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Abstract

One of the key challenges involved in building statistical automatic speech recognition (ASR) systems is modeling the relationship
between subword units or “lexical units” and acoustic feature observations. To model this relationship two types of resources are needed,
namely, acoustic resources i.e., speech data with word level transcriptions and lexical resources where each word is transcribed in terms of
subword units. Standard ASR systems typically use phonemes or phones as subword units. However, not all languages have well devel-
oped acoustic and phonetic lexical resources. In this paper, we show that the relationship between lexical units and acoustic features can
be factored into two parts through a latent variable, namely, an acoustic model and a lexical model. In the acoustic model the relation-
ship between latent variables and acoustic features is modeled, while in the lexical model a probabilistic relationship between latent vari-
ables and lexical units is modeled. We elucidate that in standard hidden Markov model based ASR systems, the relationship between
lexical units and latent variables is one-to-one and the lexical model is deterministic. Through a literature survey we show that this deter-
ministic lexical modeling imposes the need for well developed acoustic and lexical resources from the target language or domain to build
an ASR system. We then propose an approach that addresses both acoustic and phonetic lexical resource constraints in ASR system
development. In the proposed approach, latent variables are multilingual phones and lexical units are graphemes of the target language
or domain. We show that the acoustic model can be trained on domain-independent or language-independent resources and the lexical
model that models a probabilistic relationship between graphemes and multilingual phones can be trained on a relatively small amount
of transcribed speech data from the target domain or language. The potential and the efficacy of the proposed approach is demonstrated
through experiments and comparisons with other approaches on three different ASR tasks: non-native and accented speech recognition,
rapid development of an ASR system for a new language, and development of an ASR system for a minority language.
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1. Introduction

State-of-the-art automatic speech recognition (ASR)
systems are based on hidden Markov models (HMMs).
The development of an HMM-based ASR system is often
decomposed into two problems (Rabiner, 1989; Bourlard
and Morgan, 1994). First, the relationship between
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subword units or “lexical units” and acoustic feature obser-
vations is modeled. Second, the syntactic constraints of the
language are modeled.

The present paper focuses on the first problem. To
model the relationship between lexical units and acoustic
features, transcribed speech data and a phonetic lexicon
are required. While this is not an issue for resource rich lan-
guages, it is challenging for under-resourced languages and
domains that may not have such resources (Besacier et al.,
2014). In the literature, the lack of transcribed speech data
has been typically addressed through multilingual and
crosslingual approaches (Kohler, 1998; Schultz and
Waibel, 2001; Burget et al., 2010; Swietojanski et al.,
2012; Huang et al., 2013). In these approaches, first the
relationship between lexical units and acoustic feature
observations is learned on domain- or language-indepen-
dent data and later adapted on target language or domain
data. If the phonetic lexicon in the target language is not
available, then the use of alternate subword units such as
graphemes has been explored (Schukat-Talamazzini et al.,
1993; Kanthak and Ney, 2002; Killer et al., 2003; Dines
and Magimai-Doss, 2007; Ko and Mak, 2014). However,
the lack of both acoustic and lexical resources has rarely
been studied in the past (Stüker, 2008b; Stüker, 2008a).
The focus of this paper is on building ASR systems for lan-
guages and domains that lack both a phonetic lexicon and
transcribed speech data.

In this paper, we first show that the modeling of the rela-
tionship between lexical units and acoustic feature observa-
tions can be factored into two parts or models, namely, the
acoustic model and the lexical model through a latent
variable.

1. In the acoustic model, the relationship between latent
variables and acoustic features is modeled.

2. In the lexical model, a probabilistic relationship between
latent variables and lexical units is modeled.

We then elucidate that in standard HMM-based ASR
systems the lexical model is deterministic. The deterministic
lexical model imposes constraints such as: the latent vari-
ables and the lexical units have to be of the same kind;
the acoustic resources from target language or domain
are required to train or adapt both the acoustic model
and the lexical model.

In recent work, we showed that there are approaches
such as the Kullback–Leibler divergence-based hidden
Markov model (Aradilla et al., 2008), where the relation-
ship between lexical units and latent variables is probabilis-
tic (Rasipuram and Magimai-Doss, 2013b). Probabilistic
lexical modeling relaxes certain constraints imposed by
deterministic lexical modeling. As a consequence, the
acoustic and lexical models can be independently trained
on different sets of resources. Further, different kinds of
subword units can be modeled in an ASR system; and dif-
ferent types of contextual units can be modeled in an ASR
system (Magimai-Doss et al., 2011; Imseng et al., 2011;
Imseng et al., 2012; Rasipuram et al., 2013a). Motivated
by these findings, this paper proposes an approach for
rapid development of ASR systems in the framework of
probabilistic lexical modeling with minimal acoustic and
lexical resources from the target language or domain. In
the proposed approach:

� Latent variables are “multilingual phones” and lexical
units are based on graphemes of the target language.
� An acoustic model is trained on language-independent

acoustic and lexical resources.
� The lexical model that captures a probabilistic relation-

ship between graphemes and multilingual phones, is
trained on a relatively small amount of target lan-
guage-dependent acoustic data.

The potential and efficacy of the proposed approach is
demonstrated through experiments and comparisons with
other standard approaches on three ASR tasks. The stan-
dard ASR approaches considered for comparison are the
acoustic model adaptation and Tandem approaches that
exploit language-independent resources, and the HMM/
Gaussian mixture model (GMM) approach that uses only
the target language data.

The paper is organized as follows: Section 2 provides a
background on standard HMM-based ASR systems and
elucidates the deterministic lexical model aspect in theory
and practice. Section 3 presents implications of determinis-
tic lexical modeling. Section 4 presents three different prob-
abilistic lexical modeling approaches, their potential
implications and the proposed approach. Sections 5 and
6 present the experimental setup and the results, respec-
tively. Finally, in Section 7 we provide a discussion fol-
lowed by a conclusion.

2. Background

In a statistical ASR approach, the goal is to find the best
matching or the most likely word sequence W � given the
acoustic observation sequence X ¼ ½x1; . . . ; xt; . . . ; xT �
where t denotes the frame number and T the total number
of frames. Formally,

W � ¼ arg max
W 2W

P ðW jX ;HÞ ð1Þ

¼ arg max
W 2W

P ðX jW ;HAÞ � P ðW jHLÞ
P ðX jHÞ ð2Þ

¼ arg max
W 2W

P ðX jW ;HAÞ � PðW jHLÞ ð3Þ

where W denotes the set of all possible word sequences.
The first term on the right hand side of Eq. (3) is the like-
lihood of the acoustic observation sequence X given a word
sequence W and is referred to as the acoustic likelihood.
The second term on the right hand side of Eq. (3) is the
prior probability of a word sequence W or the language
model probability. The parameter set H ¼ fHA;HLg
includes the parameters of the acoustic likelihood estimator
(HA) and the parameters of the language model (HL).
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Fig. 1. The graphical model representation of a system incorporating
probabilistic lexical modeling.
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2.1. Standard HMM-based ASR

HMM-based ASR is a statistical ASR approach, where
given an acoustic likelihood estimator, a lexicon and a lan-
guage model, the most likely word sequence W � is achieved
by finding the most likely state sequence Q�,

Q� ¼ arg max
Q2Q

P ðQ;X jHÞ ð4Þ

¼ arg max
Q2Q

YT

t¼1

pðxtjqt ¼ li;HAÞ �Pðqt ¼ lijqt�1¼ lj;HÞ ð5Þ

¼ arg max
Q2Q

XT

t¼1

½logpðxtjqt¼ li;HAÞ

þ logPðqt ¼ lijqt�1¼ lj;HÞ� ð6Þ
where Q denotes the set of possible HMM state sequences
and each Q ¼ ½q1; . . . ; qt; . . . ; qT � denotes a sequence of lex-
ical HMM states corresponding to a word sequence
hypothesis, qt 2 L ¼ fl1; . . . li . . . lIg and I is the number
of lexical units. In a subword unit based ASR system, if
phones are used as subword units then each lexical unit li

represents a phone or a polyphone. If graphemes are used
as subword units then each lexical unit li represents a
grapheme or a polygrapheme.

