provide an ini-

tialization for the KL-HMM segmentation algorithm used as

the final step in the IB system. In this paper, K-means algo-

rithm is used for clustering [13]. K-means algorithm has been

used for speaker diarization on telephone conversations in [8].

The proposed system is tested on the NIST RT 09 benchmark

dataset. Its performance is compared with that of the IB ap-

proach. Additionally, the proposed approach is compared to

an alternative i-vector approach by replacing i-vectors instead

of SGMM speaker vectors in the proposed framework. It

should be noted that i-vector-based approaches have not been



Fig. 1. Block diagram of the IB based diarization system.

extensively tested in meeting environments. It is hypothesized

that the SGMM approach will perform better compared to the

i-vector approach as it is exploiting the phonetic contents of

the audio explicitly.

The rest of the paper is organized as follows: Section 2

describes the IB method. Section 3 details the speaker vector

model in the SGMM approach. Section 4 describes the archi-

tecture of the proposed system. The results of the experiments

on the NIST RT datasets are discussed in Section 5.

2. INFORMATION BOTTLENECK METHOD

The architecture of the IB approach is given in Figure 1.

Uniform segments from speech data are modelled by a GMM

with shared covariance parameters and a mean for every

segment. The segments are clustered using the IB criterion

([14]) with the posteriors for speech features obtained from

the GMM.

The clustering output is used as an intialization step to

the KL-HMM segmentation algorithm. The KL-HMM seg-

mentation algorithm reuses the posteriors and initalizes the

HMM states with the mean of the posteriors in the cluster.

Then, Viterbi decoding is applied to speech with respect to

the state models and the posteriors. Kullback Leibler (KL) di-

vergence between the speech posteriors and the state models

are computed and the overall KL-HMM measure is mini-

mized in the decoding process. KL-divergence is computed

between the frames yt = [yt,1 . . . yt,D]T and state model

mi = [mi,1 . . .mi,D]T of state i, where the posterior is

D-dimensional. The KL divergence measure is given by:

vt,i = −
D
∑

d=1

yt,d log (yt,d/mi,d) . (1)

To compute KL divergence, the mean posterior vector is used

as a reference while the speech frame posteriors is used as

the test vector. In this paper, the IB architecture is modified

to provide clustering output of speaker vectors obtained from

the SGMM system to the KL-HMM segmentation algorithm.

3. SGMM SPEAKER VECTOR

The SGMM method is an acoustic modeling approach in

which a common GMM structure is shared across all the

phonetic states. Each state is represented by a state vector

that defines a mapping to the means and weights of the state’s

GMM. Let x be a F -dimensional feature, j represent a speech

state, vj the S-dimensional state vector. The model of a state

is defined by the following equations:

p (x|j) =
I

∑

i=1

wjiN
(

x;µji,Σi

)

, (2)

µji = Mivj , (3)

wji =
expwT

i vj
∑I

i expw
T
i vj

, (4)

where I is the number of Gaussians in the state. Mi and wi

are globally shared parameters. Typically, S is much less than

I(F + 1) and hence the model is called ”subspace” GMM.

Each state j has Mj substates as S is less than the total num-

ber of globally shared parameters. The substates have their

own mixture weights cjm and vector vjm. The above three

equations now become:

p (x|j) =

Mj
∑

m=1

cjm

I
∑

i=1

wjmiN
(

x;µjmi,Σi

)

, (5)

µjmi = Mivjm, (6)

wjmi =
expwT

i vjm
∑I

i expw
T
i vjm

, (7)

3.1. Speaker vector extraction

Speaker specific parameters in the SGMM system can be ob-

tained by decomposing µjmi into speech specific and speaker

specific parameters. That is,

µ
s
jmi = Mivjm +Niv

(s). (8)

The Ni matrices define the speaker subspace and v(s) is the

speaker vector for µ
s
jmi. The above equation can be com-

pared to Joint Factor Analysis of speaker and channel sub-

space in speaker recognition. In this case, the speech and

speaker subspaces are being separated.

In the context of speaker diarization, the estimation of

v(s) can be interesting. The SGMM approach provides a

method to estimate speaker specific parameters from the

speech. This is useful for several reasons. The SGMM sys-

tem itself requires fewer parameters than a GMM system.

Importantly, we obtain a small fixed-dimensional represen-

tation of a speaker that is direct mapping to a GMM. In this

work we use a 39-dimensional speaker representation. This

dimension is related to the feature dimension used to train the

SGMM based ASR system.



Fig. 2. Architecture of the proposed system that uses SGMM

speaker vectors.