Eq. (5) arises from the HMM and language model
assumptions. The two HMM assumptions are: (1) the out-
put observation at time t is dependent only on the current
state and (2) the first order Markov assumption which
states that the current state is dependent only on the previ-

ous state. If lj is the last lexical unit of a word and li is the
first lexical unit of the next word then

P ðqt ¼ lijqt�1 ¼ lj;HÞ is the language model probability
otherwise it is the HMM state transition probability. Eq.
(6) is the result of log transformation of Eq. (5). Usually,

pðxtjqt ¼ li;HAÞ is referred to as the local emission score

and P ðqt ¼ lijqt�1 ¼ lj;HAÞ is referred to as the transition

score. The present paper deals only with the issues related
to the estimation of the local emission score.
2.2. Framework of probabilistic lexical modeling

The local emission score pðxtjqt ¼ li;HAÞ or the relation-
ship between the acoustic feature observation xt and the
lexical unit li can be factored through a latent variable ad

as following:

pðxtjqt¼ li;HAÞ¼
XD

d¼1

pðxt;ad jqt¼ li;HAÞ ð7Þ

¼
XD

d¼1

pðxtjad ;qt¼ li;ha;hlÞ �P ðad jqt¼ li;hlÞ ð8Þ

¼
XD

d¼1

pðxtjad ;haÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
acoustic model

�P ðad jqt¼ li;hlÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
lexical model

ð9Þ
We refer to the latent variable ad as the acoustic unit and
the set of acoustic units A ¼ fa1; . . . ad ; . . . aDg where D is
the total number of acoustic units. The relationship in
Eq. (9) is a result of the assumption that given

ad ; pðxtjad ; qt ¼ li; ha; hlÞ is independent of li. In Eq. (9),

pðxtjad ; haÞ is the acoustic unit likelihood, and P ðad jli; hlÞ
is the probability of the acoustic unit given the lexical unit
and is given by the lexical model. In this paper, we refer to

pðxtjad ; haÞ as the acoustic model evidence and P ðad jli; hlÞ
as the lexical model evidence. The parameters of the acous-
tic likelihood estimator HA now encompass the acoustic

model (ha), the pronunciation lexicon (hpr) and the lexical

model (hl) parameters, therefore, HA ¼ fha; hpr; hlg.
The graphical model representation of a system based

on Eqs. (6) and (10) for the word sequence “IS IT” is illus-
trated in Fig. 1. In the figure, I and F refer to the non-emit-
ting initial and final HMM states. The figure shows that the
sequence of words constrained by the language model is
represented by a sequence of lexical units ðlih lz lih ltÞ as
given by the pronunciation lexicon. For each lexical unit
li, the lexical model computes a D dimensional categorical
variable yi ¼ y1

i ; . . . ; yd
i ; . . . ; yD

i

� �T
; yd

i ¼ P ðad jli; hlÞ that
models a probabilistic relationship between a lexical unit
li and D acoustic units. Given the acoustic feature observa-
tion xt at time t, the acoustic model computes an acoustic
unit likelihood vector vt ¼ v1

t ; . . . ; vd
t ; . . . ; vD

t

� �T
where

vd
t ¼ pðxtjad ; haÞ. Having defined yi and vt, Eq. (9) can be

written as the following:

pðxtjqt ¼ li;HAÞ ¼ yT
i vt ð10Þ

Eq. (10) can be seen as a match between the acoustic and
lexical model evidence, which in this case turns out to be
the scalar product of yi and vt.
2.3. Deterministic lexical model based ASR

Standard HMM-based ASR systems, for various rea-
sons as elucidated shortly in the following subsections,
implicitly model the dependency between acoustic feature



Fig. 2. The graphical model representation of a deterministic lexical
model based ASR system.
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observation xt and a lexical unit li through the latent vari-
able or the acoustic unit ad . However, in standard HMM-
based ASR systems each lexical unit li is deterministically
mapped to an acoustic unit ajðli # ajÞ, i.e., the lexical
model is deterministic,

yd
i ¼ P ðad jqt ¼ li; hlÞ ¼

1; if d ¼ j;

0; otherwise:

�
ð11Þ

The graphical model representation of an ASR system
at time frame t in which the lexical model is deterministic
is illustrated in Fig. 2. A lexical unit is given deterministi-
cally by the current word and its subword units. The lexical
unit is mapped to an acoustic unit and the acoustic feature
observation is conditioned on the acoustic unit.

It is worth mentioning that in HMM-based ASR litera-
ture, due to this deterministic relationship, typically no dis-
tinction is made between the acoustic and lexical units, or
the acoustic and lexical models. Our main reason to refer
to the lexical and acoustic units, or the acoustic and lexical
models distinctly here is to bring out the contributions of
the present paper clearly.
2.3.1. Lexical and acoustic units

Depending on the subword context modeled, there are
two types of ASR systems: (1) context-independent sub-
word unit based ASR systems, where lexical units are con-
text-independent subword units, and (2) context-dependent
subword unit based ASR systems, where the lexical units
are context-dependent subword units.

In the case of context-independent subword unit based
ASR systems, the acoustic unit set A is knowledge driven
and defined based on the pronunciation lexicon. The num-
ber of acoustic units D ¼ K �M , where K is the number of
context-independent subword units in the lexicon and M is
the number of HMM states for each context-independent
subword unit, typically, M ¼ 3.

In the case of context-dependent subword unit based
ASR systems, the number of lexical units I ¼ M � Kcrþclþ1

where cl is the preceding context length, cr is the following
context length. Generally, not all context-dependent sub-
word units will appear sufficiently often in the training
data. Hence a sharing approach is used to enable multiple
lexical units to share an acoustic model. This is done using
a decision-tree based state clustering and tying technique
that uses a pronunciation lexicon, linguistic knowledge to
prepare a phonetic question set and acoustic data (Young
et al., 1994). The number of acoustic units D varies
depending on hyper parameters such as the state
occupancy count and the log-likelihood threshold that
are used during decision-tree based state clustering. How-
ever, the number of acoustic units D is well below the num-
ber of lexical units I.

2.3.2. Acoustic modeling

The two main approaches used in the literature to model
the acoustic units are Gaussian mixture models (GMMs)
and artificial neural networks (ANNs). The resulting
ASR systems are usually referred to as HMM/GMM
(Rabiner, 1989) and hybrid HMM/ANN (Morgan and
Bourlard, 1995) systems, respectively.

1. In the HMM/GMM approach, the acoustic score
pðxtjad ; haÞ is estimated given a mixture of Gaussians
that model an acoustic unit ad . The acoustic model
parameter set ha consists of the set of acoustic units A
and the GMM parameters of the acoustic units.

2. In the hybrid HMM/ANN approach, an artificial neural
network is first trained to estimate P ðad jxt; haÞ and then
the scaled-likelihood pslðxtjad ; haÞ is estimated as

pslðxtjad ; haÞ ¼
pðxtjad ; haÞ

pðxtÞ
¼ P ðad jxt; haÞ

PðadÞ ð12Þ

P ðadÞ is estimated on the training dataset through count-
ing. The acoustic model parameter set ha consists of the
set of acoustic units A, ANN parameters i.e., weights
and biases, and priors fP ðadÞgD

d¼1.

2.3.3. Deterministic lexical modeling

In context-independent subword unit based ASR sys-
tems, the deterministic relationship between lexical and
acoustic units is knowledge driven. Therefore, lexical
model training is not involved, and the deterministic map
between lexical and acoustic units is the lexical model.
The GMMs in the case of the HMM/GMM approach or
the ANN in the case of the hybrid HMM/ANN approach
is the acoustic model.

In context-dependent subword unit based ASR systems,
lexical units are context-dependent subword units whereas
acoustic units are clustered context-dependent subword
units. As mentioned in Section 2.3.1, the decision trees
and the phonetic question set are used to deterministically
relate a lexical unit to an acoustic unit. Therefore, in con-
text-dependent subword unit based HMM/GMM systems,
the decision trees are the lexical model and the GMMs are
the acoustic model. Similarly, in the case of hybrid HMM/
ANN systems, decision trees are the lexical model and the
ANN is the acoustic model (Dahl et al., 2012; Hinton et al.,
2012).
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3. Implications of deterministic lexical modeling

As described in the previous section, in standard HMM-
based ASR systems the lexical model is deterministic and
the pronunciation lexicon (hpr) determines the lexical unit
set L and the acoustic unit set A. As a consequence:

� If L is based on phone subword units or grapheme sub-
word units then A is also based on phones or graph-
emes, respectively.
� If L is based on context-independent subword units or

context-dependent subword units then A is also based
on context-independent subword units or context-
dependent subword units, respectively.

The performance of deterministic lexical model based
ASR systems is dependent on the accuracy of the determin-
istic mapping which is in turn determined by the availabil-
ity of well-developed resources. More specifically,
deterministic lexical modeling imposes the following three
constraints:

1. The availability of sufficient and well developed acoustic
data in the target language or domain to effectively train
both an acoustic model and a lexical model.

2. The availability of a well developed phonetic lexicon, as
most of the ASR systems use phones as lexical units.

3. The ASR system trained with one phone set cannot be
directly ported to or used as it is for a new domain which
has a lexicon based on a different phone set. For a lan-
guage, it can happen that there are different phonetic
lexicons based on different phone sets. For instance, in
English there are phonetic lexicons based on ARP-
ABET, CMUBET, SAMPA, etc.

Unfortunately, many languages do not have well-devel-
oped acoustic and lexical resources (Besacier et al., 2014).
In the following subsections, we provide a literature survey
on how the resource constraints have been addressed in the
framework of deterministic lexical modeling.

3.1. Lack of acoustic resources

In the literature, the lack of acoustic resources has been
typically addressed through approaches that exploit multi-
lingual or crosslingual acoustic and lexical resources
(Kohler, 1998; Beyerlein et al., 2000; Schultz and Waibel,
2001; Le and Besacier, 2009; Burget et al., 2010). The first
step in most of these approaches is the definition of a com-
mon or universal phone set across all out-of-domain lan-
guages and the target language. This step ensures that the
phone sets match across languages, thus addressing the
third constraint mentioned above. The common or univer-
sal phone set can be defined either in a knowledge-based
manner (Kohler, 1998; Beyerlein et al., 2000; Schultz and
Waibel, 2001; Le and Besacier, 2009) or in a data-driven
manner (Sim and Li, 2008; Sim, 2009). Multilingual acous-
tic models are first trained on the language-independent
data and then adapted on the target language data.

In the framework of HMM/GMM systems, multilingual
acoustic models or the GMMs serve as the seed models to
be adapted on the target language data using techniques
such as maximum a posteriori adaptation (MAP), maxi-
mum likelihood linear regression (MLLR) and subspace
Gaussian mixture models (SGMM). The out-of-domain
lexical model or the decision trees are either retained
(Kohler, 1998; Beyerlein et al., 2000; Le and Besacier,
2009) or redefined using target language data (Schultz
and Waibel, 2001; Burget et al., 2010). In the framework
of hybrid HMM/ANN systems, the multilingual ANN
can be used for the target language local emission score
estimation after phone set mapping (Sim and Li, 2008;
Sim, 2009). Other possibilities are training a hierarchical
neural network (Pinto et al., 2011), adapting the multilin-
gual ANN or the last layer of the multilingual ANN on
the target language data (Swietojanski et al., 2012;
Ghoshal et al., 2013; Huang et al., 2013), etc.

Alternatively, in the case of tandem approaches, the
multilingual ANN is used to generate data-driven bottle-
neck or tandem features for the target language. These
data-driven features are used to train an HMM/GMM sys-
tem for the target language (Stolcke et al., 2006; Thomas
and Hermansky, 2010; Thomas and Ganapathy, 2012).
To fit the target language better, the multilingual ANN is
sometimes adapted on the target language data with
(Thomas and Hermansky, 2010) or without (Thomas and
Ganapathy, 2012; Swietojanski et al., 2012) phone set map-
ping. However, in the tandem approach, as the acoustic
and lexical models are trained on the target language data,
minimal resources from the target language are necessary
to robustly estimate the parameters.

3.2. Lack of lexical resources

In practice, phone-based ASR system development can
be seen as a two stage process: development of pronuncia-
tion lexicon followed by ASR system training. Pronuncia-
tion lexicon development is a semi-automatic process.
Usually, given an existing manually developed or verified
lexicon, a grapheme-to-phoneme (G2P) converter is trained
to extract pronunciations for new words or to add pronun-
ciation variants (Bisani and Ney, 2008; Novak, 2011). The
augmented lexicon is then used to build an ASR system.
However, for some languages, a seed lexicon may not be
available to train a G2P convertor. Therefore, alternate
subword units like graphemes, which make lexicon devel-
opment easy, have been explored in the literature
(Schukat-Talamazzini et al., 1993; Kanthak and Ney,
2002; Killer et al., 2003; Dines and Magimai-Doss, 2007;
Ko and Mak, 2014).

The success of grapheme-based ASR systems primarily
depends on the G2P relationship of the language. The rea-
son for this is as follows: It can be seen in Eq. (9) that the
acoustic model score pðxtjad ; haÞ models the dependency
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between the acoustic feature observation xt and the acoustic
unit ad . As discussed in this section, due to the deterministic
lexical modeling in standard HMM-based ASR systems,
both the acoustic and lexical units are based on graphemes.
However, the acoustic feature observations, or the cepstral
features, depict the envelope of the short-term spectrum.
The envelope of the short-term spectrum is related to
phones. As a result, the more regular the G2P relationship
is, the better is the acoustic model. Therefore, the use of
graphemes as subword units has mainly succeeded for lan-
guages such as Spanish and Finnish where the G2P relation-
ship is regular (Kanthak and Ney, 2002; Killer et al., 2003;
Ko and Mak, 2014). For languages such as English which
have an irregular G2P relationship, it has been found that
grapheme-based ASR systems perform worse compared
to phone-based systems (Schukat-Talamazzini et al., 1993;
Kanthak and Ney, 2002; Killer et al., 2003; Dines and
Magimai-Doss, 2007; Ko and Mak, 2014).
3.3. Lack of acoustic and lexical resources

When the language lacks both acoustic and phone lexi-
cal resources, multilingual and crosslingual grapheme-
based approaches that can leverage from acoustic resources
available in other languages have been explored (Kanthak
and Ney, 2003; Stüker, 2008b,a). Similar to multilingual
phone subword modeling, multilingual grapheme subword
modeling is based on the universal or multilingual grapheme
set formed by merging graphemes that are common across
different languages. However, unlike multilingual phone
sets, it is not trivial to port multilingual grapheme sets to
new languages, mainly for two reasons: Firstly, grapheme
sets of languages may not match or overlap. To overcome
this issue, either transliteration or data driven mapping has
been employed (Stüker, 2008a). Secondly, sharing of
acoustic models of grapheme subword units across lan-
guages is not evident, since the relationship between graph-
emes and phones may differ considerably across languages.
Investigations until now have shown that multilingual
grapheme-based ASR systems generally perform worse
compared to monolingual grapheme-based ASR systems.
This is unlike phone subword units where it has been
shown that multilingual acoustic models can outperform
monolingual acoustic models.
4. Probabilistic lexical modeling

The two conditions, namely, 0 < P ðad jli; hlÞ < 1 andPD
d¼1P ðad jli; hlÞ ¼ 1, in Eq. (9) characterize an ASR

approach where each lexical unit is probabilistically related
to all acoustic units. We refer to them as probabilistic lex-
ical model based ASR systems.

The probabilistic lexical modeling approaches presented
in this paper presume that an acoustic unit set A is defined
and a trained acoustic model is available. Therefore, in the
first step, a standard HMM-based ASR system i.e., either
an HMM/GMM system or a hybrid HMM/ANN system
is trained. The acoustic model is the GMMs in the case
of HMM/GMM or the ANN in the case of hybrid
HMM/ANN. In the second step, the acoustic model from
the first step is used with the pronunciation lexicon and
acoustic training data to train the parameters of the prob-
abilistic lexical model. More specifically, the parameters of
the probabilistic lexical model are learned by training an
HMM, whose states represent lexical units and each state

li is parameterized by a categorical distribution yi. In this
case, the lexical model parameter set consists of

hl ¼ fyig
I
i¼1. We present these techniques from the perspec-

tive of the hybrid HMM/ANN. That is, in this paper we
use an ANN as the acoustic model.

4.1. Kullback–Leibler divergence based HMM

In the first approach, lexical model parameters are
learned through acoustic unit posterior probability esti-
mates P ðad jxt; haÞ in the framework of Kullback–Leibler
divergence based HMM (KL-HMM) (Aradilla et al.,
2008). The feature observations used to train the HMM
are the acoustic unit probability vectors
zt ¼ z1

t . . . ; zd
t ; . . . ; zD

t

� �T
where zd

t ¼ P ðad jxt; haÞ. It is worth
mentioning that KL-HMM was originally developed as
an alternative acoustic modeling technique (Aradilla
et al., 2008) to the Tandem approach (Hermansky et al.,
2000). However, as shown recently and briefly explained
in this section, KL-HMM is a probabilistic modeling
approach (Rasipuram and Magimai-Doss, 2013b,a). In this
paper, we explain and interpret all the literature on KL-
HMM in terms of probabilistic lexical modeling.

In a KL-HMM, as both the feature observations and the
state distributions are probability vectors, the local score or
the match between acoustic and lexical model evidence at
each HMM state can be the Kullback–Leibler (KL) diver-
gence between the feature observation zd

t and the categori-
cal distribution yi,

SKLðyi; ztÞ ¼
XD

d¼1

yd
i log

yd
i

zd
t

� �
ð13Þ

The above equation represents the case where yi is the ref-
erence distribution and the local score is denoted as SKL.
KL-divergence being an asymmetric measure, there are
other possible ways to estimate the KL-divergence:

1. Reverse KL-divergence (SRKL): In this case the acoustic
unit probability vector zt is the reference distribution

SRKLðyi; ztÞ ¼
XD

d¼1

zd
t log

zd
t

yd
i

� �
ð14Þ

2. Symmetric KL-divergence (SSKL): The local score SSKL is
the average of the local scores SKL and SRKL.

SSKLðyi; ztÞ ¼
1

2
� ½SKL þ SRKL� ð15Þ
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The categorical distributions fyig
I
i¼1 are estimated by the

Viterbi expectation maximization (EM) algorithm which
minimizes a cost function based on the local score SKL or
SRKL or SSKL. Finally, the decoding is performed by replac-
ing the log-likelihood based score in the standard Viterbi
decoder with a KL-divergence based local score.

4.2. Tied posterior

In the second approach, lexical model parameters are
learned through scaled-likelihood estimates pslðxtjad ; haÞ
(see Eq. (12)). The approach, referred to as the tied-poster-
ior approach, was originally proposed in the framework of
hybrid HMM/ANN to build context-dependent subword
unit based ASR systems using an ANN trained to classify
context-independent subword units (Rottland and Rigoll,
2000).

In the tied-posterior based HMM (tied-HMM)
approach, the emission likelihood at each context-depen-
dent HMM state qt ¼ li

cd is estimated as,

pðxtjqt ¼ li
cdÞ ¼

XD

d¼1

wd
i � pslðxtjad

ciÞ ð16Þ

where ad
ci is a context-independent phone, D is the number

of context-independent phones, pslðxtjad
ciÞ is the scale-likeli-

hood, 0 6 wd
i 6 1 is the weight corresponding to the con-

text-dependent phone li
cd and

PD
d¼1wd

i ¼ 1. The weights
wd

i are estimated by maximizing the log-likelihood using
the EM algorithm. Comparison between Eqs. (16) and
(9) shows that li

cd corresponds to the lexical unit li; ad
ci cor-

responds to the acoustic unit ad and wd
i corresponds to

yd
i ¼ Pðad jli; hlÞ. In other words, the tied-HMM approach

is an HMM-based ASR approach that incorporates prob-
abilistic lexical modeling.