3.2. Speaker vector whitening and PLDA

The speaker vectors obtained are proposed to be clustered

for speaker diarization. In this work, the speaker vectors are

used in two ways: (i) the speaker vectors obtained from the

SGMM system are whitened and (ii) the whitened speaker

vectors used in (i) are projected in PLDA (Probabilistic Lin-

ear Discriminant Analysis) space. Whitening the speaker vec-

tors Gaussianizes the vectors for K-means clustering. The

PLDA parameters are trained on a development dataset. The

G-PLDA model (Gaussian-PLDA) is a commonly used tech-

nique in speaker recognition [15]. Given a speaker vector vs
r

for speaker s, the G-PLDA model is given by

v
s

r
= µ

v
+Φy + ǫ

s

r
, (9)

where µv is the mean of the speaker vectors, Φ defines the

speaker space and ǫsr is the channel noise. The PLDA hyper-

parameters are Φ and the covariance of the residue ΣP . The

projection (v̂s
r) of vs

r onto Φ is computed using the single

model assumption for the PLDA system:

v̂s
r =

(

I+ΦtΣ−1
P Φ

)

−1
ΦtΣ−1

P vs
r, (10)

where I is an identity matrix. The architecture of the proposed

system is given in the next section.

4. SGMM FOR DIARIZATION

The IB system’s architecture is modified to use the speaker

vectors obtained from the SGMM system. Instead of using

the posterior representation of segments for clustering, the

speaker vectors are clustered using K-means algorithm with

Euclidean distance as distance measure between vectors [13].

The value of K is empirically decided.

The overall architecture of the proposed system is shown

in Figure 2. Similar to the IB approach, the segmented speech

is modelled by a GMM, where each segment forms the mix-

ture of the GMM. The segment boundaries are passed to the

SGMM system. The SGMM system estimates a speaker vec-

tor for every segment generated. The speaker vectors are clus-

tered using the K-means algorithm. The clusters generated

are used to initialize the KL-HMM segmentation algorithm

(described in Section 2).

In the proposed method, multiple iterations of the KL-

HMM is required (as opposed to only one in the IB ap-

proach). The modification is required as it is observed that

the clustering output produced by the K-means algorithm has

worse speaker error rate before resegmentation compared to

the clustering output from the IB approach. However, only

few reiterations of segmentation and modelling are necessary

(typically 10 compared to only 1 in the IB approach). Also,

in the IB approach reiteration of segmentation and mod-

elling does not improve the performance of the system. The

KL-HMM system uses the posteriors produced in the initial

step of the process along with the clustering output from the

speaker clustering algorithm. The modified boundaries are

given as the diarization output.

In the architecture described above, the SGMM method

can be replaced by other methods that can provide speaker

representations. In our experiments the performance of

SGMM vectors and i-vectors, which is the state-of-the-art

speaker modelling technique in speaker recognition, are com-

pared. We refer the reader to [16] for details on the i-vector

approach and to [17] for details on i-vector system imple-

mentation .

5. EXPERIMENTS

Speaker diarization experiments are performed on the NIST

RT 05, 06 and 2009 benchmark datasets. The NIST RT05 and

RT06 are used as a development dataset while RT09 forms the

test set. The development set is used to tune number of clus-

ters (K value) and train PLDA parameters. Multiple Distant

Microphone (MDM) recordings are used for the experiments

after their enhancement using Beamformit [18]. The proposed

diarization system is compared with two other diarization sys-

tems: the IB based diarization system and a modification of

the proposed system in which i-vectors of the segments are

used instead of SGMM speaker vectors for clustering.

5.1. System parameters

MFCC (Mel Frequency Cepstral Co-efficients) features are

extracted from the audio at 10ms frame rate with a window

size of 25ms. A Gaussian is modelled for every 250 frames

and the covariance matrix is shared across the Gaussians.

The posteriors are estimated for every frame with respect to

all these Gaussians. The speech/non-speech segmentation is

common for all systems used in this work and is derived from

ground truth.

The SGMM system is trained as follows: the shared pa-

rameters are trained on the AMI corpus [19] with 39 dimen-

sional MFCC features (including delta and delta-delta) on the

SDM+IHM meetings. The SDM+IHM meetings are used for

SGMM training because it is observed to generalize better (in

terms of performance in mismatch conditions) than systems



Table 1. Comparison of performance of 3 clustering algorithms: IB

clustering with posteriors, K-means clustering with SGMM speaker

vectors and K-means clustering with i-vectors. The experiments

are performed on NIST RT 06 dataset. SER: Speaker Error Rate,

+PLDA: vectors projected in the PLDA space.

Clustering algorithm SER

IB 20.5

i-vector 55.7

i-vector+PLDA 54.8

SGMM 62.4

SGMM+PLDA 61.8

Table 2. Results of experiments conducted on the NIST RT 06

and 09 datasets comparing the IB clustering and speaker vector (be-

fore and after PLDA) clustering methods SER: Speaker Error Rate,

+PLDA: vectors projected in the PLDA space.

System/Dataset RT06 (SER) RT09 (SER)

Baseline (IB) 18.5 22.9

i-vector 28.4 24.2

i-vector + PLDA 25.9 21.3

SGMM 24.8 19.9

SGMM + PLDA 18.4 19.7

trained on individual conditions. The system is trained with

4000 states and 120 substates. The WER (Word Error Rate)

on the test corpus in the AMI set is 63.4% on SDM recordings

and 41.9% on IHM recordings.

The i-vector system is also trained on the AMI corpus.