The tied-HMM approach can be interpreted along lines
similar to those of the KL-HMM approach where the
states of the HMM are parameterized by yi. However,
the feature observations used to train the HMM in the
tied-HMM approach are acoustic unit likelihood vectors

vt ¼ v1
t . . . ; vd

t ; . . . ; vD
t

� �T
where vd

t ¼ pslðxtjad ; haÞ, and the

local score is

Stiedðyi; vtÞ ¼ log
XD

d¼1

yd
i :v

d
t

 !
¼ log yT

i vt

� 	
ð17Þ

Similar to the KL-HMM approach, the parameters fyig
I
i¼1

can be estimated using the embedded Viterbi training algo-
rithm, and the decoding can be performed by replacing the
log-likelihood based score in the standard Viterbi decoder
with the local score Stiedðyi; vtÞ.

4.3. Scalar product HMM

In the KL-HMM approach, the local score is based on
KL-divergence. However, two posterior probability distri-
butions can be compared with different cost functions such
as scalar product or Bhattacharya distance (Soldo et al.,
2011). It is possible to envisage an HMM where the local
score is based on the scalar product, i.e.,

SSP ðyi; ztÞ ¼ log yT
i zt

� 	
ð18Þ

We refer to this approach as the scalar product HMM (SP-
HMM). Again, fyig

I
i¼1 can be estimated using the embed-

ded Viterbi training algorithm, and the decoding can be
performed by replacing the log-likelihood based score in
the standard Viterbi decoder with SSP ðyi; vtÞ.

The SP-HMM is of particular interest here for the fol-
lowing two reasons:

1. It can be seen as a particular case of the tied-HMM
approach where the priors in the scaled-likelihood esti-
mation are dropped or assumed to be equal.

2. SP-HMM and KL-HMM differ only in terms of the cost
function used for parameter estimation and the local
score used for decoding.

Parameter estimation for the KL-HMM, tied-HMM
and SP-HMM approaches is elaborated in Appendix A.
More details about the parameter estimation for the KL-
HMM approach can be found in the thesis by Aradilla
(2008). An issue that is common to all probabilistic lexical
modeling approaches discussed in this section is the robust
estimation of fyig

I
i¼1, especially when the lexical units rep-

resent context-dependent subword units. This can be
addressed by clustering and tying the HMM states of the
KL-HMM, tied-HMM or SP-HMM systems using the
approach proposed by Imseng et al., 2012.
4.4. Similarities and dissimilarities between KL-HMM,

Tied-HMM and SP-HMM

In the three probabilistic lexical modeling approaches
discussed, the local score estimation at time frame t can
be seen as a match between “bottom-up” acoustic informa-
tion zt or vt and “top-down” lexical information yi, as
shown in Fig. 1. Yet another similarity between the three
approaches is that they reduce to the standard hybrid
HMM/ANN system described in Section 2 when the lexical
model is deterministic, i.e., yi is a Kronecker delta function.
Despite these similarities, the KL-HMM approach has
additional advantages compared to the tied-HMM and
SP-HMM approaches. We discuss them briefly in this
section.

From the communication theory perspective, the stan-
dard HMM-based ASR approach can be seen as a commu-
nication problem where the noisy output of the acoustic
channel is decoded by a linguistic decoder (Bahl et al.,
1983). That is, a sequence of acoustic unit likelihood vec-
tors fv1; . . . ; vTg or a sequence of acoustic unit posterior
vectors fz1; . . . ; zTg is compared with possible sequences
of lexical model parameter vectors (for example,
fyi; . . . ygg where i; g 2 f1; . . . ; Ig) with lexical transition
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constraints Pðqt ¼ lijqt�1 ¼ ljÞ. Thus, standard HMM-
based ASR inherently gives more importance to the lexical
model and consequently relies on the purity or correctness
of the lexical knowledge imparted into the system. This
aspect has particularly been observed in the case of pro-
nunciation variation modeling of conversational speech
where one of the best approaches is to add pronunciation
variants, i.e., improve the deterministic lexical model
(Strik and Cucchiarini, 1999).

The KL-HMM approach using the local score SKLðyi; ztÞ
where yi is the reference distribution reflects the HMM-
based ASR. More specifically,

SKLðyi; ztÞ ¼
XD

d¼1

yd
i log

yd
i

zd
t

� �

¼
XD

d¼1

yd
i log yd

i �
XD

d¼1

yd
i log zd

t ð19Þ

The first part of Eq. (19) which is the entropy of the prob-
ability distribution yi takes into account the uncertainty in
the lexical model. The second part or the cross entropy
compares the acoustic model against the lexical model. It
is trivial to see the point made above about the purity of
lexical knowledge by turning yi into a Kronecker delta dis-
tribution, i.e., a deterministic lexical model. In such a case,
the hybrid HMM/ANN approach (Bourlard and Morgan,
1994) can be seen as a special case of the KL-HMM
approach when the acoustic unit probability estimate
P ðqt ¼ ad jxt; haÞ rather than the acoustic unit likelihood
estimate pslðxtjqt ¼ ad ; haÞ is used as the local emission
score.

However, the KL-HMM approach is capable of revers-
ing the importance given to the acoustic and lexical models
by changing the local score to SRKLðyi; ztÞ.

SRKLðyi; ztÞ ¼
XD

d¼1

zd
t log

zd
t

yd
i

� �

¼
XD

d¼1

zd
t log zd

t �
XD

d¼1

zd
t log yd

i ð20Þ

It can be observed from Eq. (20) that the first quantity, the
entropy of probability distribution zt, is independent of the
lexical unit. The matching only takes place with the
second quantity which is the cross entropy between distri-
butions zt and yi, with zt as the reference. The local score
SSKLðyi; ztÞ gives equal importance to the acoustic and lexi-
cal models.

Another difference between the KL-HMM and tied-
HMM/SP-HMM approaches is that the KL-divergence
based local scores can be linked to hypothesis testing
(Blahut, 1974). The acoustic model evidence and lexical
model evidence is matched discriminatively irrespective of
the local score used. We use these distinctions to better
explain our findings in Section 6.

The above differences among different KL-divergence
based local scores are from the decoding perspective. The
details on the role of different cost functions from the train-
ing perspective were presented by Rasipuram and
Magimai-Doss (2013b).
4.5. Potential of probabilistic lexical modeling

In the case of probabilistic lexical modeling, each lexical
unit li is related to all acoustic units fadgD

d¼1 in a probabi-
listic manner. As a consequence probabilistic lexical model
based ASR systems have the following advantages:

1. The parameters of the acoustic model ha and the lexical
model hl can be trained on an independent set of
resources. In this light, previous work on KL-HMM
suggests that ASR systems can be rapidly developed
using a domain-independent or language-independent
acoustic model and by training only the lexical model
on the target language or domain data (Imseng et al.,
2011; Imseng et al., 2012; Rasipuram et al., 2013a).

2. L and A can model different contextual units. For
instance, as in the previous work, L can be based on
context-dependent subword units while A can be based
on context-independent subword units (Rottland and
Rigoll, 2000; Magimai-Doss et al., 2011; Imseng et al.,
2011; Imseng et al., 2012; Rasipuram et al., 2013a).
These ASR systems have been found to yield perfor-
mance comparable to or better than standard context-
dependent subword unit based HMM/GMM systems.

3. It is not necessary that the subword unit set used for
defining the acoustic units should be the same as the
subword unit set used for defining the lexical units.
The lexical model can capture the relationship between
the distinct subword unit sets through acoustics. This
flexibility has been exploited to build ASR systems
where the acoustic unit set is based on phones and the
lexical unit set is based on graphemes (Magimai-Doss
et al., 2011; Imseng et al., 2011; Rasipuram et al.,
2013a; Rasipuram and Magimai-Doss, 2013a).
4.6. Proposed grapheme-based ASR approach

In this paper, we propose a grapheme-based ASR
approach where,

� First, an acoustic model that models multilingual
phones is trained on language-independent acoustic
and lexical resources.
� Then, the lexical model which captures a probabilistic

relationship between target language graphemes and
multilingual phones is trained on a relatively small
amount of target language-dependent acoustic data.

The proposed approach is motivated from the following
observations:
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1. Multilingual phone-based acoustic models are sharable
across languages. As discussed in Section 3.1, many
acoustic model adaptation approaches addressing
acoustic resource constraints in ASR system develop-
ment exploit this aspect.

2. As mentioned in Section 4.5, when the acoustic units are
based on phones and the lexical units are based on
graphemes, probabilistic lexical modeling techniques
such as KL-HMM are capable of learning a probabilis-
tic G2P relationship. In a cross-domain English ASR
study, it was observed that this aspect can be exploited
to build grapheme-based ASR systems (Magimai-Doss
et al., 2011; Rasipuram and Magimai-Doss, 2013b;
Rasipuram, 2014). These grapheme-based ASR systems
performed similarly to phone-based ASR systems,
where the target domain phone lexicon is built by train-
ing a G2P converter on a cross-domain phone lexicon.
This suggests that probabilistic lexical modeling
approaches with lexical units based on graphemes and
acoustic units based on phones could address lexical
resource constraints by integrating lexicon learning as
a phase in training the ASR system.

3. The probabilistic G2P relationship could be learned on a
relatively small amount of target-domain transcribed
speech (Imseng et al., 2011). Further, such a graph-
eme-based ASR system performed better than conven-
tional phone-based acoustic model adaptation systems.

Given these observations, we hypothesize that the pro-
posed grapheme-based ASR approach can address both
acoustic and lexical resource constraints better than acous-
tic model adaptation based approaches developed in the
framework of deterministic lexical modeling.

5. Experimental setup

The hypothesis is validated by training a single lan-
guage-independent multilingual acoustic model and con-
ducting ASR studies on the following three different
resource-constrained tasks where only a lexical model is
trained:

� Non-native accented speech recognition task that lacks
both acoustic and “well developed” phonetic lexical
resources. Typically, the phone lexicon consists native
speaker pronunciations. In the literature, non-native
accented ASR research has mainly focused on acoustic
model adaptation. We investigate it on English where
the G2P relationship is irregular.
� Rapid development of an ASR system for a new lan-

guage that is not present in language-independent data
using minimal acoustic and lexical resources. We dem-
onstrate this aspect on a Greek ASR task.
� Development of an ASR system for a minority and

under-resourced language, Scottish Gaelic, which has
only 60,000 speakers. The endangered status of Scottish
Gaelic makes low-cost speech technology important for
language conservation efforts. Scottish Gaelic also lacks
sufficient acoustic resources and does not have any pho-
netic lexical resources. The G2P relationship of Scottish
Gaelic is regular, and many-to-one as the number of
graphemes in a word is significantly higher than the
number of phones (Rasipuram et al., 2013a).

We compare the probabilistic lexical modeling based
ASR approaches described in Section 4 with standard
HMM-based systems with different capabilities. Table 1
provides an overview of the systems that are investigated.
The non-native and minority language ASR studies build
on top of our preliminary investigations that focussed on
the KL-HMM approach and the use of word-internal con-
text-dependent subword units (Imseng et al., 2011;
Rasipuram et al., 2013a).

5.1. Databases and setup

In this section, we describe the different databases and
the setup of the systems used.

5.1.1. Language-independent dataset
A part of the SpeechDat(II) corpus, specifically, British

English, Italian, Spanish, Swiss French and Swiss German,
is used as the language-independent dataset. Each language
has approximately 12 h of speech data, in total amounting
to 63 h. All the SpeechDat(II) lexica use SAMPA symbols.
A multilingual phone set of 117 units obtained by merging
phones that share the same symbols across the above men-
tioned five languages serves as the acoustic or the subword
unit set.

5.1.2. Non-native HIWIRE

The HIWIRE corpus contains English utterances spo-
ken by natives of France (31 speakers), Greece (20 speak-
ers), Italy (20 speakers) and Spain (10 speakers) (Segura
et al., 2007). The utterances contain spoken pilot orders
made of 133 words. The database provides a grammar with
a perplexity of 14.9. The HIWIRE task does not have
training data. It only contains adaptation data of 50 utter-
ances per speaker, approximately 150 min and test data of
50 utterances per speaker, approximately 150 min. To sim-
ulate limited resources the amount of adaptation data is
reduced from 150 to 3 min (specifically, 150, 120, 90, 64,
32, 16, 10 and 3 min respectively) by picking various sub-
sets of utterances (Imseng et al., 2011). The grapheme-
based lexicon was transcribed using 27 graphemes compris-
ing 26 English graphemes and silence.

A noticeable difference between the work of Imseng
et al. (2011) and this paper is the following: In the previous
work a phone-lexicon based on the ARPABET phone set
supplied with the HIWIRE corpus was used, whereas in
this work we use a phone-lexicon based on the SAMPA
phone set. The phone-lexicon based on the SAMPA phone
set was created by borrowing pronunciations of 102 words
that are in common from the SpeechDat(II) English lexi-



Table 1
Overview of different systems. CI denotes context-independent subword units, cCD denotes clustered context-dependent subword states and CD denotes
context-dependent subword units. LI denotes language-independent data is used to train or adapt the model, LD denotes language-dependent data is used
to train or adapt the model and LI + LD denotes both language-independent and language-dependent data is used to train the model. In tandem, the
ANN trained to classify context-independent acoustic units is used to extract features for HMM/GMM system. This is indicated through (CI+), (ANN+)
and (LI+) notation. Det denotes lexical model is deterministic and Prob denotes lexical model is probabilistic.

System Acoustic model Lexical model

Acoustic units Approach Train/adapt Lexical units Approach Train/adapt

KL-HMM CI ANN LI CD Prob LD
SP-HMM CI ANN LI CD Prob LD
Tied-HMM CI ANN LI CD Prob LD

Tandem (CI+) cCD (ANN+) GMM (LI+) LD CD Det LD

MAP cCD GMM LI + LD CD Det LI
MLLR cCD GMM LI + LD CD Det LI

HMM/GMM cCD GMM LD CD Det LD
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con. For the remaining 31 words, we obtained pronuncia-
tions by mapping ARPABET phones to SAMPA phones.
The main reason to use the SAMPA phone set based lexi-
con in this work is to have a shared subword unit set
between the out-of-domain lexicon and the target-domain
lexicon. This allowed the evaluation of acoustic model
adaptation based systems (MAP and MLLR) discussed
in Section 5.2.2. Also, native English is present in out-of-
domain resources. Therefore, in the case of the KL-
HMM, SP-HMM and tied-HMM approaches, the lexical
model parameters trained on SpeechDat(II) English are
adapted using the HIWIRE adaptation data. Additionally,
the use of phone-lexicon based on the SAMPA phone
set allowed us to investigate the case where no lexical
model or acoustic model adaptation is performed.
1 http://forum.idea.ed.ac.uk/idea/gaelic-speech-recognition-and-scots-
gaelic-sound-archive.

2 The Centre for Speech Technology Research (CSTR).
5.1.3. Greek SpeechDat(II)

The experimental setup is based on that of Imseng et al.
(2012). The training set contains 13.5 h of speech from
1500 speakers; the development set contains 1.5 h of speech
from 150 speakers; and the test set contains 6.9 h of speech
from 350 speakers. Two optimistic language models, one
from the sentences in the development set and other from
the sentences in the test set are built. The phone lexicon is
transcribed in the SAMPA phone set. To simulate limited
resources, the amount of available data was reduced from
13.5 h down to 5 min (specifically, 800, 300, 150, 75, 37,
18, 9 and 5 min respectively). All the systems were evaluated
on the same test set. The test set contains 10,000 unique
words. The performance of the phone-based KL-HMM,
MAP, MLLR and HMM/GMM systems presented by
Imseng (2013) [Figs. 4.3 and 4.4] is taken as the reference
in this paper.

As this study focusses on grapheme-based ASR systems,
a grapheme lexicon was developed using 25 graphemes
comprising 24 Greek graphemes and silence. The acoustic
model adaptation systems impose the constraint that sub-
word unit sets of the language-independent data and the
target language data match. As Greek graphemes are dif-
ferent from Roman graphemes, grapheme-based acoustic
model adaptation systems described in Section 5.2.2 were
not directly applicable to the Greek ASR task. This neces-
sitated transliteration of Greek graphemes in terms of Eng-
lish or Roman graphemes, as given by Rasipuram et al.
(2013b) [Table 1].

5.1.4. Scottish Gaelic

The Scottish Gaelic speech corpus1 was collected by
CSTR,2 University of Edinburgh. The experimental setup
is similar to that of Rasipuram et al. (2013a). The Gaelic cor-
pus consists of speech from 46 speakers. The training set con-
sists of 22 speakers and 2389 utterances amounting to 3 h of
speech; the development set consists of 12 speakers and 1112
utterances amounting to 1 h of speech; and the test set con-
sists of 12 speakers and 1317 utterances amounting to 1 h of
speech. The speakers in the training, development and test
sets are different. The vocabulary size is 5000 unique words.
The database does not contain a phone pronunciation lexi-
con. The grapheme-based lexicon contains 83 graphemes
comprising 5 vowels, 5 long vowels, 23 broad consonants,
23 slender consonants, 26 consonants and silence. This
grapheme lexicon is obtained by considering broad and slen-
der Gaelic consonants as separate graphemes. We refer to
this lexicon as the knowledge-based grapheme lexicon.

In this study, we also investigate a grapheme lexicon
that does not use any knowledge, such as broad and slen-
der consonants. We refer to it as the orthography-based lex-
icon. This lexicon is prepared in the traditional way from
the orthography of words. The orthography-based lexicon
consists of 32 Gaelic graphemes comprising 25 graphemes,
5 accents and silence.

Table 2 summarizes the information about the different
corpora used.

5.2. Systems

In this section, we provide details about the different sys-
tems given in Table 1 by grouping them into three
categories.

http://forum.idea.ed.ac.uk/idea/gaelic-speech-recognition-and-scots-gaelic-sound-archive
http://forum.idea.ed.ac.uk/idea/gaelic-speech-recognition-and-scots-gaelic-sound-archive


Table 2
Overview of the tasks and the respective corpora used in the study. The details of the data used to train the multilingual acoustic model are given in italic
font.