The Universal Background Model (UBM) is trained with 19-

dimensional MFCCs. The T-matrix is estimated with the con-

vetional EM algorithm ([20]) for 10 iterations. The i-vector

dimension is set to 60. The PLDA parameters for the SGMM

speaker vectors and i-vectors are trained on the NIST RT05

data set. The data set has 50 speakers. For PLDA, 40 and

20 dimensions are retained for i-vector and SGMM systems,

respectively. The optimal value of K in K-means clustering is

set to 10 using the development set.

5.2. Results

The system parameters (PLDA dimension and stopping cri-

terion) are optimized on RT06 and the systems are tested on

RT 06 (development set) and RT09 datasets (test set). NIST

RT 07 is used as a validation set during the development of

the SGMM system and hence is not used to test the speaker

diarization performance. The results of speaker clustering

are presented in Table 1. The results suggest that output of

speaker clustering with both i-vectors and SGMM speaker

vectors are noisy compared to the IB clustering output and

hence requiring more iterations for the resegmentation step.

The performance improvement obtained after applying PLDA

suggests that the technique is useful. However, the gains ob-

tained are not as much as that observed in speaker recognition

experiments where the amount of data available for training

is much higher (typically thousands of speakers as opposed to

only 50 used here). Particularly, the gains are beneficial for

RT06 than RT09 as the former has more speakers.

The results of experiments on the RT datasets on the com-

plete systems are presented in Table 2. The IB system is com-

pared with the methods that use i-vector and SGMM speaker

vector. In general, the SGMM speaker vector based approach

is better than the i-vector and IB based approaches. The pro-

posed system can be seen to provide an absolute improve-

ment of 0.1% in terms of Speaker Error Rate (SER) on the

development set (RT06). There is no improvement for the

whitened speaker vectors but minor improvement is observed

after applying PLDA. However, applying PLDA gives an im-

provement of 6.4% in absolute terms as the performance is

optimized on the development set. The i-vector system how-

ever performs consistently poor compared to the IB system as

well. The performance of the i-vector system is expected as

the length of the segments used to estimate i-vector is short,

while the i-vector system is trained on long segments (which

is also the case for the SGMM system). However, in both

cases PLDA projected vectors provide improvements. In the

best case, 2.9% improvement is observed in absolute terms

for the i-vector PLDA system.

In the test set (RT09), performance improvements of

3.0% and 3.2% in absolute terms are obtained before and af-

ter applying PLDA compensation, respectively. The SGMM

method is therefore shown to provide benefits compared to

both the baseline IB approach for speaker diarization and

using i-vectors instead of the SGMM speaker vectors.

6. SUMMARY

A speaker diarization system using SGMM speaker vectors

and KL-HMM segmentation is presented. The speaker vec-

tors are estimated on short segments of speech in the input

audio. The vectors are clustered and the output is used to ini-

tialize the states of the KL-HMM. The KL-HMM adjusts the

boundaries with posteriors computed from the the Gaussians

representing the short speech segments in the audio. The ap-

proach is compared with the IB approach that shares the same

architecture. The SGMM speaker vectors clustered using K-

means clustering is shown to perform better than the IB sys-

tem. A relative performance improvement of up to 14% is

observed.
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Glembek, Pavel Matejka, and E de Villiers J Cernockỳ,

“Speaker vectors from subspace gaussian mixture model

as complementary features for language identification,”

in Odyssey 2012-The Speaker and Language Recogni-

tion Workshop, 2012.

[13] Richard O. Duda, Peter E. Hart, and David G. Stork,

Pattern Classification, Wiley India, 2007.

[14] Noam Slonim, The information bottleneck: Theory

and applications, Ph.D. thesis, Hebrew University of

Jerusalem, 2002.

[15] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis

of i-vector length normalization in speaker recognition

systems,” in INTERSPEECH, August 2011, pp. 249–

252.

[16] Najim Dehak, Patrick Kenny, Rda Dehak, Pierre Du-

mouchel, and Pierre Ouellet, “Front-end factor analysis

for speaker verification,” 2011, vol. 19(4), pp. 788–798,

IEEE Tran. on Audio, Speech and Language Processing.

[17] Srikanth Madikeri, “A hybrid factor analysis and prob-

abilistic pca-based system for dictionary learning and

encoding for robust speaker recognition,” in Odyssey

2012-The Speaker and Language Recognition Work-

shop, 2012.

[18] Xavier Anguera, “Beamformit (the

fast and robust acoustic beamformer),”

http://www.xavieranguera.com/beamformit/.

[19] Thomas Hain, Lukas Burget, John Dines, Philip N Gar-

ner, Frantisek Grezl, Asmaa El Hannani, Marijn Hui-

jbregts, Martin Karafiát, Mike Lincoln, and Vincent

Wan, “Transcribing meetings with the amida systems,”

IEEE Transactions on Audio, Speech, and Language

Processing, vol. 20, no. 2, pp. 486–498, 2012.

[20] Ondrej Glembek, Lukas Burget, Pavel Matejka, Martin

Karafiát, and Patrick Kenny, “Simplification and op-

timization of i-vector extraction,” in IEEE Intl. Conf.

on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2011, pp. 4516–4519.