Corpus (Description) Language # of Subword units Train data Test data

Phones Graphemes (in min) (in min)

SpeechDat(II)
(Native speech sampled at 8 K)

English 45 27 744 n.a
French 42 43 810 n.a
German 59 42 846 n.a
Italian 52 34 690 n.a
Spanish 32 34 690 n.a

(Data used to train the multilingual acoustic model) 117 47 3780 n.a

HIWIRE English 42 27 0–150 150
(Non-native speech from natives of France, Spain, Italy and Greece)

SpeechDat(II) Greek 31 25 5–800 360
(Native Greek speech)

Scottish Gaelic Scottish n.a. 83 or 32 180 60
(Broadcast news data) Gaelic
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5.2.1. Probabilistic lexical modeling based systems

As an acoustic model, we use a standard three-layer
multilingual multilayer perceptron (MLP) trained on the
language-independent dataset to classify 117 context-inde-
pendent multilingual phones. More recently, MLPs with
deep architectures classifying context-dependent clustered
phone units have gained lot of attention (Hinton et al.,
2012). In the present work, we use the three-layer MLP
for the following reasons:

� The same MLP has been used in the previous ASR stud-
ies on the HIWIRE and Greek tasks (Imseng et al.,
2011; Imseng et al., 2012). Therefore, the results from
the present study are directly comparable to the previous
studies.
� In recent work, it has been shown that the KL-HMM

retains its benefit over standard hybrid HMM/ANN
systems even when an MLP that classifies clustered con-
text-dependent phone units is used (Imseng et al., 2013;
Razavi et al., 2014).

The use of deep MLP architectures and context-depen-
dent acoustic units in a probabilistic lexical modeling
framework is open for further research. A lexical model
is trained for each of the probabilistic lexical modeling sys-
tems, namely, KL-HMM, SP-HMM and tied-HMM as
described in Section 4. We used SRKL as the local score
for the KL-HMM system based on recent investigations
(Rasipuram and Magimai-Doss, 2013b; Imseng et al.,
2012; Rasipuram et al., 2013a).
We also applied MLLR and MAP in sequence (Oh and Kim, 2009).
On the Greek task, it was observed that the performance of phone-based
MLLR + MAP systems was better than that of the phone-based MAP or
MLLR systems when at least 37 min of Greek acoustic data is available.
However, such gains were not observed for grapheme-based
MLLR + MAP systems. Further, the performance of the KL-HMM
systems was always better than that of the MLLR + MAP systems.
Therefore, the results of MLLR and MAP adaptation in sequence are not
reported in the paper.
5.2.2. Acoustic model adaptation based systems

We present ASR systems based on standard MAP and
MLLR adaptation techniques. For this purpose, multilin-
gual context-dependent phone-based and grapheme-based
HMM/GMM systems were trained on the language-inde-
pendent data set. The phone-based HMM/GMM system
used multilingual phones as subword units.

All the five considered European languages use the
Roman alphabet. Therefore, a multilingual grapheme set
of 47 units was formed by merging graphemes that are
common across all languages in the language-independent
data set. Accents and diacritics are treated as separate
graphemes. The grapheme-based HMM/GMM system
used multilingual graphemes as subword units.

Each context-dependent subword unit was modeled
using three-HMM states and each HMM state was mod-
eled using a mixture of 16 Gaussians. Then, MAP or
MLLR adaptation3 was performed using speech data from
the target language or domain. For MLLR adaptation, we
used a regression class tree to group the Gaussians in the
model set into regression classes and we used up to 32
regression classes.

As described in Section 5.1.3, for the Greek task a trans-
literated grapheme-based lexicon was used while perform-
ing MAP or MLLR adaptation.
5.2.3. HMM/GMM and tandem ASR systems
These are HMM/GMM ASR systems where both the

acoustic model and the lexical model are trained on the lan-
guage-dependent data. We investigate two systems: the
HMM/GMM system that uses standard cepstral features
as feature observations, and the tandem system that uses
tandem features as feature observations (Hermansky
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et al., 2000). As indicated in Table 1, the tandem system
exploits both language-dependent and language-indepen-
dent resources similarly to probabilistic lexical model based
systems and acoustic model adaptation based systems.

The tandem features were extracted by transforming the
117-dimensional outputs of the multilingual MLP
described in Section 5.2.1, with log transformation fol-
lowed by principal component analysis. The dimensionality
of the output features is either kept the same or reduced to
39.

The HMM/GMM systems used 39-dimensional PLP
cepstral feature vectors as acoustic features. All the phone
subword based systems use a phonetic question set and
grapheme subword based systems use a singleton question
set for the decision tree state tying procedure. The number
of mixture components for each of the tasks and the train-
ing conditions were tuned on the development set. Addi-
tionally, for tandem systems, the dimensionality of the
feature observations (either 117 or 39 dimensions) was
tuned on the development set. The HTK toolkit was used
to build all the HMM/GMM systems (Young et al., 2006).
6. Results

The present section is organized as follows. First, we
present results on the rapid development of ASR systems
with both acoustic and lexical resource constraints on the
HIWIRE and Greek ASR tasks. Later, we present results
on minority language speech recognition using the Scottish
Gaelic task. The performance of all the systems is reported
in terms of word accuracy.
6.1. Rapid ASR development

Tables 3 and 4 summarize the performance in terms of
word accuracy on the HIWIRE and Greek tasks for vari-
ous amounts of language-dependent training data for the
KL-HMM, SP-HMM, tied-HMM, tandem, MAP, MLLR
and HMM/GMM systems. The results are analysed using
Figs. 3 and 4 along two aspects, namely, comparison of dif-
ferent probabilistic lexical model based systems (Section
6.1.1), and comparison of probabilistic lexical model based
Table 3
Performance in terms of word accuracy on the HIWIRE test set for the various
HIWIRE adaptation data.

System 3 min 10 min

Graph Phone Graph P

KL-HMM 90.7 93.3 94.0 9
SP-HMM 91.4 93.3 92.1 9
Tied-HMM 86.4 92.5 88.6 9

MAP 86.7 91.6 88.9 9
MLLR 86.2 92.4 87.3 9

Tandem 39.5 55.3 68.9 8

HMM/GMM 26.7 48.3 64.8 8
systems against acoustic model adaptation based systems
and standard HMM/GMM systems (Section 6.1.2).

6.1.1. Probabilistic lexical modeling based systems

Fig. 3(a) plots the performances of the phone- and
grapheme-based KL-HMM, SP-HMM and tied-HMM
systems with increasing amounts of training data on the
HIWIRE task. Similarly, Fig. 3(b) plots the performances
on the Greek ASR task with increasing amounts of training
data. The figures show that the KL-HMM system consis-
tently performs better compared to the SP-HMM and
tied-HMM systems for both phone and grapheme subword
units. Furthermore, on the HIWIRE task, the difference
between the KL-HMM system and the SP-HMM or tied-
HMM systems is more for grapheme-based systems than
for phone-based systems.

6.1.2. Comparison of probabilistic lexical modeling based

systems with other systems

Fig. 4(a) plots the performances of the phone- and
grapheme-based KL-HMM, MAP, MLLR, tandem and
HMM/GMM systems with increasing amounts of training
data on the HIWIRE task. Similarly, Fig. 4(b) plots the
performances on the Greek ASR task with increasing
amounts of training data. We can draw the following infer-
ences from the figures:

1. Irrespective of the subword units used, KL-HMM sys-
tems perform better than deterministic lexical model
based systems when there is limited training data and
comparable to deterministic lexical model based systems
as the training data is increased.

2. On both tasks, the difference in performance between
phone and grapheme-based systems is minimal for the
KL-HMM approach compared to all other approaches.

3. On both the HIWIRE (where the G2P relationship is
irregular) and Greek (where the G2P relationship is regu-
lar) tasks it can be observed that deterministic lexical
model based systems are more suitable for phones than
graphemes.
(a) On the HIWIRE task, the acoustic model adapta-

tion based systems perform better than the HMM/
GMM or tandem systems. However, the perfor-
cross-word context-dependent ASR systems trained on varying amounts of

120 min 150 min

hone Graph Phone Graph Phone

4.6 98.0 98.0 98.1 98.1
4.2 95.0 95.6 95.0 95.6
3.2 94.3 95.3 94.4 95.4

2.6 96.7 97.9 96.9 98.0
4.3 92.2 96.0 91.9 96.0

5.4 95.4 96.2 95.9 96.5

2.6 95.8 96.6 96.4 96.8



Table 4
Performance in terms of word accuracy on the Greek test set for the various cross-word context-dependent ASR systems trained on varying amounts of
Greek data.

System 5 min 37 min 300 min 800 min

Graph Phone Graph Phone Graph Phone Graph Phone

KL-HMM 78.0 80.3 81.4 83.0 83.8 84.4 84.5 84.8
SP-HMM 71.3 73.8 75.9 76.3 77.8 79.3 78.7 79.6
Tied-HMM 66.6 68.6 71.3 73.6 74.8 76.3 76.4 77.6

MAP 54.7 77.4 68.7 79.3 78.0 82.7 78.0 83.9
MLLR 50.0 77.3 52.6 78.7 52.8 79.1 52.8 78.7

Tandem 55.7 66.9 76.0 79.7 81.6 83.8 82.4 84.9

HMM/GMM 54.6 63.5 74.5 81.2 82.3 84.5 83.5 85.2

Fig. 3. Comparison between probabilistic lexical modeling based systems
with increasing amounts of target domain or language training data. (a)
on the HIWIRE non-native accented speech recognition task, (b) on the
Greek ASR task.
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Fig. 4. Comparison of the phone-based and grapheme-based KL-HMM
systems against the acoustic model adaptation based systems and the
standard HMM/GMM system with increasing amounts of target domain
training data. (a) on the HIWIRE non-native accented speech recognition
task, (b) on the Greek ASR task.
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mance of acoustic model adaptation systems using
graphemes is worse than with phones as subword
units. On the Greek task, where the transliterated
grapheme-based lexicon was used, grapheme-
based acoustic model adaptation systems perform
significantly worse than phone-based acoustic
model adaptation or HMM/GMM or tandem sys-
tems. The results also show that in the case of
grapheme subword unit set mismatch, translitera-
tion may not be the best possible alternative. In
such cases, data-driven mapping of grapheme sub-
word units could potentially be investigated
(Stüker, 2008a).

(b) When the available training data is larger, on both
tasks, phone-based deterministic lexical model sys-
tems perform comparably to the phone-based KL-
HMM system. For example, with larger adapta-
tion/training data sizes, on the HIWIRE task,
MAP and KL-HMM systems perform similarly
and on the Greek task, KL-HMM, HMM/



Table 6
Performance in terms of word accuracy on the Gaelic test set for the
various cross-word context-dependent ASR systems.

System Orthography-based lexicon Knowledge-based lexicon

KL-HMM RKL 67.9 72.7
SP-HMM 52.0 56.7
Tied-HMM 54.5 59.7

MAP 55.1 –
Tandem 66.5 69.9

HMM/GMM 64.2 68.0
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GMM and tandem systems perform similarly.
However, in the case of grapheme-based systems
this trend is not observed. The results, inline with
the other multilingual grapheme-based ASR stud-
ies show that the use of multilingual grapheme
models across languages does not appear evident
(Kanthak and Ney, 2003; Killer et al., 2003;
Stüker, 2008b).

4. Monolingual HMM/GMM systems and acoustic model
adaptation based systems with the shared unit set (i.e.,
on the HIWIRE task) that exploit multilingual speech
converge with the increase in acoustic resources.

5. Compared to the HMM/GMM approach, the tandem
approach is beneficial mainly in low acoustic resource
conditions.

6. Comparing MAP and MLLR approaches, MLLR is
better than MAP mainly in very low acoustic resource
conditions.

As mentioned in Section 5.1.2, it is possible to directly
decode the HIWIRE test set using language-independent
acoustic and lexical models without any adaptation. The
performance on the HIWIRE task for the KL-HMM,
SP-HMM, tied-HMM and the language-independent
HMM/GMM systems is given in Table 5. The lexical
model for the KL-HMM, SP-HMM and tied-HMM sys-
tems is trained on the SpeechDat(II) English data. It can
be observed that, for both phone and grapheme subword
units the KL-HMM system performs better than the SP-
HMM, tied-HMM and LI HMM/GMM systems. Also, it
is interesting to note that irrespective of the subword units
used, the performances of all the probabilistic lexical model
based systems (that use context-independent phones as
acoustic units) are better than that of the LI HMM/
GMM system (that uses context-dependent phones as
acoustic units).

6.2. Scottish Gaelic ASR

The performance on the test set of the Scottish Gaelic
corpus for the KL-HMM, SP-HMM, tied-HMM, tandem
and HMM/GMM systems for the orthography-based and
knowledge-based grapheme lexica is given in Table 6. The
MAP system was not investigated for the knowledge-based
lexicon due to the mismatch between the acoustic unit set
Table 5
Performance in terms of word accuracy on the HIWIRE test set using
systems trained on the SpeechDat(II) data. The LI HMM/GMM system
refers to the multilingual HMM/GMM system trained on the language-
independent (LI) data.

System Grapheme Phone

KL-HMM 90.0 94.0
SP-HMM 87.3 93.2
Tied-HMM 86.0 91.6

LI HMM/GMM 84.2 91.3
and the lexical unit set. It can be observed that the systems
using the knowledge-based grapheme lexicon perform better
than the systems using the orthography-based grapheme
lexicon. This shows that integrating orthographic knowl-
edge specific to the language in a grapheme lexicon can
help in improving the performance of grapheme-based
ASR systems. The KL-HMM systems perform better than
all the other systems. The tandem system performs better
than the HMM/GMM system. Furthermore, the MAP,
SP-HMM and tied-HMM systems perform worse than
the tandem and HMM/GMM systems. Finally, in the case
of the orthography-based lexicon, the MAP system is not
able to capitalize on the language-independent data.

6.3. Analysis

From the experiments presented earlier in this section, it
can be observed that despite using exactly the same acous-
tic model, the performance trends of the various probabi-
listic lexical modeling approaches are different. The KL-
HMM system performs better than the deterministic lexical
model based systems in under-resourced conditions and
performs similar to the deterministic lexical model based
system in well-resourced conditions. While, the SP-HMM
and tied-HMM systems show gains over the deterministic
lexical model based systems mainly in under-resourced
conditions (see Tables 3 and 4). We attribute the superior-
ity of the KL-HMM system to its abilities discussed in Sec-
tion 4.4.

In order to ascertain the reason for difference in perfor-
mance trends among the various probabilistic lexical mod-
eling approaches, we conducted the following study. On
the HIWIRE task, with the 150 min target data condition,
the lexical model trained using the KL-HMM RKL

approach is decoded with a Viterbi decoder using various
local scores, namely, SKLðyi; ztÞ, SSKLðyi; ztÞ; Stiedðyi; vtÞ and
SSP ðyi; ztÞ. The study was conducted for both grapheme-
based and phone-based systems. The results of this study
are given in Table 7.

It can be observed that decoding with KL-divergence
based local scores SRKLðyi; ztÞ; SSKLðyi; ztÞ and SKLðyi; ztÞ
results in better performance compared to decoding with
local scores SSP ðyi; ztÞ and Stiedðyi; vtÞ. This result indicates
that KL-divergence based local scores are better than sca-
lar product based local scores. Furthermore, decoding with



Table 7
Comparison across different local scores used during decoding. The system
trained with the KL-HMM RKL approach is decoded with all the other
local scores.

Local score for decoding Grapheme Phone

SRKLðyi; ztÞ 98.1 98.1
SKLðyi; ztÞ 97.8 97.6
SSKLðyi; ztÞ 98.1 98.1
SSP ðyi; ztÞ 96.5 96.7
Stiedðyi; ztÞ 97.3 97.1

Table 8
Comparison of word accuracies (WA) on the HIWIRE test set without
any adaptation.

System Out-of-domain data Sampling
frequency (kHz)

WA

HMM/GMM TIMIT 16 91.4

Hybrid HMM/
ANN

TIMIT, WSJ0, WSJ1,
Vehiclus-ch0

16 90.5

Hybrid HMM/
ANN

LDC Macrophone,
SpeechDat Mobile

8 88.4

KL-HMM
Graph

SpeechDat(II) 8 90.0

KL-HMM
Phone

SpeechDat(II) 8 94.0
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SKLðyi; ztÞ, SSP ðyi; ztÞ and Stiedðyi; vtÞ yields lower perfor-
mance than decoding with SRKLðyi; ztÞ. However, decoding
with SSKLðyi; ztÞ that gives equal importance to the acoustic
and lexical models yields performance similar to SRKLðyi; ztÞ.
It can also be noted that the lexical model trained using the
KL-HMM approach and decoded with SSP ðyi; ztÞ and
Stiedðyi; vtÞ local scores results in better performance com-
pared to the lexical model trained using the SP-HMM
and tied-HMM approaches and decoded with SSP ðyi; ztÞ
and Stiedðyi; vtÞ local scores. This indicates that the KL-
HMM approach with the local score SRKL yields a better
lexical model compared to the SP-HMM or tied-HMM
approaches. Deeper investigations on these aspects are
out of the scope of the present paper.

6.4. Comparisons to the literature

In the literature, there are studies that have been
reported on the HIWIRE task (Segura et al., 2007;
Gemello et al., 2007). Despite using the same adaptation
and test sets, the studies reported in this paper and the lit-
erature differ in terms of the sampling frequency of speech
data, type and amount of the out-of-domain data used.
First, we compare with studies in which no kind of adapta-
tion was performed.

� The TIMIT trained monophone HMM/GMM system
without adaptation was found to achieve a performance
of 91.4% word accuracy (Segura et al., 2007).
� The monophone hybrid HMM/ANN system using an

MLP trained on the TIMIT, WSJ0, WSJ1 and Vehi-
clus-ch0 corpora was found to achieve a performance
of 90.5% word accuracy (Gemello et al., 2007). The
monophone hybrid HMM/ANN system using an MLP
trained on the LDC Macrophone and SpeechDat
Mobile corpora was found to achieve a performance
of 88.4% word accuracy on the HIWIRE speech down-
sampled to 8 kHz (Gemello et al., 2007).

As shown in Table 8, the phone-based KL-HMM sys-
tem performs better than the approaches proposed in the
literature. The grapheme-based KL-HMM system per-
forms comparable to the phone-based systems reported in
the literature. It can also be observed from Tables 8 and
5 that the phone-based LI HMM/GMM system performs
similarly to the systems from the literature, whereas the
grapheme-based LI HMM/GMM system performs worse.
There are also studies on HIWIRE that report results
with acoustic model adaptation where 150 min of HIWIRE
adaptation data was used.

� It has been found that the TIMIT trained HMM/GMM
system with MLLR adaptation achieves a performance
of 97.25% word accuracy (Segura et al., 2007).
� The linear hidden network (LHN) based adaptation in

the hybrid HMM/ANN framework achieved a perfor-
mance of 98.2% on 16 kHz sampled HIWIRE data
(Gemello et al., 2007). In this case, an MLP trained on
data from TIMIT, WSJ0, WSJ1 and Vehiclus-ch0 was
adapted on the HIWIRE adaptation data using LHN.

As shown in Table 9, the hybrid HMM/ANN system
using LHN based adaptation performs similarly to the
phone-based and grapheme-based KL-HMM systems.
According to Imseng et al. (2011), on the HIWIRE task,
the performance of grapheme-based KL-HMM systems
using low amounts of HIWIRE adaptation data (like 3–
10 min) was significantly worse than that of phone-based
KL-HMM systems. The reason for this could be that the
lexical model parameters were directly trained on the lim-
ited HIWIRE adaptation data. In this work, this gap in
performance has significantly reduced as the lexical model
parameters trained on SpeechDat(II) English are adapted
using HIWIRE adaptation data.

In the case of the Greek task, as previously mentioned
phone-based KL-HMM, MLLR, MAP and HMM/
GMM systems reported by Imseng (2013) [Fig. 4.3 in Page
59 and 4.4 in Page 60] have been used as reference. How-
ever, the phone-based tandem systems reported by
Imseng (2013) and this paper differ mainly in terms of
the dimensionality of the tandem features used. Imseng
(2013) always used 117-dimensional tandem features. In
this work, the dimension of features i.e., either 117 or 39
was tuned on the development set for each of the training
conditions. We found dimensionality reduction to be ben-
eficial, especially in the low acoustic resource conditions.
For example, on the 5 min acoustic resource case, perfor-
mance of the phone-based tandem system reported by



Table 9
Comparison of word accuracies (WA) on the HIWIRE test set with
adaptation.

System Out-of-domain data Sampling
frequency (kHz)

WA

MLLR TIMIT 16 97.25

LHN TIMIT, WSJ0, WSJ1,
Vehiclus-ch0

16 98.2

KL-HMM
Graph

SpeechDat(II) 8 98.1

KL-HMM
Phone

SpeechDat(II) 8 98.1
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Imseng (2013) was 30.2% word accuracy with 117-dimen-
sional tandem features. In this paper, with 39-dimensional
tandem features we achieved a performance of 66.9% word
accuracy.

In previous study on Scottish Gaelic ASR, a knowledge-
based grapheme lexicon that tagged word beginning and
end graphemes was used and word-internal context-depen-
dent graphemes were modeled (Rasipuram et al., 2013a).
The KL-HMM and HMM/GMM systems achieved a word
accuracy of 72.8% and 64.8%, respectively. In this work,
the same knowledge-based grapheme lexicon was used
but without any word begin and end tags. As a result,
the total number of grapheme subword units is smaller.
Furthermore, in this paper we modeled cross-word con-
text-dependent subword units. As can be seen from Table 6,
the knowledge-based HMM/GMM system yields an abso-
lute improvement of 3.2% word accuracy compared to the
previous work and the grapheme KL-HMM system
achieves performance comparable to that of the previous
study.
7. Discussion and conclusion

In this work, we showed that ASR systems can be rap-
idly built using a language-independent acoustic model and
training only the lexical model on a small amount of target
language data. In recent work, it has been shown that the
lexical model can be completely knowledge driven and
ASR systems could be developed for new languages with-
out using any acoustic and lexical resources from the lan-
guage, i.e., near zero resource ASR systems (Rasipuram
et al., 2013b). Further, it was also shown that if untran-
scribed speech data from the target language is available
then the lexical model parameters can be adapted in an
unsupervised manner to improve the performance of the
ASR system.

In this work, we compared probabilistic lexical model
based systems with deterministic lexical model based sys-
tems. In deterministic lexical model based systems either
the acoustic model is adapted on target language data or
both acoustic and lexical models are trained on target lan-
guage data. In our studies we observed that, with increase
in target language acoustic data, the gap between KL-
HMM and acoustic model adaptation based systems
reduces. This suggests that there may be benefits in com-
bining acoustic model adaptation and probabilistic lexical
modeling, especially when more training data is available.

� When using an ANN-based acoustic model, this can be
achieved by training a hierarchical neural network
(Pinto et al., 2011) or adapting the neural network with
target language data (Swietojanski et al., 2012; Ghoshal
et al., 2013; Huang et al., 2013). A recent study on Scot-
tish Gaelic in the framework of KL-HMM has shown
the potential of acoustic model adaptation using the
hierarchical neural network approach (Rasipuram
et al., 2013a).
� The KL-HMM approach is not restricted to ANN-

based acoustic modeling alone (Rasipuram and
Magimai-Doss, 2013a). Therefore, using GMMs as the
acoustic model this can be achieved by adapting the
GMMs through the MAP technique followed by KL-
HMM training; or the parameters of GMMs and prob-
abilistic lexical model can be jointly estimated using the
approach proposed by Luo and Jelinek (1999).

As mentioned in Section 3, in the deterministic lexical
modeling framework, acoustic model adaptation and lexi-
cal model adaptation can be combined in different ways.
For instance, (a) by combining acoustic model adaptation
with polyphone decision tree state tying (Schultz and
Waibel, 2001) or (b) using the SGMM approach (Burget
et al., 2010). Comparing probabilistic lexical modeling
and deterministic lexical modeling along these lines with
graphemes as subword units is part of our future work.

Our studies, in addition to showing the efficacy of the
proposed approach, also explicated that it is the constraints
imposed by the deterministic lexical model that demand the
availability of well-developed acoustic resources and pho-
netic lexical resources from the target language. Further-
more, our investigations also showed that the
deterministic lexical model based ASR approach is more
suitable for phone-based ASR than grapheme-based
ASR, while the probabilistic lexical model based ASR
approach is suitable for both.

In conclusion, our studies showed that with probabilistic
lexical modeling especially using the KL-HMM approach,
ASR systems can be rapidly developed for new languages
by training a language-independent acoustic model and
learning the grapheme-to-phone relationship on a small
amount of target language data. In doing so, we not only
address the lack of transcribed speech data problem but
also the lack of phonetic pronunciation dictionary
problem.
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Appendix A. Parameter estimation of probabilistic lexical

model approaches

Given a trained ANN and training set of N utterances

fX ðnÞ;W ðnÞgN
n¼1 where for each training utterance n;X ðnÞ

represents the sequence of cepstral features of length T ðnÞ
and W ðnÞ represents the sequence of underlying words, the

set of acoustic unit probability vectors fZðnÞ;W ðnÞgN
n¼1 or

the set of likelihood vectors fV ðnÞ;W ðnÞgN
n¼1 are estimated.

ZðnÞ represents a sequence of acoustic unit probability vec-
tors of length T ðnÞ; V ðnÞ represents a sequence of acoustic
likelihood probability vectors of length T ðnÞ.

The KL-HMM system is parameterized by

Hkull ¼ ffyig
I
i¼1; faijgI

i;j¼1g. The training data fZðnÞ;W ðnÞgn

¼ 1N and the current parameter set Hkull, are used to estimate

the new set of parameters bHkull by the Viterbi expectation
maximization algorithm which minimizes,

bHkull ¼ arg min
Hkull

XN

n¼1

min
Q2Q

XT ðnÞ
t¼1

SRKLðyqt
; ztðnÞÞ � log aqt�1qt

h i" #
ðA:1Þ

The parameters of the tied approach
Htied ¼ ffyig

I
i¼1; faijgI

i;j¼1g are estimated by the Viterbi
expectation maximization algorithm that maximizes,

bHtied ¼ arg max
Htied

XN

n¼1

max
Q2Q

XT

t¼1

Stiedðyqt
; vtðnÞÞ þ logðaqt�1qt

Þ
h i" #

ðA:2Þ

where Q ¼ fq1; . . . qt; . . . ; qT ðnÞg; qt 2 f1; . . . ; Ig and Q
denotes set of all possible HMM state sequences.

The training process involves iteration over the segmen-
tation and the optimization steps until convergence. Given
current set of parameters, the segmentation step yields an
optimal state sequence for each training utterance using
the Viterbi algorithm. Given optimal state sequences and
acoustic unit posterior vectors belonging to each of these
states, the optimization step then estimates new set of
model parameters by minimizing Eq. (A.1) or maximizing

(A.2) subject to the constraint that
PD

d¼1yd
i ¼ 1.

The optimal state distribution for the local score SRKL, is
the arithmetic mean of the training acoustic unit probabil-
ity vectors assigned to the state, i.e.,
yd
i ¼

1

MðiÞ
X

ztðnÞ2ZðiÞ
zd

t ðnÞ 8d ðA:3Þ

where ZðiÞ denotes the set of acoustic unit probability vec-
tors assigned to state li and MðiÞ is the cardinality of ZðiÞ.

The optimal state distribution for the tied-HMM
approach is,

yd
i ¼

1

MðiÞ
X

vtðnÞ2V ðiÞ

yd
i :v

d
t ðnÞPD

d¼1yd
i :vd

t ðnÞ
8d ðA:4Þ

where V ðiÞ denotes the set of acoustic unit probability vec-
tors assigned to state li and MðiÞ is the cardinality of V ðiÞ.

SP-HMM is a special case of the tied-HMM approach
with the optimal state distribution,

yd
i ¼

1

MðiÞ
X

ztðnÞ2ZðiÞ

yd
i :z

d
t ðnÞPD

d¼1yd
i :zd

t ðnÞ
8d ðA:5Þ
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